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SA-1 Preliminary Technical Result

This section is self-contained, and provides the basis for the main analysis in the paper. We employ

basic concepts and definitions from geometric measure theory. See Federer [2014] and Folland [2002]

for comprehensive reviews; a more accessible source is available at https://encyclopediaofmath.

org/.

Let m be the Lebesgue measure, and Hk be the k-dimensional Hausdorff measure. For f : Rk → R,
let J1f denote the Jacobian of f . As in the paper, we assume throughout that d : Rd × Rd → R
is a metric on Rd, and define

d(x,S) = inf
s∈S

d(x, s).

Assumption SA–1 (Distance).

The following technical lemma gives sufficient conditions for convergence of integrals over a

shrinking tubular of a manifold. Let

Lemma SA-1 (Integration over Shrinking Tubular Neighborhoods). Suppose that X is a compact

subset of Rd with Hausdorff dimension d, S ⊆ X has Hausdorff dimension d− 1, and the following

conditions hold:

1. There exists positive constants Cu and Cl such that Cl ∥x1 − x2∥ ≤ d(x1,x2) ≤ Cu ∥x1 − x2∥
for all x1,x2 ∈ X.

2. g : R → R is m-measurable, continuous over its compact support.

3. m : Rd → R is m-measurable.

4. J1d(·,S) ̸= 0 m-almost everywhere on X, and
∫
X
| m(x)
J1d(x,S) |dx <∞.

5. limϵ↓0M(ϵ) = cSM(0) is finite, where M(r) =
∫
d(x,S)=r

m(x)
J1d(x,S)dH

d−1(x) for all r ≥ 0

Then,

lim
ϵ↓0

∫
T(ϵ)

1

ϵ
g
(d(x,S)

ϵ

)
m(x)dx = cS

∫ 1

0
g(s)ds ·

∫
S

m(x)

J1d(x,S)
dHd−1(x).

where

T(ϵ) =
{
x ∈ X : d(x,S) ≤ ϵ

}
, d(x,S) = inf

y∈S
d(x,y).

Proof. Note that d(·,S) is Cu-Lipschitz. The level sets

L(ϵ) =
{
x ∈ X : d(x,S) = ϵ

}
, ϵ ∈ [0,∞)
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are (d − 1)-dimensional rectifiable sets. Since g is continuous on a compact support, g is also

bounded over X. Hence, the function

x 7→ ϵ−1g(
d(x,S)

ϵ
)m(x)J1d(x,S)−1

is m-summable over X. Using the Coarea formula,∫
T(ϵ)

1

ϵ
g
(d(x,S)

ϵ

)
m(x)dx =

∫
T(ϵ)

1

ϵ
g
(d(x,S)

ϵ

)
m(x)

1

J1d(x,S)
J1d(x,S)dx

=

∫ ϵ

0

∫
d(x,S)=s

1

ϵ
g
(s
ϵ

) m(x)

J1d(x,S)
dHd−1(x)ds

=

∫ ϵ

0

1

ϵ
g
(s
ϵ

)
M(s)ds

=

∫ 1

0
g(u)M(ϵu)du.

Since g is integrable,

lim
ϵ→0

∫ 1

0
g(u)M(ϵu)du = cS

∫ 1

0
g(s)ds ·M(0).

This gives the conclusion.

SA-2 Setup

This supplemental appendix considers a generalized version of the setup in the main paper: the

location variable Xi is d-dimensional with d ≥ 1, its support is X ⊆ Rd, and the boundary region

B is a low dimensional manifold with “effective dimension” d− 1. The paper considers the special

case d = 2, that is, Xi is bivariate and B is a one-dimensional (boundary) curve.

We retain the same notation, definitions and assumptions given in the paper, whenever consider-

ing a general dimension d ≥ 2 does not causes confusion. In particular, the natural generalization

of Assumption 1 is the following.

Assumption SA–2 (Data Generating Process). Let t ∈ {0, 1}, p > 0, and v ≥ 2.

(i) (Y1(t),X1)
⊤, . . . , (Yn(t),Xn)

⊤ are independent and identically distributed random vectors.

(ii) The distribution of Xi has a Lebesgue density f(x) that is continuous and bounded away from

zero on its support compact support X ⊆ Rd.

(iii) µt(x) = E[Yi(t)|Xi = x] is (p+ 1)-times continuously differentiable on X.

(iv) σ2t (x) = V[Yi(t)|Xi = x] is bounded away from zero and continuous on X.

(v) supx∈X E[|Yi(t)|2+v|Xi = x] <∞.

In addition, we employ the following standard notation through the supplemental appendix.

(i) Sample Averages. En[g(vi)] =
1
n

∑n
i=1 g(vi).
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(ii) Norms. For a vector v ∈ Rk, ∥v∥ = (
∑k

i=1 v
2
i )

1/2 and ∥v∥∞ = max1≤i≤k |vi|. For a matrix

A ∈ Rm×n, ∥A∥p = sup∥x∥p=1 ∥Ax∥p, p ∈ N ∪ {∞}.

(iii) Multi-index Notations. For a multi-index u = (u1, . . . , ud) ∈ Nd, denote |u| =
∑d

i=1 ud,

u! = Πd
i=1ud. Denote Rp(u) = (1, u1, . . . , ud, u

2
1, . . . , u

2
d, . . . , u

p
1, . . . , u

p
d), that is, all monomials

uα1
1 · · ·uαd

d such that αi ∈ N and
∑d

i=1 αi ≤ p. Define e1+ν to be the pd = (d+p)!
d!p! -dimensional

vector such that e⊤1+νRp(u) = uν for all u ∈ Rd.

(iv) Bounds and Asymptotics. For reals sequences an = o(bn) if lim sup an
bn

= 0, and an ≲ bn or

an = O(bn) if there exists some constant C and N > 0 such that n > N implies |an| ≤ C|bn|.
For sequences of random variables An = oP(Bn) if plimn→∞

An
Bn

= 0, and An ≲P Bn or

An = OP(Bn) if lim supM→∞ lim supn→∞ P[|An
Bn

| ≥M ] = 0.

For background textbook references see van der Vaart and Wellner [1996] and Giné and Nickl

[2016]. For textbook references on geometric measure theory, see Federer [2014] and Folland [2002].

SA-3 Pre-Aggregation Approach

We consider the more general local polynomial estimator described in Remark 1, with d ≥ 2. Recall

the estimator is

τ̂pre = e⊤1 ξ̂1 − e⊤1 ξ̂0

where

ξ̂t = argmin
ξ∈Rp+1

n∑
i=1

(
Yi − rp(Di)

⊤ξ
)2
kh(Di)1(Ti = t),

for t ∈ {0, 1}, and with e1 the conformable first unit vector, rp(u) = (1, u, u2, · · · , up)⊤ the usual

univariate polynomial basis, kh(u) = k(u/h)/h, k(·) a univariate kernel function, and h the band-

width.

In addition, define

θ̂t(r) = rp(r)
⊤ξ̂t, r ∈ R,

for t ∈ {0, 1}. The induced distance is

Di = (2Ti − 1)d(Xi,B), d(x,B) = inf
b∈B

d(x,b),

where recall that Xi ∈ Rd and B ⊂ Rd−1. Thus, the induced conditional expectation based on

distance to B is

θt(r) = E[Yi|Di = r] = E[Yi|d(Xi,B) = |r|,Xi ∈ At],
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for t ∈ {0, 1}, and where r ∈ It with I0 = (−∞, 0) and I1 = [0,∞).

The following assumption is the natural generalization of Assumption 2 in the paper for d ≥ 2.

Assumption SA–3 (Integral Representation). Recall the density of Xi, f , from Assumption 1.

Suppose the following conditions holds.

(i) There exists positive constants Cu and Cl such that Cl ∥x1 − x2∥ ≤ d(x1,x2) ≤ Cu ∥x1 − x2∥
for all x1,x2 ∈ X.

(ii) J1d(·,B) ̸= 0 m-almost everywhere on X, and
∫
X
| f(x)
J1d(x,B) |dx <∞.

(iii) limϵ↓0 F (s) = F (0) is finite, where F (s) =
∫
d(x,B)=s

f(x)
J1d(x,B)dH

d−1(x) for all s ≥ 0.

(iv) θt is continuous at 0 for t = 0, 1.

For each t ∈ {0, 1}, the best mean square approximation based on rp(Di) is

θ∗t (Di) = rp(Di)
⊤γ∗

t

with

γ∗
t = argmin

γ∈Rp+1

E
[ (
Yi − rp(Di)

⊤γ
)2
kh(Di)1It(Di)

]
.

Thus, the estimation error decomposes into linear error, approximation error, and non-linear

error :

θ̂t(0)− θt(0) = e⊤1 Ψ̂
−1

t En

[
rp

(
Di

h

)
kh(Di)Yi

]
− θt(0)

= e⊤1 Ψ̂
−1

t En

[
rp

(
Di

h

)
kh(Di)(Yi − θ∗t (Di))

]
+ θ∗t (0)− θt(0)

= e⊤1 Ψ
−1
t Ot︸ ︷︷ ︸

linear error

+ θ∗t (0)− θt(0)︸ ︷︷ ︸
approximation error

+ e⊤1 (Ψ̂
−1

t −Ψ−1
t )Ot︸ ︷︷ ︸

non-linear error

, (SA-1)

for t ∈ {0, 1}, where

Ψ̂t = En

[
rp

(
Di

h

)
rp

(
Di

h

)⊤
kh(Di)1It(Di)

]
,

Ψt = E

[
rp

(
Di

h

)
rp

(
Di

h

)⊤
kh(Di)1It(Di)

]
,

Ot = En

[
rp

(
Di

h

)
kh(Di)(Yi − θ∗t (Di))1It(Di)

]
,

and the misspecification bias is

Bn,t = θ∗t (0)− θt(0). (SA-2)
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In the text, Bn = Bn,1 −Bn,0. In addition, define

Υ̂t = hEn

[
rp

(
Di

h

)
rp

(
Di

h

)⊤
kh (Di)

2 (Yi − θ̂t(Di))
21It(Di)

]
,

Υt = hE
[
rp

(
Di

h

)
rp

(
Di

h

)⊤
kh(Di)

2(Yi − θ∗t (Di))
21It(Di)

]
,

Ξ̂t =
1

nh
e⊤1 Ψ̂

−1

t Υ̂tΨ̂
−1

t e1, Ξ̂ = Ξ̂0 + Ξ̂1,,

Ξt =
1

nh
e⊤1 Ψ

−1
t ΥtΨ

−1
t e1, Ξ = Ξ0 + Ξ1,

and

ρt(r) = E[(Yi − θ∗t (Di))
2|Di = r] = E[Y 2

i |Di = r]− 2θt(r)rp(r)
⊤γ∗

t + (rp(r)
⊤γ∗

t )
2.

for t ∈ {0, 1}.

SA-3.1 Preliminary Lemmas

Lemma SA-2 (Expected Gram Matrix). Suppose Assumptions SA–2 and SA–3 hold. If h → 0,

then ∥∥∥Ψt −
∫
B

f(x)

J1d(x,B)
dx · Γ

∥∥∥ = o(1), Γ =

∫ 1

0
rp(u)rp(u)

⊤k(u)du,

for t ∈ {0, 1}. This implies ∥Ψt∥ ≲ 1 and
∥∥Ψ−1

t

∥∥ ≲ 1.

Proof. The typical entry of Ψt has the form

ψn,t = E[(Di/h)
vkh(Di)1It(Di)],

for some v ∈ N. By Lemma SA-1, as h→ 0,

ψn,t =

∫
Rt(h)

(d(x,B)

h

)v 1

h
k
(d(x,B)

h

)
f(x)dx =

∫ 1

0
svk(s)ds ·

∫
B

f(x)

J1d(x,B)
dx+ o(1).

Let pp = (d+p)!
d!p! . Since ψt is pp × pp dimensional, the conclusion follows from a union bound. By

Weyl’s theorem, |λmin(Ψt) − λmin(Γ)| = o(1) and |λmax(Ψt) − λmax(Γ)| = o(1). Hence ∥Ψt∥ ≲ 1

and
∥∥Ψ−1

t

∥∥ ≲ 1.

Lemma SA-3 (Estimated Gram Matrix). Suppose Assumptions SA–2 and SA–3 hold. If h → 0

and nh→ ∞, then

∥Ψ̂t −Ψt∥ ≲P (nh)−1/2,

for t ∈ {0, 1}. This implies ∥Ψ̂t∥ ≲P 1 and ∥Ψ̂
−1

t ∥ ≲P 1.
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Proof. The typical entry of Ψ̂t takes the form

ψn,t =
1

n

n∑
i=1

(Di

h

)v 1

h
k
(Di

h

)
1It(Di).

By Lemma SA-1,

E
[(Di

h

)2v 1

h
k
(Di

h

)2
1It(Di)

]
=

∫ 1

0
s2vk(s)2ds ·

∫
B

f(x)

J1d(x,B)
dx.

Hence,

V[ψn,t] =
1

nh2
V
[(Di

h

)v
k
(Di

h

)
1It(Di)

]
=

1

nh
E
[(Di

h

)2v 1

h
k
(Di

h

)2
1It(Di)

]
− 1

n
E
[(Di

h

)v 1

h
k
(Di

h

)
1It(Di)

]2
=

1

nh

∫ 1

0
s2vk(s)2ds ·

∫
B

f(x)

J1d(x,B)
dx(1 + o(1)) +

1

n

∫ 1

0
svk(s)ds ·

∫
B

f(x)

J1d(x,B)
dx(1 + o(1))

=
1

nh

∫ 1

0
s2vk(s)2ds ·

∫
B

f(x)

J1d(x,B)
dx(1 + o(1)).

SinceΨt is finite dimensional, ∥Ψ̂t−Ψt∥ ≲P (nh)−1/2. The conclusion then follows from Lemma SA-

3 and Weyl’s theorem.

Lemma SA-4 (Stochastic Linear Approximation). Suppose Assumptions SA–2 and SA–3 hold. If

nh→ ∞, then

∥Ot∥ ≲P (nh)−1/2,∣∣∣e⊤1 Ψ−1
t Ot

∣∣∣ ≲P (nh)−1/2,∣∣∣e⊤1 (Ψ̂−1

t −Ψ−1
t )Ot

∣∣∣ ≲P (nh)−1,

for t ∈ {0, 1}.

Proof. By the definition of the best linear approximation θ∗t , we have E[Ot] = 0. A typical entry

of Ot has the form

ot = En

[(
Di

h

)v

kh(Di)(Yi − θ∗t (Di))1It(Di)

]
for v ∈ N. Since supr∈R 1(k(r/h) > 0)ρt(r) ≲ 1, by Lemma SA-1,

V[ot] =
1

nh
E
[(

Di

h

)2v 1

h
k

(
Di

h

)2

ρt(Di)1It(Di)

]
≲

1

nh
E
[(

Di

h

)2v 1

h
k

(
Di

h

)2

1It(Di)

]
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≲
1

nh

∫ 1

0
s2vk(s)2ds.

Since Ot is finite dimensional, ∥Ot∥ ≲ (nh)−1/2. The other results follow from Lemma SA-2 and

Lemma SA-3.

Lemma SA-5 (Expected Meat Matrix). Suppose Assumptions SA–2 and SA–3 hold. If h → 0,

then ∥∥∥Υt − ιt

∫
B

f(x)

J1d(x,B)
dx ·Σ

∥∥∥ = o(1), Σ =

∫ 1

0
rp(u)rp(u)

⊤k(u)2du,

and

ιt =

∫
B

σ2t (b)
f(b)

J1d(b,B)
dHd−1(b) +

∫
B

(
µt(b)−

∫
B
µt(x)

f(x)
J1d(x,B)dx∫

B

f(u)
J1d(u,B)du

)2 f(b)

J1d(b,B)
dHd−1(b),

for t ∈ {0, 1}.

Proof. Consider st(x) = E[Yi(t)2|Xi = x] = µt(x)
2 + σt(x)

2, x ∈ X. A typical element of Υt has

the form

υt = hE
[(

Di

h

)v

kh(Di)
2(Yi − θ∗t (Di))

21It(Di)

]
=

∫
Rt(h)

(
d(x,B)

h

)v 1

h
k

(
d(x,B)

h

)2

(st(x)− 2µt(x)θ
∗
t (d(x,B)) + θ∗t (d(x,B))2)f(x)dx

=

∫ 1

0
svk(s)2ds

[ ∫
B

st(x)f(x)

J1d(x,B)
dx− 2

∫
B

µt(x)f(x)

J1d(x,B)
dx · θ∗t (0) +

∫
B

f(x)

J1d(x,B)
dxθ∗t (0)

2

]
+ o(1),

where in the last line we have used Lemma SA-1, and θ∗t (r) = Rp(r)
⊤γ∗

t is continuous in r.

Moreover,

θ∗t (0) = e⊤1 Ψ
−1
t E

[
rp

(
Di

h

)
kh(Di)Yi1It(Di)

]
.

Using Lemma SA-1 again, we have

E
[
rp

(
Di

h

)
kh(Di)Yi1It(Di)

]
=

∫
Rt(h)

rp

(d(x,B)

h

)
kh(d(x,B))µt(x)1It(Di)dH

d−1(x)

= Λ

∫
B

µt(x)f(x)

J1d(x,B)
dHd−1(x),

where Λ =
∫ 1
0 rp(u)k(u)du. Together with Lemma SA-2, we have

θ∗t (0) = e⊤1 Γ
−1Λ

∫
B
µt(x)f(x)(J1d(x,B))−1dHd−1(x)∫
B
f(x)(J1d(x,B))−1dHd−1(x)

,
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where the definition of Γ from Lemma SA-2 implies e⊤1 Γ
−1Λ = 1. Finite dimensionality and the

union bound over the entries give the result.

Lemma SA-6 (Covariance). Suppose Assumptions SA–2 and SA–3 hold. If h→ 0 and nh→ ∞,

then ∥∥∥Υ̂t −Υt

∥∥∥ ≲P (nh)−1/2,

nh|Ξ̂t − Ξt| ≲P (nh)−1/2,

for t ∈ {0, 1}. This implies 1 ≲P λmin(Υ̂t) ≲P 1 and (nh)−1 ≲P Ξ̂t ≲P (nh)−1.

Proof. Denote ηi,t = Yi − θ∗t (Di) and ξi,t = θ∗t (Di)− θ̂t(Di). Then

Υ̂t = En

[
rp

(
Di

h

)
rp

(
Di

h

)⊤
hkh (Di) kh (Di) (ηi,t + ξi,t)

21It(Di)

]
,

and we decompose the error into

Υ̂t −Υt = ∆1,t +∆2,t +∆3,t,

∆1,t = En

[
rp

(
Di

h

)
rp

(
Di

h

)⊤
hkh (Di) kh (Di) ξ

2
i,t1It(Di)

]
,

∆2,t = 2En

[
rp

(
Di

h

)
rp

(
Di

h

)⊤
hkh (Di) kh (Di) ηi,tξi,t1It(Di)

]
,

∆3,t = En

[
rp

(
Di

h

)
rp

(
Di

h

)⊤
hkh (Di) kh (Di) η

2
i,t1It(Di)

]
− E

[
rp

(
Di

h

)
rp

(
Di

h

)⊤
hkh (Di) kh (Di) η

2
i,t1It(Di)

]
.

kh(Di) ̸= 0 implies ∥rp(Di/h)∥2 ≲ 1. Define

Ut = En

[
rp

(
Di

h

)
kh(Di)θ

∗
t (Di)1It(Di)

]
,

H = diag(1, h, · · · , hp).

Hence, by Lemma SA-3 and SA-4,

max
t∈{0,1}

max
1≤i≤n

|ξi,t|

= max
t∈{0,1}

max
1≤i≤n

|rp(Di)
⊤(γ̂t − γ∗

t )|1(kh(Di) ≥ 0)

= max
t∈{0,1}

max
1≤i≤n

|rp(Di)
⊤H−1(Ψ̂

−1

t Ot + (Ψ̂
−1

t −Ψ−1
t )Ut)|1(kh(Di) ≥ 0)

≤ max
t∈{0,1}

∥∥∥Ψ̂−1

t Ot

∥∥∥
2
+ max

t∈{0,1}

∥∥∥(Ψ̂−1

t −Ψ−1
t )Ut

∥∥∥
2
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≲P (nh)−1/2,

Assume nh→ ∞, similar maximal inequality as in the proof of Lemma SA-3 shows

max
t=0,1

∥∆1,t∥ ≲P max
t∈{0,1}

max
1≤i≤n

|ξi,t|2 ≲P (nh)−1,

max
t=0,1

∥∆2,t∥ ≲P max
t∈{0,1}

max
1≤i≤n

|ξi,t| ≲P (nh)−1/2. (SA-3)

For ∆3,t, notice that a typical entry of has the form

gn − E[gn],

where

gn =
1

n

n∑
i=1

(Di

h

)v 1

h
k
(Di

h

)2
(Yi − θ∗t (Di))

21It(Di).

Since we have assumed supx∈X E[Y 4
t |Xi = x] < ∞, and by Jensen’s inequality E[θ∗t (Di)

4] < ∞, a

similar argument as for Lemma SA-3 implies

V[gn] ≲ (nh)−1,

and hence

max
t=0,1

∥∆3,t∥ ≲P (nh)−1/2. (SA-4)

Putting together Equation (SA-3) and (SA-4), we get ∥Υ̂t − Υt∥ ≲P (nh)−1/2. By Lemma SA-5

and Weyl’s theorem, we have 1 ≲P λmin(Υ̂t) ≲P 1. Using Lemma SA-3 in addition, we can show

nh|Ξ̂t − Ξt| ≲P |e⊤1 Ψ̂
−1

t Υ̂tΨ̂
−1

t e1 − e⊤1 Ψ
−1
t ΥtΨ

−1
t e1| ≲P (nh)−1/2.

Lemma SA-2 and SA-5 imply (nh)−1 ≲ Ξt ≲ (nh)−1, hence (nh)−1 ≲P Ξ̂t ≲P (nh)−1.

SA-3.2 Mean Square Error Approximation

Theorem SA-1 (MSE Expansion). Suppose Assumptions SA–2 and SA–3 hold. If h → 0 and

nh→ ∞, then

E
[( ∑

t=0,1

(−1)t+1(e⊤1 Ψ
−1
t Ot + θ∗t (0)− θt(0))

)2]
= B2

n + Ξ+OP((nh)
−3/2).

10



Proof. By definition of Υt we have,

E[OtO
⊤
t ] =

1

nh
E

[
rp

(
Di

h

)
rp

(
Di

h

)⊤
hkh(Di)

2(Yi − θ∗t (Di))
21It(Di)

]
=

1

nh
Υt.

Hence

E
[( ∑

t=0,1

(−1)t+1(e⊤1 Ψ
−1
t Ot + (θ∗t (0)− θt(0)))

)2]
= 2E

[( ∑
t=0,1

(−1)t+1(e⊤1 Ψ
−1
t Ot)

)( ∑
t=0,1

(−1)t+1(θ∗t (0)− θt(0))
)]

+ E
[( ∑

t=0,1

(−1)t+1(e⊤1 Ψ
−1
t Ot)

)2]
+
( ∑

t=0,1

(−1)t+1(θ∗t (0)− θt(0))
)2

= Ξ0 + Ξ1 +
( ∑

t=0,1

(−1)t+1(θ∗t (0)− θt(0))
)2
,

where in the third line we have used E[Ot] = 0 for t = 0, 1, and the independence between O0 and

O1. The conclusion follows.

Corollary SA-1 (Convergence Rate). Suppose Assumption 1, SA–3 hold, and nh→ ∞. Then

|τ̂pre − τf | ≲P (nh)−1/2 + |Bn|.

Proof. The conclusion follows from Lemma SA-2, SA-5 and Theorem SA-1.

SA-3.3 Central Limit Theorem

The feasible t-statistics by

T̂pre =
τ̂pre − τf√

Ξ̂
.

Theorem SA-2 (Asymptotic Normality). Suppose Assumptions SA–2 and SA–3 hold. If nh→ ∞
and

√
nh|Bn| → 0, then

sup
u∈R

∣∣P (τ̂pre ≤ u)− Φ(u)
∣∣ = o(1).

Proof. Define the stochastic linearization of T̂pre to be Tpre = Ξ−1/2e⊤1 Ψ
−1
t Ot. First, we bound

11



the stochastic linearization error. Using the decomposition (SA-1) and convergence of Ξ̂,

T̂pre − Tpre = Ξ̂−1/2

( ∑
t∈{0,1}

(−1)
t+1
2 (θ̂t(0)− θt(0))

)
− Ξ−1/2

( ∑
t∈{0,1}

(−1)
t+1
2 e⊤1 Ψ

−1
t Ot

)

= Ξ̂−1/2

( ∑
t∈{0,1}

(−1)
t+1
2 (θ̂t(0)− θt(0))−

∑
t∈{0,1}

(−1)
t+1
2 e⊤1 Ψ

−1
t Ot

)
(= ∆1)

+ (Ξ̂−1/2 − Ξ−1/2)
∑

t∈{0,1}

(−1)
t+1
2 e⊤1 Ψ

−1
t Ot (= ∆2)

By Lemma SA-3 and SA-4, and the decomposition Equation (SA-1),

sup
x∈X

∣∣∣∣ ∑
t∈{0,1}

(−1)
t+1
2 (θ̂t(0)− θt(0))−

∑
t∈{0,1}

(−1)
t+1
2 e⊤1 Ψ

−1
t Ot

∣∣∣∣ ≲P (nh)−1 + |Bn|.

Together with Lemma SA-6,

|∆1| ≲P (nh)−1/2 +
√
nh|Bn|. (SA-5)

By Lemma SA-3, Lemma SA-4 and Lemma SA-6, and assume nh→ ∞, then

|∆2| =
∑

t∈{0,1}

∣∣∣e⊤1 Ψ−1
t Ot

(
Ξ−1/2 − Ξ̂−1/2

)∣∣∣ ≲P (nh)−1/2. (SA-6)

Putting together Equations (SA-5), (SA-6) gives

|T̂pre − Tpre| ≲P (nh)−1/2 +
√
nh|Bn|.

Next, we consider the convergence of Tpre. Notice that if we define

Zn,i =
1

n
Ξ−1/2e⊤1 Ψ

−1
t rp

(
Di

h

)
kh (Di) (Yi − θ∗t (Di))1It(Di),

then Tpre =
∑n

i=1 Zn,i. Moreover, E [Zn,i] = 0 and V[Zn,i] = n−1. By Berry-Essen Theorem,

sup
u∈R

∣∣P (
Tpre ≤ u

)
− Φ(u)

∣∣ ≲ n∑
i=1

E
[
|Zn,i|3

]
=

n∑
i=1

n−3Ξ−3/2E
[
|e⊤1 Ψ−1

t rp

(
Di

h

)
kh (Di)1It(Di)(Yi − θ∗t (Di)|3

]
≲ n−2Ξ−3/2E[|kh(Di)(Yi − θ∗t (Di))|3]

≲ n−2Ξ−3/2E[|kh(Di)
3(E[|Yi|3|Xi] + |θ∗t (Di)|3)|]

≲ (nh)−1/2,

12



where in the third line we used ∥rp
(
Di
h

)
kh (Di)∥ ≲ 1 holds almost surely, in last line we have use

Lemma SA-1 with Assumptions 1 and SA–3 to get E[|kh(Di)
3(E[|Yi|3|Xi] + |θ∗t (Di)|3)|] ≲ h−2, and

the fact that Ξ ≳ (nh)−1/2 from Lemma SA-6.

SA-3.4 Approximation Error

Lemma SA-7 (Approximation Error). Suppose Assumptions SA–2 and SA–3 hold. If θt is (s+1)-

times continuously differentiable at 0, and h→ 0, then

Bn,t ≲ hmin{s,p}+1

for t ∈ {0, 1}.

Proof. Consider

St = E
[
rp

(
Di

h

)
kh(Di)Yi1It(Di)

]
= E

[
rp

(
Di

h

)
kh(Di)θt(Di)1It(Di)

]
.

Define ηt(h) to be the p-dimensional vector that is (θt(0), hθ
(1)
t (0), · · · , hpθ(p)t (0)) if p ≤ s, and

(θt(0), hθ
(1)
t (0), · · · , hsθ(s)t (0), 0, · · · , 0) otherwise.

|Bn,t| =
∣∣∣e⊤1 Ψ−1

t St − θt(0)
∣∣∣

=
∣∣∣e⊤1 Ψ−1

t E
[
rp

(
Di

h

)
kh(Di)(θt(Di)− rp

(
Di

h

)⊤
ηt(h))1It(Di)

]∣∣∣.
Assuming θt is s-times continuously differentiable, we have almost surely

max
1≤i≤n

∣∣∣θt(Di)− rp

(
Di

h

)⊤
ηt(h)

∣∣∣1(kh(Di)) ≲ hmin{s,p}+1.

By Lemma SA-2, ∥Ψ−1
t ∥ ≲ 1, and the same argument on each entry and finite dimensionality of

the basis implies

E
[∥∥∥rp(Di

h

)
kh(Di)1It(Di)

∥∥∥] ≲ 1.

The conclusion follows.

SA-3.5 Verification of High Level Conditions

This section verifies part (ii)-(iv) of Assumption SA–3, and the additional smoothness assumed in

Lemma SA-7, for the special case when B is a finite collection of connected linear segments.

Lemma SA-8 (Piecewise Linear Boundary). Suppose Assumption SA–2 holds with d = 2, and

d(·, ·) is the Euclidean distance. If B is piecewise linear with finite many pieces, then
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(i) J1d(·,B) = 1 m-almost everywhere on Rt(ϵ), and
∫
Rt(ϵ)

| f(x)
J1d(x,B) |dx <∞,

(ii) limϵ↓0 F (s) = F (0) is finite, where F (s) =
∫
d(x,B)=s

f(x)
J1d(x,B)dH

1(x) for all s ≥ 0, and

(iii) θt is continuous at 0,

for small enough ϵ > 0, and t ∈ {0, 1}.
If, in addition, µ0, µ1 and f are s-times continuously differentiable on X, then

(iv) θ0 and θ1 are s-times continuously differentiable on [0, ϵ].

Proof. First, we verify the Jacobian condition (i). Since B is piecewise linear, we denote the linear

pieces by B1, · · · ,BM with B = ⊔M
j=1Bj . For small enough ϵ, for any x ∈ Rt(ϵ), the distance to

the boundary depends on at most two linear pieces. That is, there exists 1 ≤ j1, j2 ≤M such that

d(x,B) = d(x,Bj1 ∪Bj2),

as in Figure SA-1. For any point x on line segment ce, the directional derivative of d(·,B) in the

direction normal to ce is 1, and the directional derivative of d(·,B) in the direction parallel to ce is

0. Hence with ∇d(·,B)|x = O[1, 0]⊤, where O is some orthonormal change of coordinate matrix.

This shows J1d(·,B)|x = 1. The same argument applies for x on the line segment df and on the

segment vp, vq.

For any x on the arc cd, the directional derivative of d(·,B) at x is 1 in the direction
−→
Ox, and

the directional derivative of d(·,B) at x is 1 in the direction orthogonal to
−→
Ox. Thus ∇d(·,B)|x =

O[1, 0]⊤, where O is some orthonormal change of coordinate matrix, and hence J1d(·,B)|x = 1.

This shows J1d(·,B) = 1 m-almost everywhere on Rt(ϵ), and
∫
Rt(ϵ)

| f(x)
J1d(x,B) |dx < ∞ follows

from continuity of f on compact support X.

Next, we want to show continuity of F at 0 from (ii). It suffices to show |F (s) − F (0)| ≤ Cϵ

for all s ∈ (0, ϵ). Again, since B has finitely many pieces, with ϵ small enough, we can localize to

Figure SA-1, and suppose B = Bi ⊔ Bj . Consider t = 0, and the level set {x ∈ A0 : d(x,B) =

r} = ce ⊔ cd ⊔ df . Define the projection on B by

P(x) = argmin
y∈B

∥x− y∥.

Then

F (r)− F (0) =

∫
ce⊔df

f(x)dHd−1(x) +

∫
cd
f(x)dHd−1(x)−

∫
Bi⊔Bj

f(x)dHd−1(x)

=

∫
ce⊔df

(f(x)− f(P(x)))dHd−1(x) +

∫
cd
f(x)dHd−1(x).

The definition of P implies ∥x − P(x)∥ ≤ ϵ. Moreover, Hd−1(cd) ≤ 2πϵ. Since f is continuous on

compact support X, f is also uniform continuous on X. Moreover, since X is compact, the pieces
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Figure SA-1: Level sets to piecewise linear boundary.

Bi and Bj has finite length, say Hd−1(B) ≤ L. Then

|F (r)− F (0)| ≤ sup
∥x−y∥≤ϵ

|f(x)− f(y)|L+ 2πϵ sup
x∈X

f(x) → 0, as ϵ→ 0.

This proves (ii).

To show (iii) holds, notice that the same argument as above implies that for t = 0, 1, the function

s 7→
∫
{x∈At:d(x,B)=s}

f(x)µt(x)dH
1(x)

is also continuously at 0. Since f is continouous on compact support X, f is also bounded from

below on X. This implies for t = 0, 1,

θt(r) =

∫
{x∈At:d(x,B)=r} f(x)µt(x)dH

d−1(x)∫
{x∈At:d(x,B)=r} f(x)dH

d−1(x)

is also continuous at zero.

Now, we want to show (iv) holds. W.l.o.g., we assume B is composed with two linear pieces as in

Figure SA-1. Suppose γr,t is a curve length parametrization of the level set {x ∈ At : d(x,B) = r}.
First, consider t = 0. Denote Li = H1(Bi) and Lj = H1(Bj). Denote α to be the angle of ∠aob.

Then we can define the curve length parametrization to be

γr,0(s) =
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
(Li − s,−r), s ∈ [0, Li],

r(cos(32π − s/r), sin(3/2π − s/r)), s ∈ [Li, Li + θr],

(s− Li − θr)(cos(α), sin(α)) + r(sin(α), cos(α)), s ∈ [Li + θr, Li + Lj + θr].

Hence for any function ψ : R2 → R, we have∫
{x∈A0:d(x,B)=r}

ψ(x)dH1(x)

=

∫ Li+Lj+θr

0
ψ(γr,0(s))∥γ′r,t(s)∥ds

=

∫ Li+Lj+θr

0
ψ(γr,0(s))ds

= I1(r) + I2(r) + I3(r),

where

I1(r) =

∫ Li

0
ψ((Li − s,−r))ds,

and using a change variable with u = s/r,

I2(r) =

∫ Li+θr

Li

ψ(r(cos(
3

2
π − s/r), sin(3/2π − s/r)))ds

=

∫ Li+θ

Li

ψ(r(cos(
3

2
π − u), sin(3/2π − u)))rdu,

and using a change of variable with v = s− Li − θr,

I3(r) =

∫ Li+Lj+θr

Li+θr
ψ((s− Li − θr)(cos(α), sin(α)) + r(sin(α), cos(α)))ds

=

∫ Lj

0
ψ(v(cos(α), sin(α)) + r(sin(α), cos(α)))dv.

It follows that if ψ is s times continuously differentiable, then r 7→
∫
{x∈A0:d(x,B)=r} ψ(x)dH

1(x) is

also s times continuously differentiable.

Similarly, for t = 1, a curve length parametrization is given by

γr,1(s) =(Lj − s, s), s ∈ [0, Lj − r cot(α2 )],

(r cot(α/2), s) + (s− Lj + r cot(α/2))(cos(α), sin(α)), s ∈ [Lj − r cot(α2 ), Li + Lj − 2r cot(α2 )].

The smoothness of Lj − r cot(α2 ) and Li + Lj − 2r cot(α2 ) in terms of r, smoothness of γr,1(s) in r

on each piece implies that for any function ψ : R2 → R that is s times continuously differentiable,
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we have r 7→
∫
{x∈A1:d(x,B)=r} ψ(x)dH

1(x) is also s times continuously differentiable.

Hence if both µt and f are s times continuously differentiable, then both

r →
∫
{x∈At:d(x,B)=r}

f(x)dHd−1(x)

and

r →
∫
{x∈At:d(x,B)=r}

f(x)µt(x)dH
d−1(x)

are s times continuously differentiable. Since we have assumed f continuous and positive on X, it

is bounded from below on X. Hence

θt(r) =

∫
{x∈At:d(x,B)=r} f(x)µt(x)dH

d−1(x)∫
{x∈At:d(x,B)=r} f(x)dH

d−1(x)

is also s times continuously differentiable, for t = 0, 1.

Corollary SA-2 (Bias for Piecewise Linear Boundary). Suppose Assumption SA–2 holds with

d = 2, and d(·, ·) is the Euclidean distance. If B is piecewise linear with finite many pieces, and

f is (p+ 1)-times continuously differentiable, then

Bn,t ≲ hp+1,

for t ∈ {0, 1}.

Proof. The conclusion follows from Lemma SA-7 and Lemma SA-8.

SA-4 Post-Aggregation Approach

Under the assumptions imposed, for t ∈ {0, 1}, we have

β̂t(x) = H−1Γ̂
−1

t,xEn

[
Rp

(
Xi − x

h

)
Kh(Xi − x)Yi1(Xi ∈ At)

]
,

where H = diag((h|v|)0≤|v|≤p) with v running through all d+p
d!p! multi-indices such that |v| ≤ p, and

Γ̂t,x = En

[
Rp

(
Xi − x

h

)
Rp

(
Xi − x

h

)⊤
Kh(Xi − x)1(Xi ∈ At)

]
.

The following assumption is the natural generalization of Assumption 3 in the paper to the case

d ≥ 2.

Assumption SA–4 (Kernel Function and Bandwidth). Let t ∈ {0, 1}.

(i) K : Rd → [0,∞) is compact supported and Lipschitz continuous, or K(u) = 1(u ∈ [−1, 1]d).
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(ii) lim infh↓0 infx∈B
∫
At
Kh(u− x)du ≳ 1.

For x,x1,x2 ∈ B and t ∈ {0, 1}, we introduce the following quantities:

Γt,x = E
[
Rp

(
Xi − x

h

)
Rp

(
Xi − x

h

)⊤
Kh(Xi − x)1(Xi ∈ At)

]
,

Σ̂t,x1,x2 = hdEn

[
Rp

(
Xi − x1

h

)
Rp

(
Xi − x2

h

)⊤
Kh (Xi − x1)Kh (Xi − x2) ε̂i(x1)ε̂i(x2)1(Xi ∈ At)

]
,

Σt,x1,x2 = hdE
[
Rp

(
Xi − x1

h

)
Rp

(
Xi − x2

h

)⊤
Kh(Xi − x1)Kh(Xi − x2)σ

2
t (Xi)1(Xi ∈ At)

]
,

Ω̂t,x1,x2 =
1

nhd
e⊤1 Γ̂

−1

t,x1
Σ̂t,x1,x2Γ̂

−1

t,x2
e1, Ω̂x1,x2 = Ω̂0,x1,x2 + Ω̂1,x1,x2 ,

Ωt,x1,x2 =
1

nhd
e⊤1 Γ

−1
t,x1

Σt,x1,x2Γ
−1
t,x2

e1, Ωx1,x2 = Ω0,x1,x2 +Ω1,x1,x2 ,

where ε̂i(x) = Yi −
∑

t∈{0,1} 1(Xi ∈ At)β̂t(x)
⊤Rp(Xi − x) and σ2t (x) = V[Yi(t)|Xi = x].

In addition, we have

B̄t,x = e⊤1 Γ̂
−1

t,x

∑
|ω|=p+1

µ
(ω)
t (x)

ω!
En

[
Rp

(
Xi − x

h

)(
Xi − x

h

)ω

Kh(Xi − x)

]
, B̄x = B̄1,x − B̄0,x,

Bt,x = e⊤1 Γ
−1
t,x

∑
|ω|=p+1

µ
(ω)
t (x)

ω!
E
[
Rp

(
Xi − x

h

)(
Xi − x

h

)ω

Kh(Xi − x)

]
, Bx = B1,x −B0,x,

Qt,x = En

[
Rp

(
Xi − x

h

)
Kh(Xi − x)1(Xi ∈ At)ui

]
,

where ui = Yi −
∑

t∈{0,1} 1(Xi ∈ At)µt(Xi), and

V̂t,x = h−1e⊤1 Γ̂
−1

t,xΣ̂t,x,xΓ̂
−1

t,xe1, V̂x = V̂0,x + V̂1,x,

Vt,x = h−1e⊤1 Γ
−1
t,xΣt,x,xΓ

−1
t,xe1, Vx = V0,x + V1,x,

Recall that we assumed, only for simplicity, that
∫
B
w(b)dH1(b) = 1. Then, the post-aggregation

estimator becomes

τ̂w =

∫
B

τ̂(b)w(b) dHd−1(b).

Finally, we define the aggregated bias and variance quantities:

BB = B1,B −B0,B, Bt,B =

∫
B

Bt,bw(b)dH
d−1(b),

B̄B = B̄1,B − B̄0,B, B̄t,B =

∫
B

B̄t,bw(b)dH
d−1(b),

ΩB = Ω1,B +Ω0,B, Ωt,B =

∫
B

∫
B

Ωt,b1,b2w(b1)w(b2)dH
d−1(b1)dH

d−1(b2),
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Ω̂B = Ω̂1,B + Ω̂0,B, Ω̂t,B =

∫
B

∫
B

Ω̂t,b1,b2w(b1)w(b2)dH
d−1(b1)dH

d−1(b2),

for t ∈ {0, 1}.

SA-4.1 Preliminary Lemmas

This section states the preliminary results on matrix convergence. In what follows, we denote

X = (X⊤
1 , · · · ,X⊤

n ) and Wn = ((X⊤
1 , Y1), · · · , (X⊤

n , Yn))
⊤.

Lemma SA-9 (Gram). Suppose Assumption SA–2(i)-(ii) and Assumption SA–4 hold. If log(1/h)
nhd =

o(1), then

sup
x∈B

∥∥∥Γ̂t,x − Γt,x

∥∥∥ ≲P

√
log(1/h)

nhd
, 1 ≲P inf

x∈B

∥∥∥Γ̂t,x

∥∥∥ ≲ sup
x∈B

∥∥∥Γ̂t,x

∥∥∥ ≲P 1,

sup
x∈B

∥∥∥Γ̂−1

t,x − Γ−1
t,x

∥∥∥ ≲P

√
log(1/h)

nhd
,

for t ∈ {0, 1}.

Proof. See Lemma 2.1 in the supplemental appendix of Cattaneo et al. [2025].

Lemma SA-10 (Bias). Suppose Assumption SA–2(i)-(iii) and Assumption SA–4 hold. If log(1/h)
nhd =

o(1), then

sup
x∈B

|E[µ̂t(x)|X]− µt(x)| ≲P h
p+1,

for t ∈ {0, 1}. If, in addition, h = o(1), then

sup
x∈B

∣∣E[µ̂t(x)|X]− µt(x)− hp+1B̄t,x

∣∣ = oP(h
p+1),

for t ∈ {0, 1}. Moreover, supx∈B |B̄t,x − Bt,x| ≲P

√
log(1/h)

nhd , which implies supx∈B |B̄t,x| ≲P 1 for

t ∈ {0, 1}.

Proof. See Lemma 2.2 in the supplemental appendix of Cattaneo et al. [2025].

Lemma SA-11 (Aggregated Bias Along B). Suppose Assumption SA–2(i)-(iii) and Assump-

tion SA–4 hold. If log(1/h)
nhd = o(1) and h = o(1), then∫

B

(E[µ̂t(x)|X]− µt(x))w(x)dH
d−1(x) = hp+1BB + oP(h

p+1)

= hp+1B̄B + oP(h
p+1).

Proof. The conclusion follows from Lemma SA-10 and the assumption that
∫
B
w(x)dHd−1(x) =

1.
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Lemma SA-12 (Stochastic Linear Approximation). Suppose Assumption SA–2(i)-(v) and As-

sumption SA–4 hold. If log(1/h)
nhd = o(1), then

sup
x∈B

∥Qt,x∥ ≲P

√
log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

,

sup
x∈B

∣∣∣µ̂t(x)− E
[
µ̂t(x)

∣∣X]
− e⊤1+νH

−1Γ−1
t,xQt,x

∣∣∣ ≲P

√
log(1/h)

nhd

(√
log(1/h)

nhd
+

log(1/h)

n
1+v
2+v hd

)
,

for t ∈ {0, 1}.

Proof. See Lemma 2.3 in the supplemental appendix of Cattaneo et al. [2025].

Lemma SA-13 (Covariance). Suppose Assumptions SA–2 and SA–4 hold. If log(1/h)
nhd = o(1), then

sup
x1,x2∈B

∥∥∥Σ̂t,x1,x2 −Σt,x1,x2

∥∥∥ ≲P

√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd
+ hp+1,

sup
x1,x2∈B

∣∣∣Ω̂x1,x2 − Ωx1,x2

∣∣∣ ≲P (nhd)−1

(√
log(1/h)

nhd
+

log(1/h)

n
v

2+v hd
+ hp+1

)
,

for t ∈ {0, 1}.

Proof. See Lemma 2.4 from the supplemental appendix of Cattaneo et al. [2025].

Lemma SA-14 (Variance of Aggregated Estimator). Suppose Assumptions SA–2 and SA–4 hold.

If log(1/h)
nhd = o(1) and h = o(1), then

V[τ̂w|X] = ΩB +OP

(
hd−1 log(1/h)

1/2

(nhd)3/2

)
= ΩB + oP((nh)

−1),

where

(nh)−1 ≲ ΩB ≲ (nh)−1.

If, in addition, log(1/h)

n
v

2+v hd
= o(1), then

V[τ̂w|X] = Ω̂B + oP((nh)
−1).

Proof. Observe that V[τ̂w|X] =
∑

t=0,1V[
∫
B
µ̂t(b)w(b)dH

d−1(b)], where for t = 0, 1,

V
[ ∫

B

µ̂t(b)w(b)dH
d−1(b)

∣∣∣X]
=

∫
B

∫
B

Cov
[
µ̂t(b1), µ̂t(b2)

∣∣∣X]
w(b1)w(b2)dH

d−1(b1)dH
d−1(b2).
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Consider

Σt,b1,b2 = hdEn

[
Rp

(
Xi − b1

h

)
Rp

(
Xi − b2

h

)⊤
Kh(Xi − b1)Kh(Xi − b2)σ

2
t (Xi)1(Xi ∈ At)

]
.

(SA-7)

Then the same argument as the proof of Lemma SA-9 implies if log(1/h)
nhd = o(1), then

sup
b1,b2∈B

∥Σt,b1,b2 −Σt,b1,b2∥ = OP

(√ log(1/h)

nhd

)
. (SA-8)

Together with Lemma SA-9, we have when log(1/h)
nhd = o(1),

sup
b1,b2∈B

∥Cov
[
µ̂t(b1), µ̂t(b2)

∣∣∣X]
− Ωt,b1,b2∥

= sup
b1,b2∈B

∥(nhd)−1e⊤1 Γ̂
−1

t Σt,b1,b2Γ̂
−1

t e1 − Ωt,b1,b2∥

= OP

( log(1/h)1/2
(nhd)3/2

)
.

We have assumed that K is supported on a compact set. W.l.o.g, assume the support of K has a

diameter no greater than R, 0 < R <∞. Consider the set

E(h) = {(x,y) ∈ B×B : ∥x− y∥ ≤ hR}. (SA-9)

Since B is d−1 dimensional, we have m(E(h)) ≲ hd−1, where m is the 2(d−1) dimensional Lebesgue

measure. Hence

V
[ ∫

B

µ̂t(b)w(b)dH
d−1(b)

∣∣∣X]
− Ωt

=

∫
B

∫
B

(
Cov

[
µ̂t(b1), µ̂t(b2)

∣∣∣X]
− Ωt,b1,b2

)
w(b1)w(b2)dH

d−1(b1)dH
d−1(b2)

≲ sup
b1,b2∈B

∥Cov
[
µ̂t(b1), µ̂t(b2)

∣∣∣X]
− Ωt,b1,b2∥·∫

B

∫
B

1((b1,b2) ∈E(h))w(b1)w(b2)dH
d−1(b1)dH

d−1(b2)

= OP

(
hd−1 log(1/h)

1/2

(nhd)3/2

)
= oP((nh)

−1), (SA-10)

where in the last line we have used the assumption that log(1/h)
nhd = o(1). This proves the first claim.

For the second argument,

Ωt,B =

∫
B

∫
B

Ωt,b1,b2w(b1)w(b2)dH
d−1(b1)dH

d−1(b2)
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≤ sup
b1,b2∈B

|Ωt,b1,b2 |
∫
B

∫
B

1((b1,b2) ∈E(h))w(b1)w(b2)dH
d−1(b1)dH

d−1(b2)

≲ (nhd)−1m(E(h))

≲ (nh)−1.

This shows the upper bound. For the lower bound, let b1 ∈ B and b2 = b1 + hδ for some vector

delta such that supx∈XKh(x − b1)Kh(x − b2) > 0. A change of variable then implies a typical

element of Σt,b1,b2 has the form

E
[(Xi − b1

h

)u(Xi − b1 − δh

h

)v 1

hd
K
(Xi − b1

h

)
K
(Xi − b1 − δh

h

)
σ2t (Xi)1(Xi ∈ At)

]
=

∫
b1+hAt

su(s− δ)vK(s)K(s+ δ)σ2t (b1 + hs)ds

≳ 1.

It follows that |Ωt,b1,b2 | ≳ (nhd)−1 for (b1,b2) on a set E′(h) such that m(E′(h)) ≳ hd−1. This

leads to the lower bound in the second claim.

The third claim follows from Lemma SA-13 and the same analysis as Equation (SA-10).

SA-4.2 Mean Square Error Expansion

Theorem SA-3 (MSE Expansions). Suppose Assumptions SA–2 and SA–4 hold. If log(1/h)

n
v

2+v hd
= o(1)

and h = o(1), then

E[(τ̂w − τw)
2|X] = ΩB + h2p+2B2

B + oP((nh)
−1) + oP(h

2p+2).

Proof. Using the decomposition

E[(τ̂w − τw)
2|X] = V[τ̂w|X] + (E[τ̂w|X]− τw)

2,

the conclusion then follows from Lemmas SA-11 and SA-14.

SA-4.3 Central Limit Theorem

The feasible t-statistics is

T̂w =
τ̂w − τw√

Ω̂B

.

Theorem SA-4 (Asymptotic Normality). Suppose Assumptions SA–2 and SA–4 hold. If log(1/h)

n
v

2+v hd
=

22



o(1) and (nh)h2p+2 = o(1), then

sup
u∈R

∣∣P(T̂w ≤ u)− Φ(u)
∣∣ = o(1).

Proof. We decompose the error τ̂w − τw = (µ̂1,w − µ1,w)− (µ̂0,w − µ0,w), where

µ̂t,w − µt,w =

∫
B

(µ̂1(x)− µ1(x))w(x)dH
d−1(b)

=

∫
B

e⊤1 Γ
−1
t,bQt,bdH

d−1(b)︸ ︷︷ ︸
linear error

+

∫
B

e⊤1 (Γ̂
−1

t,b − Γ−1
t,b)Qt,bdH

d−1(b)︸ ︷︷ ︸
non-linear error

+OP(h
p+1)

for t ∈ {0, 1}, and using Lemma SA-11 to bound the approximation error

For the non-linearity error, using Σt,b1,b2 in Equation (SA-7),

E
[(∫

B

e⊤1 (Γ̂
−1

t,b − Γ−1
t,b)Qt,bdH

d−1(b)

)2∣∣∣∣X]
=

∫
B

∫
B

e⊤1 (Γ̂
−1

t,b1
− Γ−1

t,b1
)(nhd)−1Σt,b1,b2(Γ̂

−1

t,b2
− Γ−1

t,b2
)e1w(b1)w(b2)dH

d−1(b1)dH
d−1(b2).

Since Σt,b1,b2 = 0 if b1 and b2 are farther away form each other than the diameter of Supp(K),

we can use Equation (SA-9) to get∫
B

∫
B

e⊤1 (Γ̂
−1

t,b1
− Γ−1

t,b1
)(nhd)−1Σt,b1,b2(Γ̂

−1

t,b2
− Γ−1

t,b2
)e1dH

d−1(b1)dH
d−1(b2)

≤ sup
b∈B

(Γ̂
−1

t,b − Γ−1
t,b)

2 sup
b1,b2∈B

∥Σt,b1,b2∥ sup
b∈B

|w(b)|(nhd)−1m(E(h))

≲ sup
b∈B

(Γ̂
−1

t,b − Γ−1
t,b)

2 sup
b1,b2∈B

∥Σt,b1,b2∥(nh)−1,

where the constant does not depend on n or X. Then, by Lemma SA-9 and Equation (SA-8),∫
B

e⊤1 (Γ̂
−1

t,b − Γ−1
t,b)Qt,bdH

d−1(b)

≲P

[
sup
b∈B

(Γ̂
−1

t,b − Γ−1
t,b)

2 sup
b1,b2∈B

∥Σt,b1,b2∥(nh)−1

]1/2
≲P oP((nh)

−1/2)

because log(1/h)
nhd = o(1).

Consider now the stochastic linearized T-statistic

Tw = Ω
−1/2
B

∫
B

e⊤1 Γ
−1
t,bQt,bdH

d−1(b).
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Then, by Lemma SA-14 and the previous bounds,

T̂w − Tw = (Ω̂
−1/2
B − Ω

−1/2
B )

∫
B

e⊤1 Γ
−1
t,bQt,bdH

d−1(b) + oP(1) = oP(1) (SA-11)

because log(1/h)

n
v

2+v hd
= o(1) and (nh)h2p+2 = o(1).

Finally, we apply the Berry-Esseen lemma to the linearized statistic Tw =
∑n

i=1 Zi, where

Zi = n−1Ω
−1/2
B

∫
B

e⊤1 Γ
−1
t,bRp

(
Xi − b

h

)
Kh(Xi − b)1(Xi ∈ At)uiw(b)dH

d−1(b),

which satisfies E[Zi] = 0. The definition of ΩB implies that
∑n

i=1V[Zi] = Ω
−1/2
B ΩBΩ

−1/2
B = 1.

Hence,

n∑
i=1

E[|Z3
i |]

= n−3Ω
−3/2
B

n∑
i=1

E
[(∫

B

e⊤1 Γ
−1
t,bRp

(
Xi − b

h

)
Kh(Xi − b)1(Xi ∈ At)uiw(b)dH

d−1(b)

)3]
.

Consider

G(b1,b2,b3) = g(Xi, ui,b1)g(Xi, ui,b2)g(Xi, ui,b3),

where

g(Xi, ui,b) = e⊤1 Γ
−1
t,bRp

(
Xi − b

h

)
Kh(Xi − b)1(Xi ∈ At)ui.

The same argument as Lemma SA-9 shows that

sup
b1,b2,b3∈B

E[|G(b1,b2,b3)|] ≲ h−2d

when log(1/n)
nhd = o(1). Suppose the support of K has diameter less than R, and consider

F(h) = {(b1,b2,b3) ∈ B3 : ∥bi − bj∥ ≤ R, j = 1, 2, 3}.

Since B is d− 1 dimensional, m(F(h)) ≲ h2d−2. It follows that

E
[(∫

B

e⊤1 Γ
−1
t,bRp

(
Xi − b

h

)
Kh(Xi − b)1(Xi ∈ At)uiw(b)dH

d−1(b)

)3]
= E

[ ∫
b1∈B

∫
b2∈B

∫
b3∈B

G(b1,b2,b3)w(b1)w(b2)w(b3)dH
d−1(b1)dH

d−1(b2)dH
d−1(b3)

]
≲ m(F(h)) sup

b1,b2,b3∈B
E[|G(b1,b2,b3)|] ≲ nh−2.
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Together with the rate of ΩB from Lemma SA-14, we have

n∑
i=1

E[|Z3
i |] ≲ (nh)−1/2.

By Berry-Esseen lemma, we have

sup
u∈R

|P(Tw ≤ u)− Φ(u)| = O((nh)−1/2),

and the final conclusion then follows from Equation (SA-11).
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