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Abstract

This paper analyzes two distinct approaches for estimating aggregated average treatment ef-

fects in boundary discontinuity designs: the widely-used pre-aggregation approach, and a novel

post-aggregation approach. The pre-aggregation approach bundles all units near a treatment

assignment boundary first, and then estimates a single, aggregated local average treatment

effect. While commonly used in empirical work, its formal statistical properties remain under-

explored. In contrast, the post-aggregation approach first estimates heterogeneous treatment

effects along the assignment boundary, and then aggregates them, offering flexibility in weight-

ing and robustness to boundary irregularities. We provide a precise definition of the aggregated

causal parameters identified by each approach, and establish valid large-sample estimation and

inference methods based on them. The theoretical results elucidate the relative merits of each

aggregation approach, providing practical guidance for past and future applications of boundary

discontinuity designs. General-purpose companion software is provided, and illustrated using

an empirical application.
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1 Introduction

Boundary discontinuity designs are used to estimate average treatment effects for units located near

a boundary inducing a discontinuous change in treatment assignment. Early influential examples

include Card and Krueger [1994], Black [1999], and Dell [2010]; see also Jardim et al. [2024] for a

recent application and more references. Keele and Titiunik [2016] give an introduction to causal

identification, estimation, and inference methods based on geography. This research design, some-

times called a Multi-dimensional or Geographic Regression Discontinuity (RD), is a generalization

of the canonical RD design [Cattaneo and Titiunik, 2022].

A common approach in the literature is to first bundle all units that are near to the assignment

boundary, according to some location metric, and then conduct the empirical analysis using a

“local randomization” framework to estimate an aggregated, local to the boundary, average RD

treatment effect. We call this popular empirical method the pre-aggregation approach because all

units “close” to the boundary are pooled together first, and then a single average RD treatment

effect is estimated. An alternative approach for causal treatment effect aggregation is to estimate

the average treatment effect curve along the boundary first, which captures a collection of local RD

heterogeneous treatment effects at each point on the assignment boundary, and bundle them after

to recover an aggregated, local to the boundary, average treatment effect. We call this alternative

empirical method the post-aggregation approach.

The pre-aggregation approach is widely used empirical work, but its formal statistical properties

have not been unexplored before. The post-aggregation approach is new to the literature, thereby

providing an alternative method for causal treatment effect aggregation in empirical work. This pa-

per studies identification, estimation, and inference for both pre-aggregation and post-aggregation

approaches to estimate the local (to the boundary) average treatment effect in boundary discon-

tinuity designs. Our results describe precisely the relative merits of each approach, and thus help

inform past and future applications.

The pre-aggregation approach does not require specific location information because aggregation

is done directly for all units located within a local region covering the assignment boundary. As

a result, approximation of the aggregated, local to the boundary, RD average treatment effect is

the main and only goal, which is achieved by assuming that the covering region shrinks towards
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the assignment boundary as the sample size increases. Heuristically, localization is achieve along

level sets expanding the assignment boundary. The most common implementation is a simple

difference-in-means estimator. If, in addition, location or distance-to-the-boundary information is

available, then the estimator may include regression adjustments to account for location-fixed-effects

or polynomial expansions based on distance. Our main results give a precise definition of the causal

parameter uncovered by the pre-aggregation approach, and provide estimation and inference results.

We also highlight potential issues related to the lack of smoothness of the assignment boundary.

The post-aggregation approach requires specific location information for each unit, and builds

on the identification, estimation, and inference results for the average treatment effect curve along

the boundary recently established by Cattaneo et al. [2025a]. It has several advantages for em-

pirical practice. First, it builds off an explicit heterogeneity treatment effect analysis, thereby

complementing and progressively expanding those causal findings. Second, it allows for different

weighting schemes for aggregation, giving the researcher more options for causal estimation and in-

ference. Third, it is robust to issues related to non-smooth or otherwise “too” complex assignment

boundaries, which can affect the performance of the pre-aggregation approach. Fourth, due to its

robustness and simplicity, optimal bandwidth selection and robust bias correction can be developed

and implemented.

Our theoretical results build on precise concepts from geometric measure theory [Federer, 2014],

which allow us to provide both high-level and primitive conditions on the geometry of the as-

signment boundary and the data generating process. For each estimator approach, we establish a

mean square error (MSE) approximation and an asymptotic Gaussian distributional approximation.

We employ these results to deduce consistency, convergence rates, and uncertainty quantification

methods. These results elucidate the relative merits of each aggregation approach, providing prac-

tical guidance for past and future applications of boundary discontinuity designs. We also provide

general-purpose companion software, and illustrate the feasibility of our methods by revising the

empirical application of Londoño-Vélez et al. [2020].

This work contributes to a burgeoning methodological literature on causal treatment effect ag-

gregation in boundary discontinuity and multi-dimensional RD designs, including in particular

the popular geographic RD design. Previous work has largely focused on identification in spe-

cific settings [Papay et al., 2011, Reardon and Robinson, 2012, Keele and Titiunik, 2015], or on

2



methodology for geographic RD designs [Keele et al., 2015, 2017, Galiani et al., 2017, Diaz and

Zubizarreta, 2023]. Most recently, Cattaneo et al. [2025a] provided foundational work on iden-

tification, estimation, and inference for the average treatment effect curve along the assignment

boundary, which our post-aggregation approach builds upon and extends. This paper is the first

to formally study identification, estimation and inference methods for treatment effect aggregation

in boundary discontinuity designs.

The remainder of the paper is organized as follows. Section 2 presents the setup. Section 3

presents results for the pre-aggregation approach, while Section 4 discusses the post-aggregation

approach. Section 5 reports the empirical application. Finally, Section 6 concludes. The supple-

mental appendix reports more general theoretical results, proofs, and other technical results.

2 Setup

Let (Yi(0), Yi(1),X
⊤
i )

⊤, i = 1, 2, . . . , n, be a random sample with Yi(0) and Yi(1) denoting the

potential outcomes for unit i under control and treatment assignment, respectively, and Xi =

(X1i, X2i)
⊤ being a continuous score supported on X ⊆ R2. Let X = A0 ∪ A1 with A0 and A1

be the control and treatment disjoint (connected) regions, respectively, and B = bd(A0) ∩ bd(A1)

be the assignment boundary, where bd(At) denotes the boundary of the set At. Without loss

of generality, we assume the known one-dimensional boundary curve B belongs to the treatment

assignment area, that is, bd(A1) ⊂ A1 and B ∩ A0 = ∅. Units are assigned the control group

if X ∈ A0, or otherwise to the treatment group if X ∈ A1. Thus, the observed data is (Yi, Ti),

i = 1, . . . , n, where

Yi = TiYi(0) + (1− Ti)Yi(1), Ti = 1(Xi ∈ A1),

with 1(·) denoting the indicator function. The score variable Xi for each unit, or certain trans-

formation thereof such as a scalar distance measure to the boundary, may or may not be directly

observed depending on the setting considered. We discuss these different cases below.

We impose throughout the paper the following basic regularity conditions on the data generating

process.
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Assumption 1 (Data Generating Process). Let t ∈ {0, 1}, p > 0, and v ≥ 2.

(i) (Y1(t),X1)
⊤, . . . , (Yn(t),Xn)

⊤ are independent and identically distributed random vectors.

(ii) The distribution of Xi has a Lebesgue density f(x) that is continuous and bounded away from

zero on its support compact support X.

(iii) µt(x) = E[Yi(t)|Xi = x] is (p+ 1)-times continuously differentiable on X.

(iv) σ2
t (x) = V[Yi(t)|Xi = x] is bounded away from zero and continuous on X.

(v) supx∈X E[|Yi(t)|2+v|Xi = x] < ∞.

These conditions are all standard in the literature. The average treatment effect curve along the

boundary is

τ(x) = E[Yi(1)− Yi(0)|Xi = x], x ∈ B.

This functional parameter captures the possibly heterogeneous, average RD treatment effect at

each point on the assignment boundary. See Cattaneo et al. [2025a] for a foundational analysis on

identification, estimation, and inference for τ(x). While this functional parameter is certainly of

practical interest, researchers often would like to also report a single causal treatment effect via some

aggregation along (a region of) the assignment boundary B. In many applications, most notably in

geographic RD designs, the assignment boundary may exhibit kinks or other irregularities, which

can make the aggregation process empirically and technically challenging.

Because the domain of aggregation B forms a possibly irregular one-dimensional manifold in R2,

we need to introduce some concepts from geometric measure theory to define formally the class of

parameters interest studied in this paper. The upcoming definitions will be essential in proving

our main theoretical results: see the supplemental appendix for details, and Federer [2014] for a

classical background reference.

2.1 Integration over 1-dimensional Manifolds

Integrating functions over one-dimensional manifolds in the plane extends the familiar concept of

integration from intervals to curves. This extension is crucial in various fields, from physics (e.g.,

calculating work done by a force along a path) to engineering (e.g., fluid flow over a surface). In
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our context, we seek to formally define expressions such as

∫
B

τ(b)w(b) db,

where w : B 7→ R is a known weighting function. When the boundary B is “nice” enough, the

above integral can be understood as a line integral. While a one-dimensional manifold on the plane

can be intuitively thought of as a smooth curve, to establish a rigorous framework for such integrals

for more general one-dimensional domains B, we need to consider curves that might not be smooth

everywhere, or easily parameterized by differentiable functions. We thus need to delve into the

concepts of the Hausdorff measure and rectifiable sets.

(i) Hausdorff Measure. The foundation for measuring the “length” of a general one-dimensional

curve in the plane is the 1-dimensional Hausdorff measure, denoted by H1. Unlike the

Lebesgue measure, which is primarily designed for integer dimensions, the Hausdorff mea-

sure can be defined for any non-negative real dimension. For a set E ⊂ R2 and δ > 0, we

define the δ-cover H1
δ(E) as the infimum of sums

∑∞
i=1 diam(Ai) over all countable covers

{Ai} of E such that diam(Ai) < δ. The 1-dimensional Hausdorff measure is then given by

H1(E) = limδ→0+ H1
δ(E).

(ii) Rectifiable Set. A subset E of R2 is said to be 1-rectifiable if it is of Hausdorff dimension

1 and, roughly speaking, E can be covered, up to a set of 1-dimensional Hausdorff measure

zero, by a countable union of images of Lipschitz functions from subsets of R. More precisely,

a Borel set E ⊂ R is 1-rectifiable if H1(E) < ∞ and there exist a countable collection of

Lipschitz maps gi : R 7→ R such that E ⊂
⋃∞

i=1 gi(R). Heuristically, this means that the

curve can be “approximated” by pieces that are images of Lipschitz functions from intervals.

The definition of rectifiable curve is more general than that of a continuously differentiable curve

and, crucially, it allows for curves with “corners” or points where a tangent might not exist in the

classical sense, yet still possess a well-defined length. For a smooth curve, this definition precisely

yields its arc length. For rectifiable curves, the 1-dimensional Hausdorff measure also corresponds

to the intuitive notion of length, even when classical arc length formulas relying on differentiability

might fail. The key property of rectifiable sets is that they admit an “approximate tangent space”
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almost everywhere, which is essential for defining the integration process.

For a measurable function g : R2 → R and a 1-rectifiable set D ⊂ R2, the integral of g over D

is defined as
∫
D
g dH1, where the integral is formally defined using standard measure theory. For

sufficiently “nice” functions (e.g., continuous functions with compact support), this integral can be

further understood using parameterizations and the Area Formula. Since D is a 1-rectifiable set,

it can be (almost entirely) represented as the disjoint union of the images of a countable collection

of Lipschitz maps ϕj : Ij 7→ R2, where Ij ⊆ R are intervals. Then,

∫
D

g dH1 =
∞∑
j=1

∫
Ij

g(ϕj(u))J1ϕj(u)du, (1)

where J1ϕj(u) is the 1-dimensional Jacobian of the Lipschitz map ϕj at the point u; the Jacobian

is defined for m-almost every u ∈ Ij , where m denotes the Lebesgue measure on R. In particular, if

ϕj(u) = (ϕj1(u), ϕj2(u))
⊤ is differentiable, then the 1-dimensional Jacobian is simply the magnitude

of the derivative vector: J1ϕj(u) = ∥ d
du(ϕj1(u), ϕj2(u))

⊤∥ =
√

( d
duϕj1(u))2 + ( d

duϕj2(u))2, where ∥·∥

denotes the Euclidean norm.

The integral (1) is a natural generalization of the standard line integral, where dH1 serves as

the rigorous “length element,” enabling a robust framework for integration over complex one-

dimensional domains in the plane. More precisely, if D is a smooth curve parameterized by γ :

[a, b] 7→ R2, then we can set ϕ1 = γ and I1 = [a, b], and ϕj = 0 for all j ≥ 2, to obtain

∫
D

g dH1 =

∫
I1

g(γ(u))
∥∥∥ d

du
γ(u)

∥∥∥du,
because the 1-dimensional Jacobian J1ϕj(u) =

∥∥ d
duγ(u)

∥∥ is precisely the speed of the parameteri-

zation. For notational simplicity, and whenever there is no confusion, we write

∫
D

g(u)du =

∫
D

g dH1,

with the understanding that the left-hand-side integral is just notation for the rigorously defined

right-hand-side integral.
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2.2 Aggregated Causal Treatment Effects

We consider identification, estimation, and inference for a class of parameters of interest that aggre-

gates the heterogeneous treatment effects, (τ(b) : b ∈ B), along the often non-smooth assignment

boundary B. Assuming that B is (at least) rectifiable, and for w : X 7→ R a known function, the

aggregated boundary treatment effect is

τw =

∫
B
τ(b)w(b)db∫
B
w(b)db

,

which defines a class of treatment effects indexed by the choice of weights.

The definition of τw depends on the geometry of the assignment boundary B, and the choice of

weights w. For example, if B is a smooth curve parameterized by γ : [a, b] 7→ R2, then

τw =

∫
[a,b] τ(γ(u))w(γ(u))

∥∥ d
duγ(u)

∥∥du∫
[a,b]w(γ(u))

∥∥ d
duγ(u)

∥∥du .

In particular, if B is a straight line with B = {a+ sb : 0 ≤ s ≤ L}. Then

τw =

∫
[0,L] τ(a+ sb)w(a+ sb)ds∫

[0,L]w(a+ sb)ds
.

3 Pre-Aggregation Approach

A common empirical approach to estimate an aggregated boundary treatment effect is to first

pool all observations with score within a small region covering the assignment boundary B, and

then estimate the “local” average treatment effect using only those observations. This localization

approach does not employ Xi directly, but rather only information about whether observations are

“close” to some point on the boundary.

To formalize the pre-aggregation approach, let h > 0 be the bandwidth controlling the width of

the region R(h) covering the assignment boundary B. Then, the tubular localization region is

R(h) = R0(h) ∪R1(h), Rt(h) =
{
x ∈ At : inf

b∈B
d(b,x) ≤ h

}
,
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for t ∈ {0, 1}. The pre-aggregation boundary average treatment effect estimator is

τ̂pre = τ̂pre,1 − τ̂pre,0, (2)

where

τ̂pre,t =
1

Nt(h)

n∑
i=1

1(Xi ∈ Rt(h))Yi, Nt(h) =

n∑
i=1

1(Xi ∈ Rt(h))

for t ∈ {0, 1}.

The (signed) induced “distance” to the closest point on the boundary for each unit is

Di = (2Ti − 1)d(Xi,B), d(x,B) = inf
b∈B

d(x,b),

where d : R × R → R denotes a distance metric on R. Thus, for each unit, |Di| is the random

distance to the closest point on the boundary for each unit distance, and Ti = 1(Di ≥ 0). It follows

that the estimator τ̂pre is a “localized” difference-in-means estimator, which does not explicitly

requires information about the score Xi or the induced random signed distance Di: it only employs

information about whether each unit is “close” enough to the boundary, that is, it only leverages

location information through the indicator variables Ti, 1(Xi ∈ R0(h)) = 1(−h ≤ Di < 0) and

1(Xi ∈ R1(h)) = 1(0 ≤ Di ≤ h), for each unit i = 1, 2, · · · , n.

Interestingly, the estimator τ̂pre can be thought of employing a local constant regression approx-

imation based on the “level sets” in the tubular R, as moving away from the assignment boundary

B. This interpretation is equivalent to a one-dimensional RD estimator based on the univariate

random signed distance score Di, and with cutoff c = 0. Thus, if information on D1, . . . , Dn is

also available, then a local polynomial debiasing approach could be used, as the following remark

explains.

Remark 1 (Local Polynomial Generalization). The pre-aggregation estimator τ̂pre is expected to

exhibit a smoothing bias of order h, since it implicitly employs a local-constant regression approx-

imation based on the score variable Di = infb∈Bd(b,Xi) for its construction. More precisely, if

the random variables Di, i = 1, 2, . . . , n are observed, then the local polynomial pre-aggregation
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estimators for control and treatment groups are, for t ∈ {0, 1},

τ̂pre,t = e⊤1 ξ̂t, ξ̂t = argmin
ξ∈Rp+1

n∑
i=1

(
Yi − rp(Di)

⊤ξ
)2
kh(Di)1(Ti = t),

where e1 is the conformable first unit vector, rp(u) = (1, u, u2, · · · , up)⊤ is the usual univariate

polynomial basis, and kh(u) = k(u/h)/h with k(·) a univariate kernel function. It follows that

setting p = 0 and k(u) = 1(|u| ≤ 1) gives back the pre-aggregation estimator studied in (2). Under

regularity conditions, it is reasonable to expect that the local polynomial pre-aggregation estimator

τ̂pre = e⊤1 ξ̂1−e⊤1 ξ̂0 could exhibit an improved bias of order hp+1. However, this requires additional,

specific restrictions on the geometry of B, the choice of distance function d(·), and the smoothness

of the underlying induced conditional expectations. See Cattaneo et al. [2025a] for more discussion

of distance-based methods. Since the local polynomial estimation approach is not common in the

literature, we relegate its analysis to the supplemental appendix (Section SA-3.5). ⌟

3.1 Regularity Conditions

Our analysis of the pre-aggregation treatment effect estimator τ̂pre in (2) proceeds under the fol-

lowing assumption.

Assumption 2 (Pre-Aggregation Approach). Let ∥ · ∥ be the Euclidean norm, and t ∈ {0, 1}.

(i) There exists positive constants Cu and Cl such that Cl ∥x1 − x2∥ ≤ d(x1,x2) ≤ Cu ∥x1 − x2∥

for all x1,x2 ∈ X.

(ii) J1d(·,B) ̸= 0 m-almost everywhere on X, and
∫
X
| f(x)
J1d(x,B) |dx < ∞.

(iii) limϵ↓0 F (s) = F (0) is finite, where F (s) =
∫
d(x,B)=s

f(x)
J1d(x,B)dH

1(x) for all s ≥ 0.

(iv) r 7→ θt(r) = E[Yi|Di = r, Ti = t] = E[Yi(t)|d(Xi,B) = |r|] is continuous at 0.

Part (i) in Assumption 2 restricts the underlying distance function to be equivalent to the Eu-

clidean distance, while Parts (ii)–(iv) concern the geometry of the assignment boundary B, as

well as the smoothness of f and the induced regression functions, as they all interact with specific

distance function used. These restrictions are high-level, and difficult to verify in general; see Sec-

tion 2.1 for notation and definitions. If B enjoys more regularity (e.g., assuming B is piecewise

parametrization by a Lipchitz function), then parts (ii)–(iv) in Assumption 2 may be verified under
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primitive regularity conditions. See the supplemental appendix for more details; in particular, Sec-

tion SA-3.5 verifies conditions (ii)–(iv) for the special case when B is piecewise linear (with finite

many pieces).

3.2 MSE Approximation

The pre-aggregation estimator τ̂pre = τ̂pre,1− τ̂pre,0 in (2) admits the usual best linear decomposition

from least squares algebra. For t ∈ {0, 1},

τ̂pre,t − µf,t = Bn,t + Ln,t +Qn,t, µf,t =

∫
B
µt(b)f(b) db∫
B
f(b) db

, (3)

where

Bn,t = θ∗t (0)− µf,t, θ∗t (0) =
E[1(Xi ∈ Rt(h))Yi]

E[1(Xi ∈ Rt(h))]
,

Ln,t =
1

E[1(Xi ∈ Rt(h))]

1

n

n∑
i=1

1(Xi ∈ Rt(h))(Yi − θ∗t (0)),

Qn,t =
( 1

E[1(Xi ∈ Rt(h))]
− n

Nt(h)

) 1

n

n∑
i=1

1(Xi ∈ Rt(h))(Yi − θ∗t (0)).

The supplemental appendix studies the generalized version of this decomposition based on the

estimator discussed in Remark 1. Employing the notation and definitions in Section 2.1, and

leveraging the technical results in the supplemental appendix, we show that

lim
h↓0

1

h
E[1(Xi ∈ Rt(h))] =

∫
B

f(b)db,

and

lim
h↓0

1

h
E[1(Xi ∈ Rt(h))Yi] =

∫
B

µt(b)f(b)db,

for t ∈ {0, 1}, under Assumptions 1 and 2. Therefore, the non-random term Bn,t captures the

“smoothing bias” of the estimator τ̂pre,t, which is difficult to characterized precisely in our current

general setting. The term Ln,t is a mean-zero average of independent random variables, and admits

a Gaussian distributional approximation, thereby capturing the leading variability of the estimator.
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Finally, because Ln,t = OP(
1√
nh

) and Qn,t = OP(
1
nh), it follows that the term Qn,t is negligible as

nh → ∞.

Putting all together, we obtain our first result. Let

MSE[τ̂pre] = E[(Bn + Ln)
2],

be the approximate mean square error based on the decomposition (3), where Bn = Bn,1 −Bn,0,

Ln = Ln,1 − Ln,0. The higher-order term Qn = Qn,1 − Qn,0 has been explicitly ignored because

it is asymptotically negligible under our assumptions, that is, MSE[τ̂pre] can be interpreted as the

result of a Nagar-type expansion.

Theorem 1 (Pre-Aggregation: Convergence Rate and MSE Approximation). Suppose Assump-

tions 1 and 2 hold. If nh → ∞ and h → 0, then Qn = OP(
1
nh), and

MSE[τ̂pre] = B2
n +

1

nh
Vpre

where Vpre = Vpre,1 +Vpre,0 with

Vpre,t =
hE[1(Xi ∈ Rt(h))(Yi − θ∗t (0))

2]

(E[1(Xi ∈ Rt(h))])2

=

∫
B
σ2
t (b)

f(b)
J1d(b,B)db( ∫

B

f(b)
J1d(b,B)db

)2 +

∫
B

(
µt(b)−

∫
B
µt(x)

f(x)
J1d(x,B)

dx∫
B

f(u)
J1d(u,B)

du

)2
f(b)

J1d(b,B)db( ∫
B

f(b)
J1d(b,B)db

)2 + o(1),

for t ∈ {0, 1}.

This theorem establishes the convergence rates for each component in the decomposition of the

pre-aggregation estimator. Since Bn = o(1), it follows that τ̂pre is consistent for τf , where

τf = µf,1 − µf,0 =

∫
B
τ(b)f(b) db∫
B
f(b) db

.

Unfortunately, characterizing the convergence rate of Bn, and hence of τ̂pre, is difficult at the

current level of generality. Under additional regularity conditions on B and the data generating

process, it is natural to expect that |Bn| = O(h), but see Cattaneo et al. [2025a] more discussion
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regarding possible challenges in establishing such a result. The asymptotic variance decomposes in

the usual two terms: (i) variability for the correctly specified fit, and (ii) misspecification error. If

µt(b) = µ for all b ∈ B, then the second term in the limit expression for Vpre,t is equal to zero.

3.3 Asymptotic Distribution and Inference

To conduct statistical inference we establish a central limit theorem for the usual t-statistic based

on the pre-aggregation approach. Define

T̂pre =
τ̂pre − τf

ϑ̂pre

,

where

ϑ̂2
pre =

1

Nt(h)(Nt(h)− 1)

n∑
i=1

1(Xi ∈ Rt(h))(Yi − τ̂pre)
2

is the “localized” sample variance estimator. Let ⇝ denote weak convergence as n → ∞, and let

N(0, 1) be the standard Gaussian distribution.

Theorem 2 (Pre-Aggregation: Asymptotic Distribution). Suppose Assumptions 1 and 2 hold. If

nh → ∞ and nhB2
n → 0, then T̂pre ⇝ N(0, 1).

Theorem 2 gives large-sample validity of the usual confidence intervals for τf . For α ∈ (0, 1), it

follows that limn→∞ P[τf ∈ Îpre(α)] = 1− α, where

Îpre(α) =
[
τ̂pre − cαϑ̂pre , τ̂pre + cαϑ̂pre

]
is the standard (1− α) confidence interval, with cα = Φ−1(1− α/2) and Φ(u) = P[N(0, 1) ≤ u].

Paralleling the discussion in Remark 1, our results justify estimation and inference based on the

pre-aggregation approach, provided the small bias condition nhB2
n → 0 holds. In particular, this

approach can readily be implement using standard least squares regression:

[
ζ̂pre
τ̂pre

]
= argmin

ζ,τ∈R2

n∑
i=1

(
Yi − ζ − Tiτ

)2
1(Xi ∈ R(h)),

12



where recall that 1(Xi ∈ R(h)) = 1(|Di| ≤ h). Feasible inference for τf follows directly from

standard least squares software, and is justified in large samples by Theorem 2.

4 Post-Aggregation Approach

This approach begins with a heterogeneous treatment effect estimator along the boundary, and

then aggregates it to obtain a single boundary average treatment effect. Specifically, we consider

the location-based local polynomial estimator proposed by Cattaneo et al. [2025a] for the treatment

effect curve estimator of τ(x):

τ̂(x) = e⊤1 β̂1(x)− e⊤1 β̂0(x), x ∈ B,

where, for t ∈ {0, 1},

β̂t(x) = argmin
β∈Rpp+1

n∑
i=1

(
Yi −Rp(Xi − x)⊤β

)2
Kh(Xi − x)1(Xi ∈ At),

with pp = (2 + p)(1 + p)/2− 1, Rp(u) = (1, u1, u2, u
2
1, u

2
2, u1u2, · · · , u

p
1, u

p
2)

⊤ denotes the pth order

polynomial expansion of the bivariate vector u = (u1, u2)
⊤, Kh(u) = K(u1/h, u2/h)/h

2 for a

bivariate kernel function K(·) and a bandwidth parameter h.

We impose the following conditions on the kernel function and assignment boundary.

Assumption 3 (Kernel Function). Let t ∈ {0, 1}.

(i) K : R2 → [0,∞) is compact supported and Lipschitz continuous, or K(u) = 1(u ∈ [−1, 1]2).

(ii) lim infh↓0 infx∈B
∫
At

Kh(u− x)du ≳ 1.

Part (i) in Assumption 3 imposes minimal regularity on the kernel function, and aligns with

prior literature. Part (ii) in Assumption 3 ensures sufficient data availability for each point x ∈ B

in large samples, thereby making τ̂(x) well-defined. This is because E[Kh(Xi − x)1(Xi ∈ At)] ≳∫
At

Kh(u − x)du under Assumption 1(ii). The second part of the assumption rules out exotic

boundaries, but is otherwise a minimal regularity condition on B.

13



For a weighting scheme w : X 7→ R, the post-aggregation boundary treatment effect estimator is

τ̂w =

∫
B
τ̂(b)w(b) db∫
B
w(b) db

,

where, without loss of generality, we assume
∫
B
w(b) db = 1 to save notation.

4.1 MSE Expansion

To establish a valid MSE expansion, we need to introduce some notation. First, the leading

pointwise conditional bias of the post-aggregation estimator τ̂(x) is B̄x = B̄1,x − B̄0,x, where

B̄t,x = e⊤1 Γ̂
−1

t,x

∑
|k|=p+1

µ
(k)
t (x)

k!

1

n

n∑
i=1

rp

(Xi − x

h

)(Xi − x

h

)k
Kh(Xi − x)1(Xi ∈ At),

using standard multi-index notation, and

Γ̂t,x =
1

n

n∑
i=1

rp
(Xi − x

h

)
rp
(Xi − x

h

)⊤
Kh(Xi − x)1(Xi ∈ At),

for t ∈ {0, 1} and x ∈ B. The pointwise conditional covariance of the post-aggregation estimator

τ̂(x) is

V̄x1,x2 = V̄0,x1,x2 + V̄1,x1,x2 , V̄t,x1,x2 =
1

h
e⊤1 Γ̂

−1

t,x1
Σ̄t,x1,x2Γ̂

−1

t,x2
e1

with

Σ̄t,x1,x2 =
h2

n

n∑
i=1

rp

(Xi − x1

h

)
rp

(Xi − x2

h

)⊤
Kh(Xi − x1)Kh(Xi − x2)εi(x1)εi(x2)1(Xi ∈ At)

and εi(x) = Yi −1(Xi ∈ A0)µ0(x)−1(Xi ∈ A1)µ1(x), for t ∈ {0, 1}, for t ∈ {0, 1} and x1,x2 ∈ B.

The following theorem gives the MSE expansion.

Theorem 3 (Post-Aggregation: MSE Expansion). Suppose Assumptions 1 and 3 hold. If n
v

2+v h2

log(1/h) →

∞ and h → 0, then

E[(τ̂w − τw)
2|X] = h2p+2B̄2

B +
1

nh
V̄B + oP

(
h2p+2 +

1

nh

)
.
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where

B̄B =

∫
B

B̄t,bw(b)db = OP(1), V̄B =

∫
B

∫
B

V̄b1,b2w(b1)w(b2)db1db2 = OP(1),

and 1/V̄B = OP(1).

This theorem shows that the post-aggregation estimator is consistent for τw, with the one-

dimensional convergence rate

|τ̂w − τw| = OP

(
h2p+2 +

1

nh

)
.

Furthermore, the MSE-optimal bandwidth selector is

hB =
( V̄B

(2p+ 2)B̄2
B

1

n

)1/(2p+3)
,

provided that B̄B ̸= 0 with probability approaching one.

For implementation, it is easy to construct plug-in estimators of B̄B and V̄B using a preliminary

bandwidth, and after replacing unknown quantities with estimates thereof. More precisely, for

B̄B, the unknowns (µ
(k)
t (x) : |k| = p + 1) can be estimated using a higher-order local polynomial

estimator, while for V̄B, the unknown quantities Σ̄0,x1,x2 and Σ̄1,x1,x2 are replaced with

Σ̂t,x1,x2 =
h2

n

n∑
i=1

rp

(Xi − x1

h

)
rp

(Xi − x2

h

)⊤
Kh(Xi − x1)Kh(Xi − x2)ε̂i(x1)ε̂i(x2)1(Xi ∈ At)

and ε̂i(x) = Yi−1(Xi ∈ A0)Rp(Xi−x)⊤β̂0(x)−1(Xi ∈ A1)Rp(Xi−x)⊤β̂1(x), for t ∈ {0, 1} and

x,x1,x2 ∈ B.

4.2 Asymptotic Distribution and Inference

We study the usual t-test based on the post-aggregation estimator τ̂w. That is, we consider the

feasible statistic

T̂ =
τ̂w − τw√

1
nh V̂B

, V̂B =

∫
B

∫
B

(V̂0,b1,b2 + V̂1,b1,b2)w(b1)w(b2)db1db2,
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where

V̂t,b1,b2 =
1

h
e⊤1 Γ̂

−1

t,b1
Σ̂t,b1,b2Γ̂

−1

t,b2
e1

for t ∈ {0, 1} and b1,b2 ∈ B.

The following theorem shows that T̂ has a standard Gaussian asymptotic distribution.

Theorem 4 (Post-Aggregation: Asymptotic Distribution). Suppose Assumptions 1 and 3 hold. If

n
v

2+v h2

log(1/h) → ∞ and nh2p+3 → 0, then T̂⇝ N(0, 1).

Provided that the bias condition nh2p+3 → 0 holds, it follows from Theorem 4 that the confidence

interval estimator

Îpos(α) =
[
τ̂w − cα

√
1

nh
V̂B , τ̂w + cα

√
1

nh
V̂B

]
, cα = Φ−1(1− α/2),

satisfies

lim
n→∞

P[τf ∈ Îpos(α)] = 1− α,

for any α ∈ (0, 1). As it is well-known in the nonparametric smoothing literature, the bias condition

nh2p+3 → 0 requires an under-smoothed bandwidth choice (relative to the MSE-optimal hB). A

theory-based approach to circumvent this problem is to employ robust bias-corrected inference

[Calonico et al., 2014]. Specifically, the inference approach proceeds as follows:

1. Step 1. Construct the pth order local polynomial point estimator τ̂w, using the associated

MSE-optimal bandwidth hB (or a rate-consistent bandwidth estimate thereof). This gives

an MSE-optimal treatment effect estimator τ̂w.

2. Step 2. Construct the test statistic T̂ using a qth order local polynomial point estimator

(both numerator and denominator), with q ≥ p + 1, and using the same bandwidth choice

as in Step 1. Then, Theorem 4 holds provided Assumption 1 holds with p replaced by q.

This gives a valid confidence interval estimator Î(α), constructed with a MSE-optimal point

estimator and a robust bias-corrected t-statistic.
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The theoretical properties of robust bias-corrected inference are discussed in Calonico et al. [2018,

2022], while its excellent empirical performance have been documented in Hyytinen et al. [2018]

and De Magalhães et al. [2025]. See also Calonico et al. [2020] for more discussion on bandwidth

selection in classical RD design settings. Our companion R software package rd2d [Cattaneo et al.,

2025b] implements MSE-optimal point estimation and robust bias-corrected inference.

5 Empirical Illustration

We apply the pre-aggregation and post-aggregation approaches to the empirical study conducted

by Londoño-Vélez et al. [2020]. They examined the impact of “Ser Pilo Paga” (SPP), a Colombian

government subsidy designed to support post-secondary education. This anti-poverty initiative

offered tuition assistance to undergraduate college students pursuing four- or five-year degrees at

government-certified, high-quality higher education institutions. SPP eligibility combined merit

and economic need: students were required a high score on Colombia’s national standardized high

school exit exam, SABER 11, and must originate from economically disadvantaged families, as

indicated by the survey-based SISBEN wealth index. A deterministic rule with a fixed bivariate

cutoff governed eligibility: students needed a SABER 11 score in the top 9 percent or higher and

a household SISBEN index below a region-specific threshold. Formally, each student was assigned

a bivariate score Xi = (SABER11i, SISBENi)
⊤, where X1i = SABER11i recorded the SABER11 score

and X2i = SISBENi recorded the SISBEN wealth score, and the treatment assignment boundary

is B = {(SABER11, SISBEN) : (SABER11, SISBEN) ∈ {SABER11 ≥ 0 and SISBEN = 0} ∪ {SABER11 =

0 and SISBEN ≥ 0}}, where variable was recentered at its corresponding cutoff. The outcome

variable is Yi = 1 if student i attended college or Yi = 0 otherwise. The dataset includes n = 363, 096

students from the 2014 cohort.

The causal parameter τ(b) captures the treatment effect of SPP on the probability of college

education for students at the margin of program eligibility, at position b ∈ B on the assignment

boundary, as determined by their bivariate score Xi = (SABER11i, SISBENi)
⊤ ∈ B. Cattaneo

et al. [2025a] already discussed estimation and inference of τ(x) for this application. Our main

contribution in this section is to present estimation and inference for aggregated treatment effects.

Table 1 presents empirical results for different bandwidth choices h ∈ {5, 10, 15, 20}. The first part
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of the table focuses on the pre-aggregation method in (2). The resulting treatment effect estimators

τ̂pre are fairly stable, ranging from 0.38 to 0.43, all highly statistically different from zero. The

second part of the table focuses on the post-aggregation method τ̂w, which is implemented using 40

evenly-spaced grid points on B and with equal weighting (w(bj) = 1/J for bj ∈ B, j ∈ {1, . . . , J},

and J = 40). The estimators are also stable across bandwidth choices, ranging from 0.28 to 0.30,

all highly statistically different from zero.

Method h Estimate Z value p-value CI

Pre-aggregation
5 0.3813 52.03 0.0000 (0.3669, 0.3957)
10 0.4062 72.67 0.0000 (0.3952, 0.4171)
15 0.4191 85.62 0.0000 (0.4095, 0.4287)
20 0.4327 95.97 0.0000 (0.4239, 0.4416)

Post-aggregation
5 0.2778 6.19 0.0000 (0.1748, 0.3370)
10 0.2941 13.05 0.0000 (0.2425, 0.3282)
15 0.2950 17.70 0.0000 (0.2601, 0.3248)
20 0.3017 20.95 0.0000 (0.2636, 0.3180)

Table 1: Aggregated Treatment Effect Estimates.

6 Conclusion

This paper established formal identification, estimation and inference results for two distinct ap-

proaches for estimating aggregated average treatment effects in boundary discontinuity designs.

These results elucidate the relative merits of each aggregation approach, providing practical guid-

ance for past and future applications of boundary discontinuity designs. General-purpose compan-

ion software is provided to facilitate the used of the methods in empirical work.
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Ari Hyytinen, Jaakko Meriläinen, Tuukka Saarimaa, Otto Toivanen, and Janne Tukiainen. When

does regression discontinuity design work? evidence from random election outcomes. Quantitative

Economics, 9(2):1019–1051, 2018.

Ekaterina Jardim, Mark C Long, Robert Plotnick, Jacob Vigdor, and Emma Wiles. Local minimum

wage laws, boundary discontinuity methods, and policy spillovers. Journal of Public Economics,

234:105131, 2024.

Luke Keele and Rocio Titiunik. Natural experiments based on geography. Political Science Research

and Methods, 4(1):65–95, 2016.

Luke J. Keele and Rocio Titiunik. Geographic boundaries as regression discontinuities. Political

Analysis, 23(1):127–155, 2015.

Luke J. Keele, Rocio Titiunik, and Jose Zubizarreta. Enhancing a geographic regression discontinu-

ity design through matching to estimate the effect of ballot initiatives on voter turnout. Journal

of the Royal Statistical Society: Series A, 178(1):223–239, 2015.

Luke J. Keele, Scott Lorch, Molly Passarella, Dylan Small, and Rocio Titiunik. An overview

of geographically discontinuous treatment assignments with an application to children’s health

insurance. In Matias D. Cattaneo and Juan Carlos Escanciano, editors, Regression Discontinu-

ity Designs: Theory and Applications (Advances in Econometrics, volume 38), pages 147–194.

Emerald Group Publishing, 2017.
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