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The seminal paper of Thistlethwaite and Campbell (1960) is one of the greatest break-
throughs in program evaluation and causal inference for observational studies. The origi-
nally coined Regression-Discontinuity Analysis, and nowadays widely known as the Regres-
sion Discontinuity (RD) design, is likely the most credible and internally valid quantitative
approach for the analysis and interpretation of non-experimental data. Early reviews and
perspectives on RD designs include Cook (2008), Imbens and Lemieux (2008) and Lee and
Lemieux (2010); see also Cattaneo and Escanciano (2017) for a contemporaneous edited
volume with more recent overviews, discussions, and references.

The key design feature in RD is that units have an observable running variable, score
or index, and are assigned to treatment whenever this variable exceeds a known cutoff.
Empirical work in RD designs seeks to compare the response of units just below the cutoff
(control group) to the response of units just above (treatment group) to learn about the
treatment effects of interest. It is by now generally recognized that the most important task
in practice is to select the appropriate neighborhood near the cutoff, that is, to correctly
determine which observations near the cutoff will be used. Localizing near the cutoff is
crucial because empirical findings can be quite sensitive to which observations are included in
the analysis. Several neighborhood selection methods have been developed in the literature
depending on the goal (e.g., estimation, inference, falsification, graphical presentation), the
underlying assumptions invoked (e.g., parametric specification, continuity/nonparametric
specification, local randomization), the parameter of interest (e.g., sharp, fuzzy, kink), and
even the specific design (e.g., single-cutoff, multi-cutoff, geographic).

We offer a comprehensive discussion of both deprecated and modern neighborhood selec-
tion approaches available in the literature, following their historical as well as methodological
evolution over the last decades. We focus on the prototypical case of a continuously dis-
tributed running variable for the most part, though we also discuss the discrete-valued case
towards the end of the discussion. The bulk of the presentation focuses on neighborhood
selection for estimation and inference, outlining different methods and approaches according
to, roughly speaking, the size of a typical selected neighborhood in each case, going from
the largest to smallest neighborhood. Figure 1 provides a heuristic summary, which we
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Figure 1: Choice of neighborhood (single-cutoff sharp RD)

discuss in detail throughout this article. This ordering among neighborhood selectors is not
strict, but it does reflect typical empirical results and may hold under reasonable assump-
tions and conditions. Furthermore, this ordering follows roughly the historical evolution in
the empirical and methodological RD literatures. To complement the discussion, we also
reflect briefly on neighborhood selection for several falsification and validation approaches
that have recently been proposed in the RD literature.

Our main methodological discussion and recommendations apply not only to the most
standard single-cutoff sharp RD design but also more generally to many other RD settings
such as fuzzy RD designs (e.g., Hahn et al., 2001), kink RD designs (e.g., Card et al.,
2015, 2017), geographic RD designs (e.g., Keele and Titiunik, 2015; Keele et al., 2017),
multi-cutoff RD designs (e.g., Cattaneo et al., 2016b), derivative estimation and stability
testing (e.g., Dong and Lewbel, 2015; Cerulli et al., 2017), distributional treatment effects
(e.g., Shen and Zhang, 2016), and density discontinuity designs (e.g., Jales and Yu, 2017).
Adapting the main discussion to these other RD settings is not difficult because our main
methodological points are conceptual, and hence not directly tied to any specific RD setup
(i.e., only the underlying technicalities or specific features of the problem considered would
change, not the general message).

The last section summarizes the implications of our methodological points in the form
of concrete recommendations for practice. This section builds on the most recent, and
still rapidly expanding, methodological literature on RD designs. Our recommendations
are given in general terms so they can be followed in most, if not all, empirical settings
employing any regression discontinuity design.

Choosing a Neighborhood

No matter the approach taken (parametric, nonparametric, local randomization) or specific
goal (estimation, inference, falsification, graphical presentation) when selecting a neighbor-
hood around the RD cutoff, researchers must impose assumptions, explicitly or implicitly,
which they deem reasonable and applicable for the empirical problem at hand. Therefore,
it is rarely the case that a method strictly dominates everything else: at the core of the
underlying reasoning often lays a trade off between efficiency and robustness, where some
methods will be more “efficient” under the assumptions imposed, but more sensitive to vio-
lations of these assumptions, while other methods will be more “robust” to such violations
but usually at the cost of some loss in precision.

We do rank approaches because we take a stand on the efficiency-robustness trade off:
since empirical researchers never know the features of the underlying data generating pro-
cess, and pre-testing for such features (when possible) can lead to other methodological and
practical problems in terms of estimation and inference, we favor procedures that are valid
under weaker assumptions, that is, we prefer more robust methods. From this robustness
perspective, a clear ranking among most neighborhood selectors emerges naturally, as we
discuss precisely in this section.
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Ad-Hoc Neighborhood

We classify as ad-hoc neighborhood selection those approaches that do not employ the data
at all to select the neighborhood or, at least, not in a systematic and objective way. These
methods were quite popular in the early stages of the RD design developments, but are
nowadays widely viewed as inappropriate for the analysis and interpretation of RD designs.
We discuss them here not only because they were the first used, but also because they give
a natural introduction to the modern approaches outlined further below.

The very first (ad-hoc) method for selecting a neighborhood around the RD cutoff was
to employ the full support of the data together with a linear regression model for estimation
and inference, which traces back all the way to Thistlethwaite and Campbell (1960). Later,
once the crucial role that global extrapolation plays in this approach was fully appreciated,
practitioners moved towards either (i) selecting a “smaller” neighborhood in an arbitrary
way (and still use linear regression), or (ii) employing higher-order polynomial regression
(and still use the full support of the data). These two approaches were popular for some
time in early empirical work employing RD designs. Figure 1 offers a graphical schematic
of these methods: hGL stands for the “global” or full support approach, where usually a
higher-order polynomial is used, and hAD denotes the ad-hoc “local” neighborhood, where
the researcher chooses the bandwidth in arbitrary manner. This smaller ad-hoc, parametric
linear regression neighborhood is depicted as “large” relative to other modern methods
discussed below because in our experience most empirical applications and/or real datasets
we have reanalyzed employing the latter methods typically exhibited this pattern. In other
words, ad-hoc neighborhoods were usually chosen to be large relative to what automatic,
data-driven methods would have selected instead.

Obvious concerns with methods that select a neighborhood around the RD cutoff in an
ad-hoc way are: (i) lack of objectivity, (ii) lack of comparability, and (iii) lack of control over
the researcher’s discretion. In contrast, all of the data-driven procedures that we discuss
below avoid these issues, and hence they provide at least a useful benchmark for empirical
work exploiting regression discontinuity designs.

Another important, but more subtle, worry related to ad-hoc neighborhood selection
methods relates to the underlying assumptions imposed when conducting estimation and
inference, which many times are not even explicitly acknowledged by practitioners. To be
specific, underlying any of the ad-hoc methods commonly encountered in empirical work
there is a crucial assumption: the regression function is correctly specified or, at least,
any misspecification error is small enough to be ignored. This parametric approach to
RD designs gives practitioners justification to employ standard least squares results when
conducting estimation and inference. While such parametric approach is, of course, correct
when the regression functions are correctly specified, in general there is no reason for the
unknown conditional expectations to have the exact (or close enough) parametric form
postulated, and hence misspecification errors can be a serious concern. Furthermore, it is
now well recognized that employing higher-order polynomial approximations over a large
support is highly detrimental, when the goal is to learn something about a boundary point as
in RD designs, because such an approach leads to counterintuitive weighting of observations
(Gelman and Imbens, 2014) and erratic behavior of the estimator near the boundary (usually
known as the Runge’s phenomenon, see Calonico et al., 2015, for more discussion).

137



Cattaneo and Vazquez-Bare

Finally, some empirical researchers have used ad-hoc neighborhood selectors based on
data-driven procedures from the nonparametric literature, such as those related to band-
width selection for kernel-based density estimation (Wand and Jones, 1995) or local poly-
nomial estimation at an interior point (Fan and Gijbels, 1996). While these approaches are
data-driven, they are also ad-hoc in sense that they are not tailored to RD designs, and
hence they can lead to invalid (or at least suboptimal) estimation and inference procedures.
These approaches are not very popular in modern empirical work employing RD designs,
nor are they recommended or theoretically justified, and therefore we do not discuss them
further.

The concerns and criticisms outlined above have led modern researchers to employ fully
data-driven, objective neighborhood selectors to conduct estimation and inference in RD
designs. Ad-hoc methods are nowadays deprecated and dismissed among most well trained
practitioners and methodologists. If used, they are typically presented as supplementary
evidence after reporting results based on the data-driven methods discussed next, which
enjoy demonstrably optimality and/or robustness properties.

Local Polynomial Neighborhood: MSE-Optimal Point Estimation

In this and related approaches, the neighborhood takes the form [x̄ − h, x̄ + h] and hence
is determined by a choice of bandwidth h. Imbens and Kalyanaraman (2012, IK hereafter)
were the first to propose an objective neighborhood selector specifically tailored for RD
designs. They developed a Mean Squared Error (MSE) optimal bandwidth choice for the
local-linear regression point estimator in sharp and fuzzy RD designs. This result was later
extended to (i) general local polynomial point estimators, (ii) kink RD designs, (iii) clustered
data, (iv) inclusion of pre-intervention covariates, and (v) different bandwidth choices on
the left and on the right of the cutoff, in a sequence of more recent papers (Calonico et al.,
2014; Bartalotti and Brummet, 2017; Calonico et al., 2016c).

The MSE-optimal bandwidth takes the form hMSE = CMSE · n−1/(2p+3), where n denotes
the total sample size available, p denotes the polynomial order used for estimation (p = 1
for linear regression), and the constant CMSE involves several known and unknown quantities
that depend on objects such as the kernel function, p, the parameter of interest, the asymp-
totic bias and variance of the estimator, the evaluation point (in multi-cutoff or geographic
RD designs), and even whether additional pre-intervention covariates were included in the
estimation. This approach is also depicted in Figure 1.

Given a sample size n, the infeasible MSE-optimal neighborhood [x̄ − hMSE, x̄ + hMSE]
will be larger as the value of the unknown constant CMSE increases. This constant, in turn,
will become larger whenever the variability of the estimator and/or model increases near
the cutoff (e.g., p is larger, the conditional variance of the outcome is larger or the density
of observations near the cutoff is smaller) and whenever the parametric approximation im-
proves near the cutoff (i.e., less misspecification bias). In practice, hMSE is constructed by
first forming a preliminary estimator ĈMSE of the unknown constant CMSE, leading to the es-
timated bandwidth ĥMSE = ĈMSE ·n−1/(2p+3), and therefore the selected neighborhood around
the RD cutoff x̄ takes the form [x̄− ĥMSE, x̄ + ĥMSE]. IK proposed a first-generation plug-in
rule leading to a bandwidth selector ĥMSE, based on a simple reference model and (possibly
inconsistent) plug-in estimators. An improved, second-generation bandwidth selector was
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later developed by Calonico et al. (2014, 2016c), which enjoys demonstrably superior finite
and large sample properties relative to the original IK’s bandwidth selector. See, e.g., Wand
and Jones (1995) for a discussion of first- and second-generation bandwidth selectors, and
their statistical properties.

In this MSE-optimal point estimation approach, only observations with their running
variable laying within the selected neighborhood [x̄− ĥMSE, x̄+ ĥMSE] are used for estimation
of the RD treatment effect. This estimator is fully data-driven, objective and optimal in a
mean squared error sense, which makes it highly desirable for empirical work, at least as
a benchmark estimate. Employing second-generation plug-in bandwidth selectors lead to
superior performance of the MSE-optimal RD treatment effect estimator in finite and large
samples.

At the same time, the MSE-optimal point estimator cannot be used directly for infer-
ence, that is, for constructing confidence intervals, conducting hypothesis tests or assessing
statistical significance. At the core of the argument lays a fundamental logical inconsistency:
the neighborhood [x̄− ĥMSE, x̄+ ĥMSE] is selected for MSE-optimal point estimation and hence
balances bias-squared and variance in a way that makes, by construction, inference invalid
when the same observations and RD estimator are used. There is no way out of this logical
inconsistency: if one assumes that the misspecification bias is not present (i.e., bias = 0),
then hMSE is necessarily not well defined because CMSE ∝ 1/bias. In other words, to be able to
employ ĥMSE in the first place, one needs to assume the existence of a misspecification error
(bias), but it is this very same bias that makes inference invalid when the MSE-optimal
point estimator is used for inference purposes.

The invalidity of inference procedures based on the MSE-optimal point estimator was
ignored for some time among practitioners. Calonico et al. (2014) highlighted the detrimen-
tal consequences of ignoring this misspecification bias and, to solve this inferential problem,
proposed a new inference approach based on bias correction of the point estimate, coined
robust bias correction. The idea behind this method, which allows employing the MSE op-
timal bandwidth and point estimator, is to adjust the MSE-optimal RD point estimator by
estimating its bias and also to adjust the variance estimator used for Studentization pur-
poses when conducting inference. For example, when compared to conventional confidence
intervals based on ad-hoc neighborhood selection that rely on standard least squares results,
robust bias correction adjusts this confidence interval by recentering (bias correction) and
rescaling (robust variance estimator) it. The robust bias corrected RD confidence intervals
are fully compatible with employing observations with score lying inside the MSE-optimal
selected neighborhood [x̄− ĥMSE, x̄ + ĥMSE], while still giving valid inference methods.

Furthermore, Calonico et al. (2016b,a) recently showed that robust bias correction gives
demonstrably superior inference when compared to alternative methods employing smaller
neighborhoods than [x̄ − ĥMSE, x̄ + ĥMSE], that is, when shrinking ĥMSE (known as under-
smoothing).

In sum, although the MSE-optimal neighborhood can be used for optimal point esti-
mation, standard least squares inference methods cannot be used for inference, and robust
bias corrected confidence intervals and related procedures should be used instead. Estima-
tion and robust bias-corrected inference employing the MSE-optimal neighborhood is more
robust to the presence of misspecification bias because it does not rely on strong functional
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form assumptions about the unknown conditional expectations. As a consequence, these
empirical methods are preferred to those relying on ad-hoc neighborhood selectors.

Local Polynomial Neighborhood: CE-Optimal Robust Bias-Corrected
Inference

The MSE-optimal neighborhood [x̄− ĥMSE, x̄ + ĥMSE] is quite popular in empirical work be-
cause it gives an optimal RD treatment effect estimator. As discussed above, the same
neighborhood can be used for inference when robust bias correction techniques are em-
ployed. However, this neighborhood need not be optimal when the goal is inference. Indeed,
Calonico et al. (2016b,a) showed that a different, smaller neighborhood must be used when
the goal is constructing optimal confidence intervals in the sense of having the smallest
coverage error (CE) probability.

To be more precise, the CE-optimal neighborhood around the RD cutoff is [x̄−hCE, x̄+
hCE] with hCE = CCE · n−1/(p+3) and CCE another unknown constant, fundamentally differ-
ent from CMSE, which needs to be estimated in practice because it also involves unknown
quantities. This new neighborhood offers robust bias corrected confidence intervals with
demonstrably superior optimality properties for inference, when compared to those confi-
dence intervals constructed using the MSE-optimal neighborhood [x̄ − hMSE, x̄ + hMSE]. It
follows that [x̄ − hCE, x̄ + hCE] ⊂ [x̄ − hMSE, x̄ + hMSE], in large samples, because hCE < hMSE.
The same logic also applies to their estimated versions. Figure 1 depicts the CE-optimal
choice.

Therefore, in empirical applications, the MSE-optimal neighborhood [x̄− ĥMSE, x̄+ ĥMSE]
can be used for MSE-optimal RD treatment effect point estimation, and the CE-optimal
neighborhood [x̄ − ĥCE, x̄ + ĥCE], with ĥCE denoting a data-driven implementation of hCE,
can be used to form CE-optimal robust bias corrected confidence intervals. Employing
observations with their score within the CE-optimal neighborhood for point estimation
purposes is theoretically allowed but not advisable because the resulting RD treatment
effect estimator will have too much variability.

As is the case for the MSE-optimal estimation and robust bias-corrected methods dis-
cussed previously, the CE-optimal inference methods are more robust than those based on
ad-hoc neighborhood selectors because they optimally trade off misspecification bias under-
lying the local polynomial approximations to the unknown regression functions, variability
of the test statistic (not just the point estimator), and other features of the underlying
unknown data generating process.

Local Randomization Neighborhood

The neighborhood selection approaches outlined so far are all related, one way or another,
to local or global polynomial regression approximations of the unknown conditional expec-
tations. As such, these methods are based on extrapolation towards the cutoff point x̄,
using either observations near the cutoff but within the selected neighborhood or simply
using all observations in the sample. An alternative approach for identification, estimation
and inference in RD designs is based on the idea of local randomization, which assumes that
there exists a neighborhood around the cutoff where the underlying data generating process
is one (approximately) mimicking a randomized controlled trial (RCT). This heuristic idea
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was originally put forward by Lee (2008), and formally developed in Cattaneo et al. (2015),
Cattaneo et al. (2017), Sekhon and Titiunik (2017), and references therein.

From this point of view, neighborhood selection is quite different because substantially
different assumptions are placed on the underlying data generating process. In other words,
none of the neighborhood selectors discussed previously can be used within the local ran-
domization framework because it would be very difficult to rationalize their validity. Cat-
taneo et al. (2015, 2017) introduced a new neighborhood selection approach: instead of
optimizing a point estimator in a mean squared error sense or a confidence interval in a
coverage error sense, their idea is to employ pre-intervention covariates and optimize in the
sense of minimizing the statistical evidence against the local randomization assumption. To
be more precise, the proposal is to conduct a sequence of “balance” or “placebo” tests of
no treatment effect on exogenous covariates known to be unaffected by treatment near the
RD cutoff, for different proposed neighborhoods, and then select the largest neighborhood
that is compatible with local randomization (i.e., the largest neighborhood for which the
null hypothesis is not rejected). Under regularity conditions, this method will select a valid
neighborhood, which will tend to be smaller than the true neighborhood because no correc-
tion for multiple testing is used. Since by construction the neighborhoods are nested, not
using multiple testing corrections is appropriate from a robustness perspective in this case.

This neighborhood selection method based on pre-intervention covariate balance tests
is similar in spirit to procedures commonly used in the matching literature to select a
matched sample when analyzing observational data under a conditional independence or
ignorability assumption (e.g., Imbens and Rubin, 2015). Despite the similarities, the RD
local randomization neighborhood selection method is different in that it explicitly exploits
the structure of the RD design by localizing near the cutoff and crucially relying on balance
tests in a sequence of nested windows.

While the neighborhood selector described above, and subsequent inference procedures,
could be implemented via standard large sample estimation and inference methods for
RCTs, Cattaneo et al. (2015, 2017) propose to employ randomization inference methods,
which are finite sample valid. The main rationale underlying this proposal is at the heart
of the specific setting of RD designs: a local randomization assumption in RD designs is
most likely to hold, or at least give a good approximation, in a very small neighborhood
around the RD cutoff where usually very few observations are available for estimation and
inference. Therefore, randomization inference methods, or other analogous finite sample
valid methods such as permutation inference, are most useful in the RD context because
large sample approximations are unlikely to provide a good enough approximation. Apply-
ing the above neighborhood selector to several applications, we have systematically found
very small neighborhoods. Thus, based on the methodological arguments and empirical
evidence, Figure 1 depicts the local randomization neighborhood as the smallest of all the
possible neighborhoods available for estimation and inference in RD designs.

Local randomization methods are fundamentally different from local polynomial meth-
ods, both in assumptions and implementation, and therefore they provide a useful robust-
ness check whenever both methods can be used. Furthermore, another important advantage
of local randomization methods is that they can handle discrete running variables without
any additional assumptions, and randomization inference methods are again most natural
whenever the sample size is small. In contrast, local polynomial methods would require
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additional parametric assumptions to be valid when the running variable is discrete. This
fact is neither surprising nor worrisome, however, since when the running variable is actu-
ally discrete there is no need for extrapolation to begin with. It is much more natural and
useful to simply consider only the observations having their running variable at the closest
discrete value(s) relative to the RD cutoff, on either side, and then use them to conduct
estimation and inference. This, of course, changes slightly the parameter of interest, though
this is quite natural whenever the running variable has a discrete distribution.

Falsification/Validation Neighborhood

Our discussion so far has focused on neighborhood selection around the RD cutoff for esti-
mation and inference, explicitly relying on different assumptions (i.e., parametric modeling,
nonparametric modeling, local randomization). In this subsection, we briefly discuss the
related issue of neighborhood selection for falsification/validation of RD designs.

There are two basic falsification/validation methods in the RD literature: (i) tests
looking at the continuity of the density of the running variable, and (ii) tests looking at
the absence of RD treatment effects on pre-intervention covariates and “placebo” or unaf-
fected outcomes. Both of these approaches also require “localizing” around the RD cutoff.
Calonico et al. (2015) discuss related graphical falsification and presentation methods using
RD plots, which we do not discuss here to conserve space.

Continuity in the density of the running variable was originally proposed by McCrary
(2008), and is by now extremely popular in empirical work. This test is usually understood
as providing evidence, or lack thereof, of units having intentionally changed or manipu-
lated their score value near the cutoff. Cattaneo et al. (2016a) recently developed a more
robust, nonparametric local polynomial inference method that avoids selecting multiple
tuning parameters when implementing this density test. In their approach, the neighbor-
hood is selected in a data-driven, objective way with the explicit goal of minimizing the
MSE of the density estimators used to construct the test statistic. It is not possible to
determine whether this MSE-optimal neighborhood will be larger or smaller than any of
the neighborhoods described previously, because the objective and estimation methods are
quite different (i.e., density estimation vs. conditional expectation estimation). What is
clear is that the neighborhood for the density test should not be equal, in general, to any
of the other neighborhoods: i.e., it should be chosen explicitly for the goal at hand, falsifi-
cation testing based on local polynomial density estimation. In addition, Frandsen (2017)
also developed a “continuity in density” testing approach for the case of discrete running
variable. For this method, at present, there is no optimal way of choosing a neighborhood
beyond some ad-hoc selection, though the procedure allows for very few “observations”
(mass points) near the cutoff because it relies on finite sample inference methods (formally
justified by some large sample approximations). Again, there is no reason why the “neigh-
borhood” used for this density test with discrete running variable should coincide with any
of the other neighborhoods, and in general it will not.

The density test is quite useful and intuitive because it exploits some of the specific fea-
tures of RD designs. The second falsification/validation method commonly used in practice
is more standard, in the sense that it is directly imported from common practice in other
experimental and non-experimental settings. Specifically, this second method seeks to test
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whether there is evidence of an RD treatment effect on covariates and outcomes that should
(or, at least, are assumed to) be unaffected by the treatment. This approach is conceptually
analogous to testing for a treatment effect on pre-intervention covariates in the context of
RCTs, and can be implemented using directly the modern local polynomial and randomiza-
tion inference methods described in the previous sections for RD estimation and inference.
As an alternative, Canay and Kamat (2016) have recently proposed a permutation inference
approach for falsification testing based on comparing the whole distribution of treatment
and control groups, which is also justified via some large sample approximations near the
cutoff. The authors conduct neighborhood selection using a rule-of-thumb based on a simple
reference model, which leads to yet another neighborhood to be used in applications when
implementing their method.

Recommendations for Practice and Final Remarks

To conclude, we offer some practical recommendations for empirical work. We build on
the methodological points put forward above, and hence only offer very brief takeaway
methodological points:

1. Always employ RD optimal data-driven neighborhood (bandwidth or window) selec-
tors, at least as a benchmark or starting point. This gives objectivity and robustness
because it incorporates explicitly empirical features such as density of observations,
variability of the data, or curvature of the unknown regression functions, in a princi-
pled way.

2. Employ data-driven neighborhood (bandwidth or window) selectors according to the
specific goal and assumptions imposed, which should also be explicitly stated and
explained. There is no one neighborhood selector appropriate for all objectives when
using local polynomial approximations, and even for local randomization methods
sensitivity analysis with respect to the neighborhood used is very important.

3. Do not employ the same neighborhood for different outcome variables, pre-intervention
covariates (if conducting falsification testing), estimation and inference procedures, or
falsification methods. Using the same neighborhood for different goals, outcomes or
samples disregards the specific empirical features (e.g., number of observations near
the cutoff, variability or curvature), and will lead to unreliable empirical results due
to invalidity of the methods employed.

Thistlethwaite and Campbell (1960) introduced one of the best non-experimental meth-
ods for the analysis and interpretation of observational studies. In recent years many
methodological and theoretical developments not only have extended the basic regression
discontinuity design to many other settings, but also have provided major improvements in
terms of presentation, estimation, inference and falsification for empirical practice. In this
discussion, we focused on arguably the most important and challenging part of analyzing
and implementing RD designs: neighborhood, bandwidth or window selection around the
RD cutoff. Much methodological progress has been achieved in recent years regarding this
important task, making RD designs even more credible and robust in applications.
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