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Abstract

The boundary discontinuity (BD) design is a non-experimental method for iden-

tifying causal effects that exploits a thresholding rule based on a bivariate score and

a boundary curve. This widely used method generalizes the univariate regression dis-

continuity design but introduces unique challenges arising from its multidimensional

nature. We synthesize over 80 empirical papers that use the BD design, tracing the

method’s application from its formative stages to its implementation in modern re-

search. We also overview ongoing theoretical and methodological research on identifi-

cation, estimation, and inference for BD designs employing local polynomial regression,

and offer recommendations for practice.
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1 Introduction

The Regression Discontinuity (RD) design is one of the leading observational methods for

program evaluation and causal inference (see Abadie and Cattaneo, 2018; Hernán and Robins,

2020, for overviews and further references). In its canonical form, a binary treatment is

assigned to units whose value of a univariate score is equal to or above a known scalar cutoff,

and not assigned to units whose score value is below the cutoff. Under the assumption that

all observable and unobservable pretreatment characteristics vary smoothly at the cutoff, the

discontinuous change generated by the hard-thresholding treatment assignment rule can be

used to learn about causal treatment effects. Lee and Lemieux (2010) offer an early review

and list of RD empirical applications, Cattaneo and Titiunik (2022) give a recent review

of the RD methodological literature, and Cattaneo et al. (2020, 2024) provide a practical

introduction to modern RD methods.

The Boundary Discontinuity (BD) design generalizes the RD design: the score has two

dimensions instead of one, and the treatment is assigned to units according to the location

of their score relative to a known boundary curve that splits the support into two disjoint

regions. This setup is sometimes called the Multi-Score RD design (Papay et al., 2011;

Reardon and Robinson, 2012; Wong et al., 2013), or the Geographic RD design (Keele and

Titiunik, 2015; Keele et al., 2015; Keele and Titiunik, 2016; Keele et al., 2017; Galiani et al.,

2017; Rischard et al., 2021; Diaz and Zubizarreta, 2023). We discuss the empirical strategies

most commonly employed for the analysis and interpretation of BD designs, and review

ongoing theoretical and methodological results characterizing their econometric properties

(Cattaneo et al., 2025a,b, 2026).

We start in Section 2 by introducing the BD design and presenting a review of the empirical

literature in Economics, Political Science, Education, and other disciplines. We report over

80 empirical papers in Table 1, which form the basis of the rest of our discussion. We

find that the overwhelming majority of papers collapse the bivariate score into a univariate
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distance score measuring the shortest distance from the unit’s location to the treatment

assignment boundary, and then report a single average treatment effect estimated by pooling

all the observations that are close to the boundary, regardless of their specific location. We

refer to this empirical strategy as pooling-based methods. In contrast, only a handful of

empirical papers have investigated heterogeneity by localizing to specific regions or points

on the boundary, despite the usefulness of this rich information for policy evaluation and

decision-making.

In Section 3, we discuss pooling-based methods. We begin with the seminal work of

Card and Krueger (1994). Although their paper is often cited as a canonical example of a

difference-in-differences design, these authors are one of the first to argue that reducing ge-

ographic distance may increase comparability among units. We then discuss Holmes (1998)

and Black (1999), who are among the first to employ localization to the assignment boundary

explicitly as the central empirical strategy. Subsequent empirical work has recognized the

importance of localization to the boundary, and has considered different empirical strategies

for treatment effect estimation via local flexible regression methods. One of the most influen-

tial papers is Dell (2010), who incorporated a polynomial expansion of the bivariate location

score as part of the local regression specification. More recently, an alternative empirical

approach views the estimation based on distance to the boundary as a pooled univariate RD

design, and thus estimates treatment effects using a local regression including a polynomial

expansion of the univariate distance score—recent examples include Ito and Zhang (2020)

and Dehdari and Gehring (2022). Many empirical papers also include boundary-segment

fixed effects in their local regression specifications, and some include interactions with the

treatment indicator and/or between the polynomial expansions of the univariate distance

score and the bivariate location score. Furthermore, either to simplify the problem or be-

cause distinct treatments occur in different regions of the boundary, some papers reduce the

BD design to boundary-segment-specific univariate RD designs—see Ou (2010), Londoño-

Vélez et al. (2020) and Salti et al. (2022). We synthesize these various empirical strategies
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into eight distinct pooled local regression specifications.

While pooling-based methods are widely used in empirical work, their econometric proper-

ties are not well understood. In ongoing research, Cattaneo et al. (2026) formally study iden-

tification, estimation, and inference for these methods, recast as a univariate RD design based

on the shortest distance to the assignment boundary. The results leverage geometric mea-

sure theory (Federer, 2014) upon recognizing the assignment boundary as a one-dimensional

submanifold curve on the plane, and enable estimation and inference using state-of-the-art

RD methods (Calonico et al., 2014, 2019, 2020). Some of this work is conceptually related

to a recent paper by Chen and Gao (2025), who study estimation and inference for integral

functionals on submanifolds when using nonparametric sieve estimation.

The boundary average treatment effect parameter emerging from the pooling-based meth-

ods is useful, but the richness of the two-dimensional BD assignment offers the opportunity to

explore heterogeneous treatment effects along the assignment boundary. In geographic appli-

cations, the heterogeneity is directly linked to the geographic location of the units, providing

useful information about how treatment effects vary in space; in non-geographic settings,

the heterogeneity is directly linked to unit features that are captured by the bivariate score,

and hence its interpretation is necessarily application-specific.

In Section 4, we discuss heterogeneity analysis and subsequent aggregation of causal treat-

ment effects in BD designs using the boundary average treatment effect curve (BATEC),

which captures the average treatment effect for each point along the assignment bound-

ary. We also summarize the results in Cattaneo et al. (2025a) and Cattaneo et al. (2025b).

These papers study identification, estimation, and inference for BATEC and transforma-

tions thereof, from two distinct perspectives: Cattaneo et al. (2025a) studies boundary-

point-specific distance-based methods, which are directly motivated by the pooling-based

approaches discussed in Section 3, while Cattaneo et al. (2025b) studies methods based on

the untransformed bivariate location. For each approach, the local polynomial estimation

and inference results are valid both pointwise and uniformly along the assignment boundary,
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in addition to providing the basis for constructing other treatment effect estimators.

We offer recommendations for practice and concluding remarks in Section 5. Our recom-

mended methods can be implemented using the general-purpose software packages rdrobust,

rdhte, rdmulti, and rd2d, located at https://rdpackages.github.io/, where readers can

also find replication files and related references.

2 The Boundary Discontinuity Design

Each unit i in the study, i = 1, . . . , n, has a continuous bivariate score Xi = (X1i, X2i)

that takes values in the set X ⊆ R2. The assignment of units to the treatment or control

condition depends on the location of their score Xi relative to a known one-dimensional

boundary curve B that splits X into two disjoint regions: X = A0∪A1, with A0 and A1 the

disjoint (connected) control and treatment regions, respectively, and B = bd(A0) ∩ bd(A1),

where bd(At) denotes the boundary of the set At. We assume that the boundary belongs to

the treatment group, that is, bd(A1) ⊂ A1 and B∩A0 = ∅. The observed outcome variable

is Yi.

An ancestor of the BD design was used by Card and Krueger (1994) in their seminal

study of the effects of the minimum wage on employment. In their analysis, the treatment

of interest is the increase of the state minimum wage in New Jersey adopted on April 1,

1992, which rose the minimum wage to $5.05. The authors compared a sample of fast food

restaurants in New Jersey to a sample of fast food restaurants in eastern Pennsylvania, a

state that shares a border with New Jersey and where the minimum wage did not increase.

After the increase in New Jersey, the average starting wage was $5.08 in the New Jersey

sample and $4.62 in the Pennsylvania sample.

The rationale for comparing restaurants in New Jersey to restaurants in eastern Pennsyl-

vania was that, by focusing on close geographic areas, these restaurants would be subject

to similar economic conditions that would otherwise confound the effects of changes to the
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minimum wage. Although Card and Krueger’s main research strategy was a difference-

in-differences strategy comparing NJ and PA before and after the increase, they explicitly

mention the close geographic proximity between the areas to justify their choice of the

comparison group, as they believed that fast-food stores in eastern Pennsylvania formed a

“natural basis for comparison with the experiences of restaurants in New Jersey” due to

Pennsylvania being a “nearby state” (Card and Krueger, 1994, p. 773).

The use of close proximity as the basis for reducing potential confounders and enhancing

the credibility of causal interpretations bears a direct connection to the BD design. The

main difference is that Card and Krueger (1994) included non-adjacent areas in New Jersey

and Pennsylvania (e.g., the New Jersey sample included restaurants in the New Jersey shore,

far away from the Pennsylvania border), and did not directly use the unit’s distance to the

boundary in their analysis. The explicit use of distance to the assignment boundary is central

to the BD design, which is why we consider Card and Krueger (1994) to be an ancestor rather

than an instance of the BD design itself: while the authors leverage the change in treatment

assignment induced by a geographic boundary, they did not fully localize to the boundary

itself in their analysis. (See Dube et al. (2010) for an example of a minimum wage study in

the spirit of Card and Krueger (1994) that uses distance explicitly in the analysis.)

Holmes (1998) and Black (1999) are the earliest empirical examples employing the BD

design that we could find. Holmes (1998) used a BD design to study the effect of pro-

business policies on manufacturing, comparing states that adopted right-to-work laws with

adjacent states that did not. Using the longitude and latitude coordinates of each county’s

centroid, he calculated the minimum distance of the centroid to the assignment border, and

focused the analysis on counties close to the border as a way to “control for differences across

states in these various characteristics that are unrelated to policy” (Holmes, 1998, p. 671).

Similarly, Black (1999) used a BD design to infer the quality of public schools from housing

prices. She compared house prices on opposite sides of school attendance district boundaries,

restricting the sample to houses close to the boundary. The justification for this localization
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was that houses on opposite sides of the boundary within a small area around it would be

similar in all characteristics except for school quality—as the latter changes discontinuously

at the attendance district boundary. In these examples, the bivariate score is the pair of

latitude and longitude coordinates that determines the location of each unit (county or

house), and the assignment boundary is the geographic border between two adjacent states

or school attendance districts; the treatment is the policy or feature that changes abruptly

at the border—labor policy for Holmes (1998) and school quality for Black (1999). This type

of BD design is often referred to as a Geographic RD design.

One of the most common non-geographic applications of the BD design occurs in educa-

tion when a treatment is given on the basis of two exam scores. For example, Ou (2010)

studied the effect of a high school exit exam on the likelihood of dropping out of high school.

The exam had a mathematics and a language arts component, each of which was graded

separately; students must achieve a minimum proficiency in each section in order to pass the

exam. The bivariate score in this case is the pair of mathematics and language test scores,

and the treatment is passing the exam.

Figure 1 illustrates the boundary and treatment assignment regions in two stylized settings

corresponding to the geographic and non-geographic examples. Figure 1a illustrates the

geographic BD design case, where units are split into adjacent treated and control areas

according to their location with respect to a geographic border, as in Black (1999) and Holmes

(1998). (This figure shows the New Jersey-Pennsylvania border.) Figure 1b illustrates the

non-geographic setting, using as example the study by Ou (2010) where students receive two

exam scores and a treatment is given only to those individuals who score above a minimum

cutoff in each exam. In geographic applications, the bivariate score is always composed of the

geographic coordinates of the units. In non-geographic applications, the bivariate score could

include different types of variables; in addition to test scores from multiple exams, examples

include shares of airline passengers in origin and destination cities (Snider and Williams,

2015), tax rates and income ratios (Egger and Wamser, 2015), systolic and diastolic blood
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(a) Geographic BD Design (b) Non-geographic BD Design

Figure 1: BD Design Illustration

pressure measurements (Dai et al., 2022), different component scores in a means-testing

formula (Salti et al., 2022; Kämpfen and Mosca, 2024), and population counts at different

time periods (Hinnerich and Pettersson-Lidbom, 2014).

Figure 1 illustrates an important distinction between the geographic and non-geographic

examples. In non-geographic examples, the function that describes the boundary tends to

be known and is typically linear with few irregularities and few kink points. In contrast, in

geographic BD designs the boundary is typically the border between political or adminis-

trative subdivisions; as a consequence, its shape is only available as coordinates on a map,

and its geometry is complex: in the best case, it will be piecewise linear with kink points,

but it will be more irregular in many applications. In his early study, Holmes (1998, pp.

681–682) recognized this challenge and discussed explicitly the complex boundary shapes

created by geographic borders. Indeed, since the influential work by Mandelbrot (1967,

1983), there has been an ongoing debate among mathematicians and philosophers about

whether geographic borders (and other shapes in nature) are fractals (see Avnir et al., 1998,

and references therein). From a methodological perspective, as recently formalized in Cat-

taneo et al. (2025a,b, 2026), the geometry of the assignment boundary in BD designs has

fundamental implications for identification, estimation, and inference. We will review some
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of these recent findings in the upcoming sections.

In the standard RD design, the distance between the univariate score and the single cutoff

is naturally measured by the Euclidean distance, and observations are close to the cutoff

c when their univariate score Xi implies a small distance |Xi − c|. In contrast, in the BD

design, closeness to the boundary can be defined in different ways, depending on whether the

parameter of interest is defined relative to a specific point on the boundary, or as an aggregate

thereof along the entire boundary, such as an average or a supremum. Furthermore, due to

its multivariate nature, the analysis can depend on the specific notion of distance used.

In the upcoming sections, we discuss the two main approaches to the analysis of BD

designs. The first approach uses the variation in treatment assignment induced by the entire

boundary simultaneously, and thus pools all observations sufficiently close to the boundary

in a single analysis, producing a single average treatment effect across all boundary points.

This pooling approach relies on localization to B by first computing the distance between

each observation’s location and the nearest point on the boundary, denoted by Di, and

then retaining only those observations for which this distance is no larger than a specific

bandwidth, denoted by h. The advantage of this approach is that it naturally mimics the

univariate RD design, using the bivariate location of each unit to build a univariate score

that is used directly in a standard univariate RD analysis. This approach produces a single

average treatment effect estimate.

The second approach focuses on estimating the average treatment effect at each point

on the boundary, performing localization relative to the specific point of analysis, thereby

retaining observations whose distance to that point is no greater than a chosen bandwidth.

Estimation and inference are conducted separately at each boundary point x ∈ B, capturing

the heterogeneity of treatment effects along the boundary. Aggregate causal effects can be

recovered by averaging (or applying other transformations to) these boundary-point average

treatment effects, including as a special case the average treatment effect along the entire

boundary that is the focus of the pooling approach. The boundary-point approach can be
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seen as focusing on heterogeneous average treatment effects that are then used as building

blocks to construct more aggregate causal parameters. The advantage of this approach is

that it captures the full richness of the BD design by first learning the heterogeneity of

the average treatment effect along the boundary, which usually summarizes relevant unit

characteristics such as geographic location, academic performance, or economic need.

2.1 BD Designs in Practice

We searched the academic literature in multiple social sciences to learn how applied re-

searchers implemented the BD design. We conducted our search in four general queries.

In our initial Economics query, we included ten leading journals in Economics—Journal of

Political Economy, Review of Economic Studies, Econometrica, American Economic Review,

Quarterly Journal of Economics, Review of Economics and Statistics, American Economic

Journal: Applied Economics, American Economic Journal: Economic Policy, American Eco-

nomic Journal: Macroeconomics, and American Economic Journal: Microeconomics. In our

initial Political Science query, we searched six leading Political Science journals—American

Political Science Review, American Journal of Political Science, Journal of Politics, Political

Science Research and Methods, British Journal of Political Science, and Quarterly Journal

of Political Science. In both cases, we searched for terms like “boundary discontinuity”,

“multivariate regression discontinuity”, and “multiscore regression discontinuity”, and fo-

cused our attention on papers published since 2015. We also expanded our search to include

other articles that were repeatedly cited by the articles collected in our initial queries.

We also searched in the field of Education, as methodological researchers in that area

were among the earliest scholars who discussed the multi-score RD design in non-geographic

settings. For this search, we started with the seminal methodological papers by Reardon

and Robinson (2012) and Wong et al. (2013), and collected papers that cited these papers

or were cited by them. Finally, we also included some papers in environmental science to

illustrate uses of the BD design at the intersection between the natural and social sciences.
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Our review is not meant to provide an exhaustive list of the empirical BD literature. This

literature is vast and cannot be fully captured by our approach since we excluded several

journals and restricted the time period. Our goal is simply to provide an overview of recent

empirical work using the BD design across the social sciences to gauge the most common

strategies used for empirical analysis.

The results of our search are summarized in Table 1. Our search yielded 82 published

papers. Of these, we found that the overwhelming majority (76 articles or approximately

93%) used a pooling approach, focusing on the average effect along the entire boundary and

using the univariate closest distance to the boundary as the running variable. Fewer than ten

articles were explicit in accounting for the heterogeneity along the boundary; of these, only

five reported effects for different points or segments along the boundary (Gonzalez, 2021;

Grout et al., 2011; Keele and Titiunik, 2015; Snider and Williams, 2015; Velez and Newman,

2019). In sum, our review of the practical literature indicates that most applied researchers

adopt a pooling approach, performing localization by grouping all observations sufficiently

close to the boundary and then estimating a single average treatment effect. These common

practices motivate the taxonomy we use in the rest of this chapter.

3 Pooling-Based Methods

Given a sample of outcomes and bivariate scores, (Y1,X1), . . . , (Yn,Xn), a distance function

d(·, ·) is used to measure the closeness between any two points in X. The most common

example is the Euclidean distance d(x1,x2) = ∥x1 − x2∥ =
√
(x11 − x21)2 + (x12 − x22)2

for xj = (xj1, xj2), j = 1, 2, although in some applications this is not the most appropriate

measure. For example, Ambrus et al. (2020) are interested in how close residences in a city

are to each other in terms of how long it takes for a person to walk between them. This

requires calculating a walking distance, which is different from the Euclidean distance that

cannot take into account, for example, that the path must follow city blocks and cannot go
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through buildings. More broadly, in geographic settings it is common practice to employ

specific geodetic distances (Banerjee, 2005).

Once a distance function d(Xi,x) has been chosen, researchers who employ the pooling

approach define the closest signed distance to the boundary:

Di ≡
(
1(Xi ∈ A1)− 1(Xi ∈ A0)

)
· inf
x∈B

d(Xi,x),

for i = 1, . . . , n. For a unit i, Di measures how far i’s location Xi is to the boundary

point that is closest to Xi, regardless of where that boundary point is located. Following

the standard RD design logic, but now expanded to the BD design, localization occurs

simultaneously along the entire assignment boundary because the univariate distance Di

to B is used to construct the region such that |Di| ≤ h, which covers the boundary B,

where h denotes a bandwidth parameter. This region, called a “tubular neighborhood” in

mathematics (Federer, 2014), is a natural generalization of the standard localization approach

used in univariate RD designs, where the region is simply |Xi − c| ≤ h when the score Xi is

scalar and c is the univariate cutoff.

Figure 2 illustrates the idea graphically. In both cases, the tubular neighborhood represents

the area that includes the observations used in the pooling-based analysis. Figure 2a shows

a large bandwidth h1, while Figure 2b shows a smaller bandwidth h2. All units contribute

simultaneously, regardless of their specific location. In particular, two units i and j with

the same signed distance to the boundary, Di = Dj = d, will be assigned to the same

group (treatment or control, depending on the sign of d) and will be |d| units away from the

boundary, but could be far from each other.

Figure 3 presents the two resulting RD plots (Calonico et al., 2015) in the pooling ap-

proach, based on the outcome data Yi and the univariate distance score Di (the cutoff is

c = 0 by construction of Di). These plots include a fourth-order global polynomial fit (solid

line) for visualization purposes, but these global approximations are not recommended for
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(a) Large Bandwidth (b) Small Bandwidth

Figure 2: Pooling-Based Method: Localization around Entire Assignment Boundary

estimation of treatment effects because they tend to exhibit poor performance due to Runge’s

phenomenon. Instead, as anticipated in Figure 2, the idea is to localize around the cutoff

(i.e., the one-dimensional boundary curve) to conduct estimation and inference.

In the pooling approach, the analysis is conducted using all the observations with score

Xi within the tubular neighborhood determined by the bandwidth h, that is, for all units

with |Di| ≤ h. However, within this subsample, the specific treatment effect estimation

approach can vary substantially. To describe and unify the most common approaches in the

empirical literature illustrated in Table 1 as well as other approaches recommended from a

methodological perspective, we define the following generic weighted least squares regression

notation:

reg Yi on Z⊤
i [ Wi ] ⇐⇒ min

β

n∑
i=1

(
Yi − Z⊤

i β
)2 ·Wi

where Yi is the outcome variable, Zi is a (column) vector of independent variables, and Wi

are weights. A localized regression analysis can be implemented by setting Wi = 1(|Di| ≤

h) or, more generally, Wi = K(Di/h) for a kernel function K(·) determining the relative

weight given to each observation. The bandwidth h determines the degree of localization,
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(a) Large Bandwidth (b) Small Bandwidth

Figure 3: Pooling-Based Method: RD Plots (with Global Quartic Polynomial Estimates)

as illustrated in Figure 2. When Zi contains polynomial expansions of Di, the resulting

estimation approach is often called nonparametric local polynomial regression but, as we

will see shortly, empirical researchers often employ other variables in their local fit.

We also define the treatment assignment indicator

Ti = 1(Di ≥ 0) = 1(Xi ∈ A1).

All empirical approaches naturally include Ti in Zi to estimate treatment effects; the majority

also include other variables such as Di, Xi, boundary-segment fixed effects (formally defined

below), as well as certain transformations and interactions thereof. For simplicity, we omit

discussing the inclusion of predetermined covariates, but we note that researchers often

further augment the basic local regression specifications with pretreatment variables such

as census characteristics, terrain ruggedness and elevation, time fixed effects, among other

features. For a discussion of the role of preintervention covariates in the standard RD design

see Calonico et al. (2019) for efficiency gains and Calonico et al. (2025) for treatment effect

heterogeneity.

The pooling approach for analyzing BD designs begins by choosing the localization band-
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width h to determine the units with |Di| ≤ h that will be used in the subsequent estimation.

Until now, there were no formal methods for choosing the bandwidth h in an objective

and data-driven way, so researchers often considered a range of ad-hoc values informed by

practice and substantive knowledge. For example, Black (1999) reported results in three

different bandwidths, keeping observations within 0.35, 0.25, and 0.15 miles of the nearest

point on the boundary. As in standard univariate RD designs, different choices of h trade off

bias and variance in the estimation, with a larger h leading to more bias but less variance,

and a smaller h having the opposite effect. Cattaneo et al. (2026) discusses formal results

characterizing this tradeoff and provides formal guidance for choosing the bandwidth when

implementing pooling BD methods. We discuss these methods in Section 3.1.

Once the bandwidth h has been chosen, researchers pool all units with distance Di within

h and then compare those assigned to the treatment group (Di ≥ 0) to those assigned to the

control group (Di < 0). Because the bandwidth localizes the analysis to only a small region

on either side of the boundary B, the empirical analysis compares barely treated units to

barely control units which, as in the standard univariate RD design, is the basis for the

causal interpretation of the comparison, as all confounders are assumed to vary smoothly at

the boundary while the treatment assignment changes abruptly from zero to one.

The most basic analysis proceeds by assuming that the units within the shrinking tubu-

lar neighborhood of width 2h are as-if randomly assigned to treatment and control. This

approach is akin to the “local randomization” framework in standard RD designs (Lee and

Lemieux, 2010; Cattaneo et al., 2015, 2017). A natural treatment effect estimator is the

difference-in-means of the outcome between treated and control units with distance to the

boundary no larger than the bandwidth:

reg Yi on 1, Ti [ 1(|Di| ≤ h) ], (1)

14



(a) Large Bandwidth (b) Small Bandwidth

Figure 4: Pooling-Based Method: Local-Constant Estimation (p = 0)

where the coefficient on Ti is

τ̂DIM =
1

N1(h)

n∑
i=1

1(0 ≤ Di ≤ h) · Yi −
1

N0(h)

n∑
i=1

1(−h ≤ Di < 0) · Yi,

with N0(h) =
∑n

i=1 1(−h ≤ Di < 0) and N1(h) =
∑n

i=1 1(0 ≤ Di ≤ h). This specification

can be interpreted as a local-constant polynomial fit on Di; it does not include the score in

the fit because under the assumption of local randomization this score is uncorrelated with

the outcome.

Black (1999, Table III) reported results using specification (1), calling it a “rough, non-

parametric estimate of the value of better schools” (p. 590). She also augmented this basic

specification to include “segment fixed effects”, that is, binary variables indicating whether

an observation is closest to one of several segments partitioning the assignment boundary. To

describe this approach formally, we let Bℓ, ℓ = 1, . . . , L, be disjoint segments that partition

the assignment boundary, that is, B = ⊔1≤ℓ≤LBℓ. Then, Si = argmin1≤ℓ≤L d(Xi,Bℓ) is

the boundary-segment allocation random index for each unit i = 1, . . . , n (when the argmin

contains more than one element, the smallest one is chosen). The vector of segment fixed ef-

fects for observation i is ιL(Si) = (1(Si = 1), · · · ,1(Si = L)), which collects the L boundary
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segment binary indicators determined by i’s location. The difference-in-means specification

with segment fixed effects is

reg Yi on ιL(Si), Ti [ 1(|Di| ≤ h) ], (2)

where the intercept is removed to prevent perfect collinearity. Setting L = 1 reduces ιL(Si)

to the common intercept in specification (1).

Black (1999, Table II) used a modified version of specification (2) that included the test

scores of the school associated with observation i instead of the binary treatment assignment

indicator Ti. The causal interpretation of this specification rests on the assumption that,

after localizing the analysis to observations near the boundary of school attendance districts,

the only factor that can explain a difference in average house prices between the treated

and control areas is school quality, because school quality changes discontinuously at the

boundary while all other determinants of house prices are equal on average. In this sense,

using test scores instead of the treatment assignment indicator in specifications (1) and (2) is

in the spirit of an instrumental variables strategy where Ti is used as an instrument for test

scores (which proxy school quality), and the localization to a small bandwidth around the

boundary ensures that units assigned to treatment and units assigned to control are similar

in all other characteristics that might affect house prices.

The seminal research design used by Black (1999) is prior to the development of modern

methods for RD analysis, which occurred predominantly during the 2000s; see Cattaneo and

Titiunik (2022) for an overview. In more recent practice, the simple specifications (1) and

(2) are not commonly used because researchers tend to adopt a continuity-based approach

rather than a local randomization approach for interpretation. Under the continuity-based

approach, the local constant fit has poor control of the misspecification bias, and hence

practitioners prefer more flexible local regression specifications.

Later empirical work using BD designs made more explicit the connection between geo-
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graphic discontinuities in treatment assignment and the classical RD design, following more

closely the methods for univariate continuity-based RD analysis, which emphasized includ-

ing the RD score in the polynomial specification to allow for arbitrary dependence between

score and outcome even within the bandwidth. Although there is considerable diversity

in the specifications used in more recent practice, most researchers who include the score

adopted one of two main strategies: a polynomial fit of the outcome on the bivariate score

Xi, or a polynomial fit of the outcome on the univariate distance Di.

In an influential empirical study, Dell (2010) augmented specification (2) by including

the bivariate score Xi. She studied the long-run impact of the mita, a forced mining labor

system instituted by the Spanish in Peru and Bolivia between 1573 and 1812. Dell used the

historical boundary that determined which communities were forced to send labor to define

treated and control areas, and studied the effect of the mita on contemporary outcomes

measured at the household level, including consumption and childhood stunting. Her main

local regression specification was

reg Yi on ιL(Si), Ti, rp(Xi) [ 1(|Di| ≤ h) ], (3)

which includes the treatment indicator, boundary segment fixed effects, and a polynomial

expansion of the bivariate score Xi (with p = 3 in her case). The estimated coefficient

of interest is always the coefficient that accompanies the treatment indicator Ti. In our

notation, rp(u) = (u1, u2, u
2
1, u1u2, u

2
2, . . . , u

p
1, u

p−1
1 u2, . . . , u1u

p−1
2 , up

2) with u = (u1, u2). The

inclusion of (a polynomial basis of) the bivariate location score Xi is meant to control for

“the smooth effects of geographic location” Dell (2010, p. 1875). A notable characteristic of

this specification is that it does not include interactions between the bivariate score and the

treatment indicator, which imposes the restriction that the polynomials be identical in the

treated and control areas. For bandwidth, Dell used 100 km, 75 km and 50 km within the

mita boundary.
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(a) Large Bandwidth (b) Small Bandwidth

Figure 5: Pooling-Based Method: Local-Linear No-Interaction Estimation (p = 1)

Specification (3) has become a common strategy to analyze BD designs. Méndez and

Van Patten (2022) use it to study the effect of private sector companies in the development of

local amenities, using a land concession to the multinational United Fruit Company in Costa

Rica. Paulsen et al. (2023) use it to estimate the effect of school funding on future earnings

and political participation in New York, comparing areas that received higher funding to

neighboring areas that did not. De Kadt and Larreguy (2018) compare areas in South Africa

where traditional leaders remain highly influential to areas where they are not, and estimate

the electoral impact of strong political ties between traditional leaders and the African

National Congress (ANC). Other examples are listed in Table 1. All of these examples

follow specification (2) by including a flexible polynomial expansion of latitude and longitude,

as well as boundary-segment fixed effects, but without allowing for interactions with the

treatment indicator Ti.

An alternative approach is to directly mimic the standard univariate RD design, taking

the scalar (signed) distance to the closest point on the boundary for every unit, Di, as the

univariate score, and employing local polynomial regression. The most basic local regression
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specification in this context takes the form:

reg Yi on 1, Ti, rp(Di) [ 1(|Di| ≤ h) ], (4)

with the polynomial expansion reducing to the simpler vector of the univariate distance

rp(Di) = (Di, D
2
i , . . . , D

p
i ). As in specification (3), specification (4) can also be augmented

with boundary-segment fixed effects:

reg Yi on ιL(Si), Ti, rp(Di) [ 1(|Di| ≤ h) ]. (5)

In both cases, the treatment effect estimator is the coefficient estimate accompanying Ti.

Figure 5 offers a graphical representation of this empirical strategy.

Although specifications (4) and (5) aim to mimic the univariate RD design, they differ from

best practices in an important respect. In the RD design, the recommended specification is

a polynomial fit of the outcome on an intercept, the treatment assignment indicator, a poly-

nomial expansion of the score, and the interaction between this expansion and the treatment

assignment indicator. The latter interaction is crucial to allow the polynomial fit for control

units to be different from the polynomial fit for treated units. None of the specifications

discussed so far allow for this flexibility, potentially introducing a larger misspecification

bias.

The most flexible specification based on Di takes the form:

reg Yi on ιL(Si), Ti, rp(Di), Ti · rp(Di) [ 1(|Di| ≤ h) ], (6)

where the estimated coefficient of interest continues to be the one accompanying Ti. In

practice, specification (6) is often implemented with p = 1 and, depending on whether

standard software for RD design analysis is used, may employ a non-uniform weighting

kernel (e.g., a triangular kernel that down-weights observations as their distance from the
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(a) Large Bandwidth (b) Small Bandwidth

Figure 6: Pooling-Based Method: Local-Linear Estimation (p = 1)

boundary increases). Putting aside the inclusion of boundary-segment fixed effects, Figure

6 illustrates the importance of including the interaction term Ti · rp(Di). Comparing Figures

5 and 6 shows that the two approaches can lead to different local approximations, with

specifications (1) through (5) potentially exhibiting a larger bias than specification (6).

Specification (6) is one of the most commonly used in recent practice. Examples include

Ayres et al. (2021), Eugster et al. (2017), Jones et al. (2022a), Lalive (2008), and Lowes

and Montero (2021). We note that several articles describe their empirical specifications as

(4) or (5), but implement specification (6) in their analyses (as clarified in text, footnotes

or replication files). These researchers employ standard practices and software from the

univariate RD design literature, which follows specification (6).

Specification (3) can also be augmented to include the interaction term between the treat-

ment assignment and the polynomial expansion of the bivariate score Xi:

reg Yi on ιL(Si), Ti, rp(Xi), Ti · rp(Xi) [ 1(|Di| ≤ h) ], (7)

where the estimated treatment effect coefficient accompanying Ti enjoys better bias prop-

erties due to the added flexibility in the local regression specification. However, this more
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flexible approach is not as common in the empirical literature—some exceptions are Gonzalez

(2021), Egger and Wamser (2015), and Jones et al. (2022b).

In other applications, researchers estimate treatment effects in BD designs by considering

two separate univariate RD designs, that is, keeping one dimension fixed and studying the

other dimension of the bivariate score. For example, Londoño-Vélez et al. (2020) investigate

the effects of Ser Pilo Paga (SPP), a government subsidy in Colombia that provided tuition

support for post-secondary students to attend a government-certified higher education in-

stitution. Eligibility was based on both merit and economic need: in order to qualify for

the program, students had to obtain a high grade in Colombia’s national standardized high

school exit exam, SABER 11, and they also had to come from economically disadvantaged

families, as measured by the survey-based wealth index SISBEN. The resulting BD design

is as illustrated in Figure 1b with Xi = (X1i, X2i) = (SABER11 i, SISBEN i). The authors

analyzed it by considering each cutoff separately and then pooling all observations in the

other dimension, leading to two univariate RD designs: one with score SISBENi in the sam-

ple SABER11 i ≥ 0, and the other with score SABER11 i in the sample SISBENi ≥ 0. This

approach is equivalent to splitting the boundary along each of its two linear segments and

then employing a pooling approach within each subsample. This idea leads to the following

local regression specification:

reg Yi on Ti · ιL(Si), ιL(Si)⊗ rp(Di), Ti · ιL(Si)⊗ rp(Di) [ 1(|Di| ≤ h) ], (8)

where the indicator variable Ti is removed due to the perfect collinearity with Ti · ιL(Si),

since ιL(Si) contains indicator variables capturing a partitioning of B, and ⊗ denotes the

Kronecker product. The treatment effect of interest is now the collection of coefficients

accompanying Ti · ιL(Si), one for each segment. Specification (8) is roughly equivalent to

fitting specification (6) L times, in each case only using the data corresponding to one of

L segments—the only difference is whether observations are assigned to a single segment
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or reused). Ou (2010), Londoño-Vélez et al. (2020) and Salti et al. (2022) employ this

boundary-segment specific pooling-based approach with L = 2, analyzing each of the two

linear segments as in Figure 1b.

Some researchers have also included both the univariate distanceDi and the bivariate score

Xi in their local regression specifications—see, for example, Ehrlich and Seidel (2018) and

Dehdari and Gehring (2022). It is also possible to conceptualize more flexible specifications

by including other interaction terms between Ti, rp(Xi), and ιL(Si) analogous to specification

(8). Our literature review in Table 1 suggests that these approaches are uncommon in

practice, so we do not discuss them further.

Although we have not systematically categorized the bivariate score in each of the empiri-

cal applications in Table 1, we suspect that some of the specification choices in practice may

be determined by data availability and the granularity of the score. For example, Dell (2010)

uses latitude and longitude of districts as the bivariate score, but her unit of observation is

individuals, creating equal score values or mass points for all individuals in the same district

(mass points). When limited data availability prevents the collection of continuously dis-

tributed bivariate scores, the statistical properties and methods we discuss in the upcoming

sections do not apply directly, as they all assume that the score is a continuously distributed

random variable. Keele and Titiunik (2015, 2016) discuss the importance of score granularity

in geographic BD designs.

3.1 Methodological Results

While there has been a proliferation of different empirical strategies relying on the pooling

of observations closest to the treatment assignment boundary, little is known about their

properties and relative merits for the analysis of BD designs. Cattaneo et al. (2026) recently

investigated pooling-based methods, offering formal identification, estimation, and inference

results. Their methodological results rely on techniques from geometric measure theory

(Federer, 2014), which are used to characterize how the different treatment effect estimates
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emerging from specifications (1) through (6) behave in large samples, that is, when h → 0 as

n → ∞. These asymptotic approximations form the basis of the continuity-based approach

in standard univariate RD designs (Hahn et al., 2001), and are nowadays the most common

way of characterizing the properties of causal treatment effect estimators in all RD settings.

This section summarizes some of the findings in Cattaneo et al. (2026).

The main challenge of pooling-based BD methods is that the localization is done using a

sequence of shrinking tubular neighborhoods covering the one-dimensional submanifold B,

as illustrated in Figure 2. An important implication is that the geometry of the treatment

assignment boundary and the specific distance function used can substantially affect statis-

tical properties. Our upcoming discussion omits most technicalities and focuses instead on

conceptual ideas to aid empirical researchers interpret and implement pooling-based meth-

ods.

Because the treatment assignment boundary B could be highly irregular, particularly in

Geographic RD designs, it is necessary to restrict its geometry to establish formal properties.

A minimal assumption commonly used in mathematics is to require B to be a rectifiable

curve, that is, to assume that it has finite length (more formally, B is a rectifiable curve if and

only if it can be reparameterized by a Lipschitz continuous function). This restriction allows

for formally defining and computing integrals of functions along the one-dimensional domain

B. More importantly, under additional technical conditions, regularity on the geometry of

B allows for those integrals to be computed over shrinking tubular neighborhoods and for

limits to be well-defined, which is at the core of the results in Cattaneo et al. (2026). Under

regularity conditions, the authors establish the following result:

lim
h↓0

∫
T(h)

1

h
g
(d(x,B)

h

)
m(x)dx = cB ·

∫ 1

0

g(s)ds ·
∫
B

m(x)

Jd(x,B)
dH(x), (9)

where T(h) =
{
x ∈ X : d(x,B) ≤ h

}
, for each h ≥ 0, is a tubular neighborhood covering
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B,

d(x,B) = inf
b∈B

d(x,b)

and Jd(x,B) denotes its Jacobian, and H(x) denotes the 1-dimensional Hausdorff mea-

sure. The constant cB can also be characterized, but it is not important for the upcoming

discussion (it can be set to cB = 2 for the analysis of pooling-based methods). Note that

Di =
(
1(Xi ∈ A1)− 1(Xi ∈ A0)

)
·d(Xi,B).

The integral
∫
B

m(x)
Jd(x,B)

dH(x) is a natural generalization of the standard line integral, where

dH serves as the rigorous “length element”, enabling a robust framework for integration over

complex one-dimensional domains in the plane. In particular, if B is piecewise linear (as

in Figures 1b and 2), the integral can be reduced to the sum of integrals over the linear

segments using a natural smooth curve parametrization and standard Riemann integration

(when m(x) is Riemann integrable). For notational simplicity, we write

∫
B

m(b)dx =

∫
B

m(x)

Jd(x,B)
dH(x),

but with the understanding that the left-hand-side integral is just notation for the rigorously

defined right-hand-side integral.

The limiting integral in (9) can be used to give precise meaning to the probability limit

of the treatment effect estimates from any of the pooling specifications discussed previously.

However, we need to introduce standard potential outcomes notation (see, e.g., Hernán and

Robins, 2020) to give a causal interpretation to the probability limit of those parameters.

For i = 1, 2, . . . , n, let Yi(0) and Yi(1) denote the potential outcomes for unit i under control

and treatment assignment, respectively. The observed outcome is

Yi = (1− Ti) · Yi(0) + Ti · Yi(1).
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To streamline the presentation, we illustrate the methodological findings in Cattaneo et al.

(2026) using the simplest specification (1), leading to the local difference-in-means estimator

τ̂DIM. The other more flexible local regression specifications enjoy similar properties.

The probability limit of τ̂DIM can be naturally characterized as a ratio of integrals along

the boundary. As n → ∞ and leveraging the logic of the law of large numbers, 1
nh
N1(h) =

1
nh

∑n
i=1 1(0 ≤ Di ≤ h) will be close in probability to 1

h
E[1(0 ≤ Di ≤ h)], and

1

h
E[1(0 ≤ Di ≤ h)] =

∫
T1(h)

1

h
g
(d(x,B)

h

)
f(x)dx →

∫ 1

0

g(s)ds ·
∫
B

f(x)dx,

where the limit is taken as h → 0, f(x) denotes the Lebesgue density of Xi, T1(h) =
{
x ∈

X : 0 ≤ Di ≤ h
}
, and the conclusion follows by (9) upon setting g(u) = 1(0 ≤ u < 1)

and m(x) = 1(x ∈ A1)f(x). While g(u) is redundant in this case, and
∫ 1

0
g(s)ds = 1,

we nonetheless make it explicit to highlight that a term will appear when a non-uniform

kernel is used. Similarly, N0(h)/(nh) →P
∫
B
f(x)dx. Furthermore, by the same logic, the

two (properly rescaled) numerators of τ̂DIM will be close in probability to their expectations,

where

1

h
E[1(0 ≤ Di ≤ h) · Yi] =

1

h
E
[
1(0 ≤ Di ≤ h) · E[Yi(1)|Di]

]
=

∫
T1(h)

1

h
g
(d(x,B)

h

)
E[Yi(1)|d(Xi,B) = d(x,B)]f(x)dx

→
∫ 1

0

g(s)ds ·
∫
B

E[Yi(1)|Xi = x]f(x)dx,

and, analogously,

1

h
E[1(−h ≤ Di ≤ 0)Yi] →

∫ 1

0

g(s)ds ·
∫
B

E[Yi(0)|Xi = x]f(x)dx.

The above calculations require precise regularity conditions and technical work, including

restrictions on the geometry of B and the distance function d(·) to guarantee that the

25



expressions are well-defined and the limits are valid.

Putting the above calculations together,

τ̂DIM →P τ =

∫
B
τ(x)f(x)dx∫
B
f(x)dx

, τ(x) = E[Yi(1)− Yi(0)|Xi = x].

The parameter τ is called the Boundary Average Treatment Effect (BATE) by Cattaneo

et al. (2026). This parameter was heuristically introduced in the education literature by

Wong et al. (2013), who expressed it as

τ =

∫
B

τ(x)f(x|Xi ∈ B)dx = E[Yi(1)− Yi(0)|Xi = x,Xi ∈ B],

using the notation f(x|Xi ∈ B) = f(x)∫
B
f(x)dx

. Around the same time, Keele and Titiunik

(2015) also discussed the BATE parameter in the context of Geographic RD designs.

The parameter τ captures a density-weighted average of average treatment effects at each

point along the boundary, and thus aggregates the potentially heterogeneous treatment ef-

fects captured by (τ(x) : x ∈ B). Cattaneo et al. (2025b) call τ(x) the Boundary Average

Treatment Effect Curve (BATEC). As we discuss in Section 4, this functional causal param-

eter can be seen as a building block for several other causal parameters of interest in BD

designs.

Going beyond identification, Cattaneo et al. (2026) study estimation accuracy and uncer-

tainty quantification for pooling-based methods. For point estimation, the authors shows

that

|τ̂DIM − τ |2 ≈P B2
n +

V

nh
,

when h → 0 as n → ∞, and where ≈P denotes approximation in probability up to higher

order terms, Bn denotes a leading bias term, and V denotes the asymptotic variance that is

bounded and bounded away from zero. Characterizing the precise order of the bias is diffi-
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cult without additional restrictions on the treatment assignment boundary B: the authors

show that Bn = O(h) in general. Furthermore, as in the case of standard univariate RD

designs, and under additional regularity conditions, the order of the bias may be improved

when rp(Di) and Ti · rp(Di) are included in the local regression specification, as in (6), lead-

ing to Bn = O(hp+1). Another interesting feature is that the rate of decay of the variance

component is the same as in one-dimensional nonparametric estimation: this improvement

in convergence rate comes from the aggregation along the boundary of the bivariate non-

parametric function τ(x). See Cattaneo et al. (2025b) and Chen and Gao (2025) for more

discussion.

For bandwidth selection, under regularity conditions on B and d(·), the bias Bn may ad-

mit a valid expansion as in the standard RD design literature. Therefore, optimal bandwidth

selection procedures based on mean square error (MSE) or coverage error minimization may

be used for implementation of pooling methods. See Calonico et al. (2020) for a review.

For distribution theory and inference, consider the usual test statistic

T̂ =
τ̂DIM − τ√
V̂[τ̂DIM]

,

where V̂[τ̂DIM] denotes any of the usual variance estimators from (local, weighted) least squares

regression methods. Under regularity conditions, and if nh → ∞ and nhB2
n → 0, P[T̂ ≤

u] → Φ(u), where Φ(u) denotes the standard Gaussian cumulative distribution function.

Importantly, as discussed by Calonico et al. (2014) in the context of standard univariate RD

designs, the usual confidence intervals

Î(α) =

[
τ̂DIM − cα ·

√
V̂[τ̂DIM] , τ̂DIM + cα ·

√
V̂[τ̂DIM]

]

with cα = Φ−1(1 − α/2), will not be valid whenever there is local misspecification. More

precisely, the validity of the usual confidence intervals Î(α) require the small bias condition
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nhB2
n → 0, which is not satisfied when the MSE-optimal bandwidth (or larger) is used.

Therefore, the choice of bandwidth and regression specification determines whether uncer-

tainty quantification is valid.

If the MSE-optimal bandwidth is used, which in the context of pooling-based methods

would depend on the order of the bias Bn, then the small bias condition will not be satisfied,

and thus the resulting inference procedures will over-reject the null hypothesis, sometimes

substantially. Following Calonico et al. (2014), a simple and practical solution is to em-

ploy robust bias correction. The two-step procedure is simple and intuitive: first, the pooled

treatment effect is estimated using a choice of polynomial approximation p and its associated

MSE-optimal bandwidth; second, confidence intervals and hypothesis tests are constructed

by estimating the pooled treatment effect and variance estimator using the same bandwidth

choice but with a polynomial of larger order q. In practice, the most common choice is p = 1

for MSE-optimal treatment effect estimation, and q = 2 for robust bias-corrected uncer-

tainty quantification. This inference approach has several theoretical advantages (Calonico

et al., 2018, 2022), and has been validated empirically (Hyytinen et al., 2018; De Magalhães

et al., 2025). Standard RD software for estimation and inference in univariate score settings

(rdrobust, rdhte) available at https://rdpackages.github.io/ can be used directly, pro-

vided the regularity conditions are satisfied.

4 Heterogeneity and Aggregation Along the Boundary

Our review of the literature indicates that most empirical researchers using BD designs

employ pooling-based methods, thereby focusing on (density-weighted) average treatment

effects along the entire (or a few segments of the) boundary B. In most implementations,

the estimation begins by calculating the distance to the nearest boundary point for every

observation, keeping only observations for which this distance is less than a chosen band-

width, and then continues by pooling all observations in a single local regression analysis,
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mimicking standard univariate RD methods.

Although the focus on a single scalar parameter is a convenient way of summarizing the

information provided by the BD design, this approach fails to exploit its full richness. In

this section, we discuss a more general approach for the analysis of BD designs that starts

by studying the average treatment effect at each point on the boundary, and then uses this

functional causal parameter as the building block for aggregation along the boundary, hence

recovering other causal treatment effects. This section summarizes the recent results on

identification, estimation, and inference discussed in Cattaneo et al. (2025a,b).

The starting point is to consider the Boundary Average Treatment Effect Curve (BATEC):

τ(x) = E[Yi(1)− Yi(0)|Xi = x], x ∈ B,

which was already implicitly introduced as part of the probability limit emerging from the

pooling approaches. However, the functional causal parameter τ(x) is of independent interest

because it captures the average treatment effects at each point on the boundary. Despite

capturing potentially interesting causal evidence of heterogeneous treatment effects, only a

handful of empirical papers have investigated the BATEC or variations thereof. Exceptions

include Keele et al. (2017), Velez and Newman (2019), and Gonzalez (2021).

Another feature of the BATEC is that it provides a key building block for construct-

ing other causal parameters of interest by aggregation along the boundary. For example,

Cattaneo et al. (2025b) discuss the following two parameters.

• Weighted Boundary Average Treatment Effect (WBATE):

τWBATE =

∫
B
τ(x)w(x)dH(x)∫
B
w(x)dH(x)

,

where w(x) denotes a user-chosen weighting scheme.
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• Largest Boundary Average Treatment Effect (LBATE):

τLBATE = sup
x∈B

τ(x).

The WBATE parameter represents a weighted average of the (potentially heterogeneous)

treatment effects τ(x) at each boundary point. In particular, setting w(x) = f(x) recovers

the BATE parameter τ . In practice, other weighting schemes may also be of interest. See

Reardon and Robinson (2012) and Wong et al. (2013) for early methodological discussions,

and Rischard et al. (2021) for other examples considered in the context of Bayesian meth-

ods for BD designs. The insightful discussion of Qiu and Stoye (2026) provides another

application of the WBATE parameter. The LBATE parameter captures the “best” causal

treatment effect along the assignment boundary, and thus can be useful for evaluating or

developing targeted policies. See, for example, Andrews et al. (2024).

Figure 7 gives a graphical representation of the BATEC, WBATE, and LBATE in the con-

text of the same stylized BD design used in Section 3. Because τ(x) is a function, estimation

and inference proceed by discretizing the boundary to construct local regression estimates

for each point x ∈ B on the grid of evaluation points chosen. Figure 7a demonstrates the

idea with 40 evenly-spaced grid points, denoted by b1, . . . ,b40. As discussed in the upcom-

ing subsections, distance-based and location-based methods employ these points to conduct

estimation and inference, both pointwise and uniformly along the assignment boundary.

Figure 7b illustrates graphically the three target causal parameters (τ(x) : x ∈ B), τWBATE,

and τLBATE. The functional causal parameter τ(x) indicates the presence of heterogeneity

along a region of the boundary, while τWBATE and τLBATE give two distinct notions of aggre-

gation of those heterogeneous treatment effects. This stylized example is motivated by the

SPP study by Londoño-Vélez et al. (2020) introduced above, where Xi = (X1i, X2i) =

(SABER11 i, SISBEN i). Re-analyzing the SPP application, Cattaneo et al. (2025b) found

little evidence of heterogeneous treatment effects along the X1i dimension, but declining
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(a) Boundary Discretization (b) Causal Parameters

Figure 7: Heterogeneity and Aggregation along the Boundary

treatment effects along the X2i dimension. This empirical finding indicates that the average

treatment effects along the boundary are roughly similar for all students with low academic

performance (SABER11 i = 0) and regardless of their wealth level (SISBEN i ≥ 0), while het-

erogeneity in treatment effects is present for the wealthier eligible students (SISBEN i = 0)

as their academic performance increases (SABER11 i ≥ 0).

The discussion so far has focused on causal parameters defined along the entire B, but

in some applications researchers have considered different segments of B. Specification (8),

and its motivation from the implementation used by Londoño-Vélez et al. (2020) and others,

gives one example. Employing the BATEC parameter as a building block, it is natural to

define causal parameters as integrals or suprema of τ(x) over a specific region of B. All the

methods developed in Cattaneo et al. (2025a,b) immediately apply to those cases, offering

estimation and inference methods for segment-specific causal parameters based on the core

BATEC parameter.

4.1 Distance-Based Methods

The distance Di = d(Xi,B) used by all pooling approaches is based on the distance of

each observation Xi to its nearest point x ∈ B on the boundary, denoted by d(Xi,x).
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Researchers sometimes first construct the signed distance to a pre-specified point on the

boundary

Di(x) =
(
1(Xi ∈ A1)− 1(Xi ∈ A0)

)
·d(Xi,x), x ∈ B,

for each unit i = 1, . . . , n, and then use this distance to construct a tubular neighborhood

covering B to implement pooling methods. One example of this approach is Ehrlich and

Seidel (2018). While the resulting tubular neighborhood will often be geometrically different

from T(h) = {x ∈ X : d(x,B) ≤ h}, all the ideas and results discussed in Section 3

continue to apply.

However, the intermediate boundary-point-specific signed distance (Di(x) : x ∈ B) for

each unit can also be used directly to estimate and conduct inference for the BATEC.

The idea is to view the outcomes and the boundary-point-specific scalar distance variables,

(Y1, D1(x)), . . . , (Yn, Dn(x)), as a one-dimensional RD design for each point x ∈ B. For

example, this approach was used by Keele and Titiunik (2015) and Velez and Newman

(2019) to study the effect of TV exposure on voter turnout, using reception and media market

boundaries that determine whether citizens are exposed to specific television programming.

In these examples, each unit’s score Xi is a latitude-longitude pair that determines their

place of residence, the outcome Yi is whether the individual turned out to vote, and the

boundary B is the media market or reception boundary that separates the treated from

the control region. In Keele and Titiunik (2015), the treatment is exposure to presidential

candidate television ads during the presidential election, and in Velez and Newman (2019)

the treatment is exposure to Spanish-language television. In both cases, researchers first

selected a grid b1,b2, . . .bJ on the boundary (e.g. Figure 7a), and then used the local

regression specification:

reg Yi on 1, Ti, rp(Di(bj)), Ti · rp(Di(bj)) [ 1(|Di(bj)| ≤ h) ], (10)
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for each j = 1, . . . , J . The key difference is that estimation is conducted with localization for

each evaluation point bj on the boundary, as opposed to localization to the entire boundary

as in specifications (1) through (8). Therefore, the estimated coefficient accompanying Ti

gives a point estimate of τ(bj) for each j = 1, . . . , J .

Cattaneo et al. (2025a) study the large sample properties of the distance-based estimation

procedure for BATEC obtained from specification (10). They give necessary and/or sufficient

conditions for identification, estimation, and inference in large samples, both pointwise and

uniformly along the boundary. Their identification result requires minimal regularity of the

boundary B, the distance function d(·), and the underlying data generating process, build-

ing on continuity-based identification in standard univariate RD designs (Hahn et al., 2001).

Cattaneo et al. (2025a) also show that the bias of the distance-based point estimator will

depend on the smoothness of the assignment boundary, while the variance of the estimator

will be of order (nh2)−1. Putting these two results together, it follows that bandwidth selec-

tion methods for standard univariate RD designs will either minimize the mean square error

of the estimator or deliver undersmoothing, depending on the geometry of the assignment

boundary and other assumptions. For inference, the authors establish asymptotic validity

of confidence intervals and confidence bands, provided the bias of the distance-based point

estimator is small enough (which, in turn, crucially depends on the geometry of B).

4.2 Location-Based Methods

While the distance-based estimator constructed using specification (10) provides a natural

bridge between the pooling methods and heterogeneity analysis, Cattaneo et al. (2025a)

demonstrate that this approach would require a smooth assignment boundary for higher-

order bias reduction. Otherwise, the distance-based approach will generate a consistent

estimator with possibly a high bias, and therefore require a small bandwidth for estimation

and inference validity. A solution to this problem is to use local bivariate regression methods.
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Cattaneo et al. (2025b) study the properties of local regression treatment effect estimators

directly employing the location information encoded inXi for each unit. The authors develop

pointwise and uniform estimation and inference methods for both the BATEC and transfor-

mations thereof, such as the WBATE and LBATE. Their local regression specification takes

the form:

reg Yi on 1, Ti, rp(Xi − bj), Ti · rp(Xi − bj) [ K
(Xi−bj

h

)
], (11)

where b1, . . . ,bJ is the grid of points on the boundary (e.g., Figure 7a). This local polyno-

mial specification crucially depends on Xi directly via the pth order polynomial expansion

rp(Xi − x). The weights are determined by the bivariate kernel function K(u1, u2), and the

localization to each point bj continues to be is controlled by the bandwidth h. In particu-

lar, K
(Xi−bj

h

)
= 1(∥Xi − bj∥ ≤ h) = 1(|Di(bj)| ≤ h) is a valid choice, demonstrating an

interesting connection with distance-based methods as implemented via specification (10).

The estimated coefficient accompanying Ti, denoted by τ̂(bj), gives the location-based point

estimate of τ(bj), for each j = 1, . . . , J .

In the location-based setting, identification of τ(x) for x ∈ B follows directly from a gen-

eralization of continuity-based identification results in the standard univariate RD design

(see Hahn et al., 2001; Papay et al., 2011; Reardon and Robinson, 2012; Wong et al., 2013;

Keele and Titiunik, 2015; Cattaneo et al., 2016a). Under minimal regularity conditions on

the boundary and data generating process, Cattaneo et al. (2025b) establishes (pointwise

and) uniform convergence rates of the form supx∈B |τ̂(x) − τ(x)|2 = OP(
log(n)
nh2 + h2(p+1)),

demonstrating that the location-based estimator does not require stringent smoothness re-

strictions on the boundary B to achieve higher order debiasing. Furthermore, the authors

establish pointwise and integrated mean square error expansions for the estimator, and de-

velop MSE-optimal bandwidth selection methods. By combining these results, they develop

optimal point estimation of the BATEC, both pointwise and uniform, based on specification
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(11).

For uncertainty quantification, Cattaneo et al. (2025b) derive confidence intervals and

confidence bands of the form:

Î(x, α) =

[
τ̂(x)− cα ·

√
V̂[τ̂(x)] , τ̂(x) + cα ·

√
V̂[τ̂(x)]

]
, x ∈ B,

where V̂[τ̂(x)] denotes any of the usual variance estimators from (weighted) least squares

regression methods, and cα is the quantile used depending on inferential goal. For confidence

intervals, the usual Gaussian quantile is asymptotically valid (i.e., cα = Φ−1(1−α/2)), while

for confidence bands, a new (larger) quantile needs to be constructed to capture the joint

uncertainty features of the estimators τ̂(x) for different values along the boundary B. As in

the case of pooling-based and distance-based methods, a key condition needed for validity of

these confidence intervals and bands is the small (misspecification) bias property. Cattaneo

et al. (2025b) address this issue by relying on robust bias correction (Calonico et al., 2014,

2022), a construction that proceeds in two steps.

• Step 1. For a choice P (usually P = 1), the point estimator τ̂(x) is computed using

specification (11) with p = P and its corresponding MSE-optimal bandwidth. As a

result, τ̂(x) is an asymptotically MSE-optimal point estimator of τ(x).

• Step 2. For a choice Q > P (usually Q = 2), the point estimator τ̂(x) and variance

estimator V̂[τ̂(x)] are computed using specification (11) with p = Q and the same

bandwidth used in Step 1. These two quantities are used to construct the confidence

interval estimator Î(x, α). As a result, inference procedures are robust bias-corrected,

and hence asymptotically valid.

Cattaneo et al. (2025b) give further technical and computational details, which we omit to

conserve space.

Finally, τ̂(x) can also be used to estimate and conduct inference for WBATE and LBATE

via plug-in methods. Cattaneo et al. (2025b) provide sufficient conditions and study the
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Figure 8: Estimation and Inference for BATEC

validity of such methods. In particular, the WBATE corresponds to an integral over a

submanifold of the nonparametric estimator τ̂(x). See Chen and Gao (2025) for related the-

oretical results when employing series approximations instead of local polynomial regression

as commonly done in RD settings.

The general-purpose R package rd2d implements both distance-based and location-based

methods (https://rdpackages.github.io/), see Cattaneo et al. (2025c) for details. Figure

8 gives a stylized example of the type of results that can be obtained via distance-based

and location-based methods, building on the same setup as in Figure 1. These figures are

motivated by empirical work using the SPP application (Londoño-Vélez et al., 2020).

5 Recommendations for Practice

Our review of the empirical literature employing BD designs showed that the overwhelming

majority of studies focuses exclusively on identification, estimation, and inference for the

BATE using pooling-based methods (Section 3). This scalar parameter captures a density-

weighted average of potentially heterogeneous treatment effects along the assignment bound-
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ary. While modern empirical work has recognized the importance of localization and flexible

local parametrization, the current literature often exhibits three key limitations: (i) local

regression specifications frequently omit the interaction between the treatment assignment

variable Ti and the flexible regression terms rp(Di) or rp(Xi), risking significant misspecifi-

cation bias; (ii) the bandwidth h is often chosen in an ad-hoc manner; and (iii) the role of

misspecification bias from a large bandwidth, such as an MSE-optimal choice, is often ig-

nored, which can lead to over-rejection of the null hypothesis. Cattaneo et al. (2026) provide

a formal study of pooling-based methods that explicitly addresses these limitations. Moving

forward, we recommend that empirical researchers implementing pooling-based methods use

specifications (6) or (7), select an MSE-optimal bandwidth, and conduct inference using

robust bias-corrected methods.

As noted by Cattaneo et al. (2025a,b), a more general approach to analyzing and in-

terpreting BD designs is to first focus on the BATEC parameter, and then consider other

aggregate causal treatment effects as transformations thereof. As summarized in Section 4,

distance-based and location-based methods capture the full richness of the BD design by

estimating average treatment effects at each point along the assignment boundar, and also

recover the BATE parameter as a special case. These methods can be implemented using

the general-purpose R package rd2d available at https://rdpackages.github.io/, and dis-

cussed in Cattaneo et al. (2025c). In particular, location-based methods are the most robust

and general approach; we therefore recommend them for future empirical work analyzing

BD designs.

Finally, our discussion and literature review have focused on BD designs where the running

variable is explicitly bivariate, such as geographic location or test scores in two exams. A

more general view of BD designs also includes univariate RD designs with multiple cutoffs.

As discussed by Cattaneo et al. (2016b) and Cattaneo et al. (2024), a univariate RD design

with multiple cutoffs can be recast as a BD design where one dimension of the bivariate

score is the original univariate score and the other is the cutoff variable, and the boundary is
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the set where these dimensions are equal—for an empirical example where multiple cutoffs

induce a known boundary see the seminal paper by Angrist and Lavy (1999). In this sense,

with appropriate modifications, our discussion of BD design methodology also applies to RD

designs with multiple cutoffs.
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Table 1: Selected Empirical Articles Using The Boundary Discontinuity Design

Article Yi Ti Xi Distance Specifications Bandwidth Heter

Card and Krueger
(1994)

Employment Minimum wage
increase

Location of
towns/counties

NA (1), (2) NA No

Holmes (1998) Manufacturing
activity

Right-to-work
policies

Lat, Lon Euclidean (1), (2), (6) Manual Yes

Black (1999) House prices School quality Lat, Lon Euclidean (1), (2) Manual No

Kane et al. (2003) House prices School quality Lat, Lon Euclidean (1), (2) Manual No

Kane et al. (2006) Housing prices School quality Lat, Lon Euclidean (1), (2)⋆ Manual No

Bayer et al. (2007) House prices School quality Lat, Lon Euclidean (1), (2) Manual No

Lalive (2008) Unemployment
duration

Unemployment
benefits

Lat, Lon Driving time (6) Manual No

Dell (2010) Consumption,
childhood stunting

Forced mining
labor

Lat, Lon Euclidean (3) MSE No

Ou (2010) High school
dropout

Failure of high
school exit exam

Mathematics score,
Language score

Euclidean (8) Manual No

Dube et al. (2010) Employment Increase in
minimum wage

Lat, Lon County adjacency (1), (2) Manual No

Grout et al. (2011) Property values Land-use
regulations

Lat, Lon Euclidean (8) Manual Yes

Robinson (2011) English proficiency English proficiency
reclassification

Scores on five
language tests

Euclidean Binding score MSE No

Eugster et al.
(2011)

Demand for social
insurance

Culture Lat, Lon Driving kilometers (6) Manual No

Hinnerich and
Pettersson-Lidbom
(2014)

Political regimes Income
redistribution

Population in two
separate years

Euclidean (8) MSE No

Continued on next page...
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Table 1 – Continued from previous page

Article Yi Ti Xi Distance Specifications Bandwidth Heter

Ferwerda and
Miller (2014)

Resistance activity Devolution of
governing
authority

Lat, Lon Euclidean (6) MSE,
Manual

No

Snider and
Williams (2015)

Airline industry
outcomes

Access to airport
facilities granted to

new airlines

Share of passengers
in top two carriers

in origin and
destination city

(1), (11) MSE,
Manual

Yes

Barone et al.
(2015)

Vote shares Switch from analog
to digital TV

Lat, Lon Euclidean (5) Manual No

Michalopoulos and
Papaioannou
(2016)

Civil conflict Ethnic partitioning Lat, Lon Euclidean (1), (2) Manual No

Egger and Wamser
(2015)

Foreign investment Controlled foreign
company rules

Tax rate, Income
measures

NA (7) L = 1 MSE No

Keele and Titiunik
(2015)

Voter turnout Political TV
advertisement

Lat, Lon Chordal (10) MSE Yes

MacDonald et al.
(2016)

Crime Policing Lat, Lon Euclidean (6) MSE No

Evans (2017) STEM major Financial incentive GPA, Family
contribution score

Euclidean (8) MSE No

Eugster et al.
(2017)

Unemployment Culture Lat, Lon Road distance (6) Manual No

Kumar (2018) Mortgage default Limits on home
equity borrowing

Lat, Lon Euclidean (4), (3) Manual No

Ehrlich and Seidel
(2018)

Economic density Subsidies Lat, Lon Euclidean (4)+rp(Xi) MSE,
Manual

No

Continued on next page...
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Table 1 – Continued from previous page

Article Yi Ti Xi Distance Specifications Bandwidth Heter

Dell et al. (2018) Economic
outcomes

Dai Viet
administrative
institutions

Lat, Lon Euclidean (3), (5),
(5)+rp(Xi)

Manual No

Dell and Querubin
(2018)

Public goods,
political attitudes

War strategies Lat, Lon Euclidean (3) Manual No

Clinton and Sances
(2018)

Voter registration
and turnout

Medicaid
expansion

Lat, Lon Euclidean (6) Manual No

Spenkuch and
Toniatti (2018)

Voter turnout Television
advertisement

Lat, Lon Euclidean (2), (6) MSE,
Manual

No

De Kadt and
Larreguy (2018)

Party vote shares Political alignment Lat, Lon Euclidean (3) Manual No

Eugster and
Parchet (2019)

Tax competition Culture Lat, Lon Road (1) in DID Manual No

Giuntella and
Mazzonna (2019)

Sleep duration,
Health outcomes

Timing of natural
light

Lat, Lon Euclidean (6) MSE,
Manual

No

Johnson (2019) High School
graduation

English learner
classification

Scores on two
language tests

Euclidean Binding score MSE No

Velez and Newman
(2019)

Voter turnout Spanish-language
television station

Lat, Lon Euclidean (1), (2), (10) MSE,
Manual

Yes

Dupraz (2019) Schooling Colonial legacies Lat, Lon Euclidean (6), (3) MSE No

Moscona et al.
(2020)

Conflict Segmentary lineage
organization

Lat, Lon Euclidean (6) Manual No

Ambrus et al.
(2020)

Property value Cholera epidemic Lat, Lon Walking (6) L = 1 MSE,
Manual

No

Dell and Olken
(2020)

Schools, education
levels

Sugar cultivation
for Dutch

cultivation system

Lat, Lon Euclidean (3) Manual No

Continued on next page...
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Table 1 – Continued from previous page

Article Yi Ti Xi Distance Specifications Bandwidth Heter

He et al. (2020) Pollution Water quality
monitoring

Lat, Lon Euclidean (6) L = 1 MSE No or
NA

Ito and Zhang
(2020)

Willingness to pay
for clean air

Lat, Lon Euclidean, road (6) MSE,
Manual

No

Wuepper et al.
(2020a)

Soil erosion Country borders Lat, Lon Euclidean (6) MSE No

Albertus (2020) Conflict Land reform Lat, Lon Euclidean (6) MSE,
Manual

No

Wuepper et al.
(2020b)

Crop yield gaps,
nitrogen pollution

Country borders Lat, Lon Euclidean (6) MSE No

Schafer and
Holbein (2020)

Voter turnout Time zones Lat, Lon Chordal (6) MSE,
Manual

No

Letsa and Wilfahrt
(2020)

Attitudes towards
local power

Colonial legacies Lat, Lon Euclidean (3) Manual No

Londoño-Vélez
et al. (2020)

College enrollment Financial subsidy High school exit
exam score, wealth

index

Euclidean (8) MSE No

Gonzalez (2021) Election fraud Cell phone
coverage

Lat, Lon Euclidean (6), (7) MSE Yes

Ayres et al. (2021) Land value Adjudication of
groundwater rights

Lat, Lon Euclidean (6) L = 1 MSE No

Laliberté (2021) School quality Educational
achievement

Lat, Lon Euclidean (6) MSE No

Aaronson et al.
(2021)

Characteristics of
urban

neighborhoods

Red lining maps Lat, Lon Euclidean (2) in DID Manual No

Continued on next page...
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Table 1 – Continued from previous page

Article Yi Ti Xi Distance Specifications Bandwidth Heter

Appau et al. (2021) Agricultural
productivity

Bombing intensity Lat, Lon Absolute difference
between centroid
and 17th parallel
north latitude

(4) (first stage) Manual No

Lowes and
Montero (2021)

Education, health,
wealth

Concession to
extract rubber

Lat, Lon Euclidean (6) MSE,
Manual

No

Sides et al. (2022) Election outcomes Television
advertisement

Lat, Lon Euclidean (2) Manual No

Zheng (2022) House prices Charter school
entry

Lat, Lon Euclidean Event study in
sample near
boundary

Manual No

Dehdari and
Gehring (2022)

Regional identity Actions of nation
states

Lat, Lon Euclidean (6) MSE,
Manual

No

Méndez and
Van Patten (2022)

Living standards Land concession to
multinational firm

Lat, Lon Euclidean (3) Manual No

Jones et al. (2022a) Profits, irrigation
efficiency

Irrigation Lat, Lon Euclidean (6) Manual No

Henn (2023) State capacity Remoteness from
administrative
headquarters

Lat, Lon Euclidean (6)⋆ Manual No

Jones et al. (2022b) Enrollment,
graduation

Tuition scholarship High school GPA,
SAT/ACT score

NA (7) Manual No

Dai et al. (2022) Lifestyle outcomes Hypertension
diagnosis

Systolic and
Diastolic blood

pressure

Euclidean (8) MSE No

Salti et al. (2022) Economic
outcomes

Cash assistance Two scores in
means testing

formula

NA (8)⋆ MSE No

Continued on next page...
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Table 1 – Continued from previous page

Article Yi Ti Xi Distance Specifications Bandwidth Heter

Castro and
Esposito (2022)

Teacher retention,
student learning

Recruitment bonus Population,
distance to capital

Euclidean (8) MSE No

Moussa et al.
(2022)

Children health
outcomes

Cash assistance Two scores in
means testing

formula

NA (8)⋆ MSE No

Mangonnet et al.
(2022)

Protected area
designation

Political alignment Lat, Lon Euclidean (2) Manual No

Baragwanath et al.
(2023)

Forest growth Property rights Lat, Lon Euclidean (6) MSE No

Larsen and Valant
(2024)

Educational
attainment

Grade retention Mathematics and
English Language
Arts test scores

Euclidean (8) MSE No

Woller et al. (2023) Vote buying Cost of voting Lat, Lon Euclidean (4) Manual No

Paulsen et al.
(2023)

Voter turnout,
economic outcomes

State funding for
common schools

Lat, Lon Euclidean (3) Manual No

Prillaman (2023) Political
participation

Participation in
women-only credit

groups

Lat, Lon Euclidean (2), (3) Manual No

McAlexander
(2023)

Rebel actions UN partition line
of Palestine

Lat, Lon Euclidean (6) L = 1 MSE No

Murphy and
Johnson (2023)

Special education
placement

English learner
designation

Various scores of
language
assessment

NA Binding score MSE No

Bjerre-Nielsen and
Gandil (2024)

School enrollment School change Lat, Lon Euclidean (2) in DID Manual No

Kämpfen and
Mosca (2024)

Blood pressure Blood pressure
diagnosis

Systolic and
Diastolic blood

pressure

NA Binding score MSE No

Continued on next page...
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Table 1 – Continued from previous page

Article Yi Ti Xi Distance Specifications Bandwidth Heter

Wuepper et al.
(2024)

Deforestation Country borders Lat, Lon Euclidean (6) MSE No

Cox et al. (2024) Voter mobilization Social networks Lat, Lon Fastest driving (1)⋆ NA No

Doucette (2024a) Urbanization,
commercialization

Duchy of
Württemberg

Lat, Lon Euclidean (4)+rp(Xi) MSE,
Manual

No

Doucette (2024b) Party support Inclusive
institutions

Lat, Lon Euclidean (4)+rp(Xi) Manual No

Grasse (2024) Poverty, economic
development

Mass repression Lat, Lon Euclidean (5) Manual No

Jardim et al.
(2024)

Wages,
employment

Increase in
minimum wage

Lat, Lon Driving time (1)⋆, (2)⋆ Manual No

Ring (2025) Savings Wealth tax
assessment

Lat, Lon Euclidean (6) Manual No

Yamagishi and
Sato (2025)

Land price Buraku
neighborhoods

Lat, Lon Euclidean (1), (6) L = 1 MSE,
Manual

No

Loumeau (2025) Commuting flows,
residential
decisions

Departmental
borders

Lat, Lon Euclidean (5) MSE No

Boix (2025) Jewish National
identity

Political
emancipation

Lat, Lon Euclidean (6) MSE No

Müller-Crepon
(2025)

Share of
predominant ethnic

group

Administrative
borders

Lat, Lon Euclidean (6) Manual No

Note: MSE denotes optimal mean squared error bandwidth choice. Binding score refers to the approach of constructing a single univariate score as
the minimum of all scores that determine treatment assignment, known as the binding score, and then conducting a univariate RD analysis using the
binding score (see, e.g., Reardon and Robinson, 2012). A specification number with the symbol ⋆ indicates it has been modified in a some way; for
details, we refer readers to the article. GPA denotes grade point average.
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