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SA-1 Preliminary Technical Result

This section is self-contained, and provides the basis for the main analysis in the paper. We employ
basic concepts and definitions from geometric measure theory. See Federer [2014] and Folland [2002]
for comprehensive reviews; a more accessible source is available at https://encyclopediaofmath.
org/.

Let m be the Lebesgue measure, and $* be the k-dimensional Hausdorff measure. For f : RF — R,
let J; f denote the Jacobian of f. As in the paper, we assume throughout that « : R x R — R

is a metric on R%, and define
d(x,8) = S1I€1£d(x,s).

Assumption SA—1 (Distance).

The following technical lemma gives sufficient conditions for convergence of integrals over a

shrinking tubular of a manifold. Let

Lemma SA-1 (Integration over Shrinking Tubular Neighborhoods). Suppose that X is a compact
subset of R with Hausdorff dimension d, & C X has Hausdorff dimension d — 1, and the following

conditions hold:

1. There exists positive constants Cy, and C; such that Cj ||x1 — xa|| < &(x1,%x2) < O, ||x1 — x2]|
for all x1,x0 € .

2. g : R — R is m-measurable, continuous over its compact support.

3. m: R4 — R is m-measurable.

4. Jid(-,8) # 0 m-almost everywhere on X, and [, |J d(x 6’) |dx < 0.

5. limeyo M(e) = csM(0) is finite, where M (r fd(xé’ ) Jld(xs d$?1(x) for allT >0

Then,

lim i lg<d(x, CS’)>m(x)dx =cg /Olg(s)ds'/&t]lg?(;)&)dﬁd_l(x).
where

g(e)z{xefl":d(x,é’)ge}, d(x,éj):;relf Z(X,y).

Proof. Note that d(-,§) is C,-Lipschitz. The level sets

Q‘Z(e):{xefl”:d(x,é’):e}, € € [0,00)


https://encyclopediaofmath.org/
https://encyclopediaofmath.org/

are (d — 1)-dimensional rectifiable sets. Since g is continuous on a compact support, g is also

bounded over &. Hence, the function

is m-summable over & . Using the Coarea formula,

/g(ﬁ) i9<d(}:§)>m(x)dx = /,07(5) 1g(d(xﬁ, é’)>m(x) Jld(ic, CS’)Jld(X’ §)dx

SO it gy 0

Since g is integrable,

e—0 0

This gives the conclusion. O

SA-2 Setup

This supplemental appendix considers a generalized version of the setup in the main paper: the
location variable X; is d-dimensional with d > 1, its support is & C R?, and the boundary region
A is a low dimensional manifold with “effective dimension” d — 1. The paper considers the special
case d = 2, that is, X; is bivariate and 9% is a one-dimensional (boundary) curve.

We retain the same notation, definitions and assumptions given in the paper, whenever consider-
ing a general dimension d > 2 does not causes confusion. In particular, the natural generalization

of Assumption 1 is the following.
Assumption SA—2 (Data Generating Process). Let t € {0,1}, p > 0, and v > 2.

(1) (Yi(t),X1)T,...,(Yu(t),X,) " are independent and identically distributed random vectors.
(ii) The distribution of X; has a Lebesgue density f(x) that is continuous and bounded away from
zero on its support compact support L C R%.
(i) pe(x) = E[Y;(t)|X; = x| is (p + 1)-times continuously differentiable on X .
(iv) o?(x) = V[Y;(t)|X; = x] is bounded away from zero and continuous on L.

(v) supyeg E[Yi(H)PH[X; = x] < oo,

In addition, we employ the following standard notation through the supplemental appendix.

(i) Sample Averages. En[g(vi)] = 2 37 | g(vy).



(i)

(iii)

Norms. For a vector v € RF, ||[v|| = (X, v3)1/2 and [|v]jeo = max;<i<k |vi|. For a matrix

A e R™ |A], = supjy 1 [|A%]],,, p € NU {oo}.

Multi-index Notations. For a multi-index u = (u1,...,uq) € N% denote |u| = Z;-izl Ug,

u! = II%  ug4. Denote Ry(u) = (1, u1, ..., ug,ui, ..., u3, ... uf,...,ul)), that is, all monomials

ui?t - ~ugd such that o; € N and Zgzl a; < p. Define e;4, to be the pg; = (ﬁﬁ)!—dimensional

vector such that e/, R,(u) = u” for all u € R%

an _

Bounds and Asymptotics. For reals sequences a,, = o(by) if limsup - =0, and ap < b, or
an = O(by,) if there exists some constant C' and N > 0 such that n > N implies |a,| < C|by,|.
For sequences of random variables A4,, = op(B,) if plim,_, g—z = 0, and 4, Sp B, or
Ay, = Op(By,) if limsup,;_,,, limsup,,_, IP’[|’§—:| > M| =0.

For background textbook references see van der Vaart and Wellner [1996] and Giné and Nickl

[2016]. For textbook references on geometric measure theory, see Federer [2014] and Folland [2002].

SA-

3 Pre-Aggregation Approach

We consider the more general local polynomial estimator described in Remark 1, with d > 2. Recall

the estimator is

~ Te Te
Tpre = €4 €1 — € EO

where
¢ = arg minz (Vi — rp(Di)TE)Qkh(Di)]l(Ti =),
geRPHL oy
for t € {0,1}, and with e; the conformable first unit vector, ry(u) = (1,u,u?, - ,uP) T the usual

univariate polynomial basis, kj(u) = k(u/h)/h, k(-) a univariate kernel function, and h the band-
width.
In addition, define

~

at(r) = I'p(T‘)Tgt’ S Rv

for t € {0,1}. The induced distance is

D; = (2T; — 1)d(X;,B),  d(x,%B) = inf 4(x,b),
be%

where recall that X; € R? and B C R%!. Thus, the induced conditional expectation based on

distance to & is

0,(r) = E[Y;|D; = r] = E[Y;|d(X;, B) = |r|, X; € o],



for t € {0,1}, and where r € % with J = (—00,0) and % = [0, 00).
The following assumption is the natural generalization of Assumption 2 in the paper for d > 2.

Assumption SA—-3 (Integral Representation). Recall the density of X;, f, from Assumption 1.
Suppose the following conditions holds.

(i) There exists positive constants C,, and Cy such that Cy ||x1 — xa|| < & (x1,%x2) < Cy [|x1 — 3|
for all x1,x9 € X.
(ii) Jid(-, B) # 0 m-almost everywhere on X, and [, |J1£((:)% |dx < 0.
(iii) limeyo F'(s) = F(0) is finite, where F(s fd(x B)=s J1d ﬁd L(x) for all s > 0.

(iv) 0: is continuous at O fort =0,1.

For each t € {0, 1}, the best mean square approximation based on r,(D;) is
07 (Di) = rp(Di) '~

with

2
N = arg minE[ (Y - rp(Di)T’y> kn(Di)Ly, (D;)].
~EeRp+1

Thus, the estimation error decomposes into linear error, approximation error, and non-linear

6,(0) — 0,(0) = e ¥, 'E, {rp (1}3) kh(Di)Y;] — 6,(0)
_eTT ', {rp (Z) (D) (Y — e;(Di))] +07(0) — 6,(0)

~—1
e/ U0+ 67(0)—60,(0) +ef (B, — )0, (SA-1)

linear error approximation error non-linear error

for t € {0,1}, where

and the misspecification bias is

B, = 07(0) — 6,(0). (SA-2)



In the text, B, = B, 1 — B, . In addition, define

= oy (%), (h) Y- 60D,
Tt—hIE[rp( ) < ) —6;(D ))2]]-Jt(Di)}

~—l~ ~

-1

(1
(11

nh ==o+ él,,
= = %ef\yglrtwlel, = = Eo +Ei,
and
pe(r) = E[(Y; = 0;(Di))?|D; = r] = E[Y?|D; = r] = 204(r)ry(r) "7 + (rp(r) ' 7)”.
for t € {0,1}.

SA-3.1 Preliminary Lemmas

Lemma SA-2 (Expected Gram Matrix). Suppose Assumptions SA-2 and SA-3 hold. If h — 0,
then

H\pt—/ggMd I‘H—o F:/Olrp(u)rp(u)Tk(u)du,

fort € {0,1}. This implies || ¥¢|| < 1 and H\Ilt_lH < 1.

Proof. The typical entry of ¥; has the form

Yt = E[(Di/h) kn(Di) Lz, (Dy)],

for some v € N. By Lemma SA-1, as h — 0,

X, v X, ty X
wn,tZ/%(h) <Cl(hg§)> ;k(d(h%)>f(x)d><:/o s k(s)ds-/%“]éc((xj)(%})dx—i-o(l).

Let p, = (ﬁlﬁ)!. Since 1); is p, X p, dimensional, the conclusion follows from a union bound. By
Weyl’s theorem, [Amin(¥:) — Amin(T)| = o(1) and [Amax(¥¢) — Amax(I')| = o(1). Hence ||[¥]| <1
and || ;|| < 1. O

Lemma SA-3 (Estimated Gram Matrix). Suppose Assumptions SA-2 and SA-3 hold. If h — 0
and nh — oo, then

1@, — B, <p (nh)~2,

~ ~—1
fort € {0,1}. This implies | ¥¢|| <p 1 and || ¥, || Sp1



Proof. The typical entry of \ilt takes the form

= 155 (2 (2

By Lemma SA-1,

Hence
1 Di\v. /D;
V[nt] = —=5VI[[(=) k(=1
n1h2 KDh )Zvl(h> 7 } bt D 2
= rE[(F) 3 a0 - 2E[(3) 74 () 1A(00)
1 1
L 52”k(s)2ds-/ggthf(x)dx(1+0(1))+:l/0 s”k(s)ds-/ggch‘;(i)%)dx(l—ko(l))

nh Jo d(x, B)

_ [ e B
_nh/o s*k(s)"ds - / Trd(x. gg)d( o(1)).

Since W, is finite dimensional, || ¥,—®,| <p (nk)~/2. The conclusion then follows from Lemma SA-
3 and Weyl’s theorem. O

Lemma SA-4 (Stochastic Linear Approximation). Suppose Assumptions SA-2 and SA-3 hold. If
nh — oo, then

10| Sp (nh) ™12,
‘eT\p—lot‘ <p nh)’l/Q,

ol (F, "~ @71)0,| $p (nh) ",
fort € {0,1}.

Proof. By the definition of the best linear approximation 6}, we have E[O;] = 0. A typical entry
of O; has the form

o= 5 | (24 WD) (Y: = 61D 12(D)

for v € N. Since sup,er 1(k(r/h) > 0)p(r) S 1, by Lemma SA-1,

V(og] = nhE|:<Dh>2v2k(%>2l)t(Di)th(Di):|
< nhIEKl?l)%}lLk(%)Qﬂft(Di)]



<1 /1 s%k(s)%ds
~ nh 0 '

Since Oy is finite dimensional, ||O;| < (nh)~Y/2. The other results follow from Lemma SA-2 and
Lemma SA-3. ]

Lemma SA-5 (Expected Meat Matrix). Suppose Assumptions SA-2 and SA-3 hold. If h — 0,
then

R I T CINN Ty s

and

f(x)
o any fB) Jog 1 (x hd(x@)dx 2 f(b) o4
R o LR ACOR O ) Tt )

fort e {0,1}.

Proof. Consider s4(x) = E[Y;(t)?|X; = x| = us(x)? + 04(x)?, x € X. A typical element of Y; has

the form

[( ) k(DY — 02D (D)

h
( (x, ) % < ) 51(x) — 24(x)0; (d(x, B)) + 0 (d(x, B))?) f (x)dx

_ s1(x) f(x) pe(x) f(x) . f(x)
—/0 k:() [/ Jld(x,%)dx 2/ 7J1d(x @)dx~0t(0) /Jld(x gg)d x0; () + o(1),

where in the last line we have used Lemma SA-1, and 6;(r) = R,(r)"~} is continuous in 7.

Moreover,

D:

0:(0) = e] W} 11@[ <h> kn(D;)Yils, (Dy)].

Using Lemma SA-1 again, we have

e () moowtaioa] = [ rp(d(xh%))kh(d(xv%))ut(x)]lft(l?i)dﬁd‘l(x)

d-1
_A/ Jldx%’ ﬁ (),

where A = fol rp(u)k(u)du. Together with Lemma SA-2, we have

RSN ><J1d<x,99>>—1dsad-1<x>

o= Ty FO) (e, ) 157160



where the definition of T from Lemma SA-2 implies eII‘_lA = 1. Finite dimensionality and the
union bound over the entries give the result. O

Lemma SA-6 (Covariance). Suppose Assumptions SA-2 and SA-3 hold. If h — 0 and nh — oo,
then

.- x| = 2
nh|Z; — 2| <p (nh)~/?,

for t € {0,1}. This implies 1 <p Amin(X¢) <p 1 and (nh)~! <p Z; <p (nh)~!.

Proof. Denote n;; =Y; — 6f(D;) and &+ = 0; (D;) — @(Dl) Then

~ Dz Dz T 2
Y =E,|rp 5 )l hkp (D;) kp (Di) (it + &it) "Lz (Di) |
and we decompose the error into
Y -, = A+ Aoy + Agy,
D; D;\ "
Al,t = En |:I'p <h> I'p <h> hk‘h (Dl) kih (Dl) gzz,tlljt (Dl):| s
D; D\ "
Aoy =2E, |1, 5 ) hkp (Di) kn (D) nii&iils (Ds) |
D; D\’
A3,t = En |:I‘p <h> r, (h) hk‘h (Dz) k’h (Dz) ni2,t]]'=jt (Dz):|
D; D\ "
_ E[rp <h> r, <h> hky, (D;) ky, (Di)nﬁtnjt(Di)}
kn(D;) # 0 implies |[ry(D;/h)|, < 1. Define
D; .
Ut = En |:I‘p <h> kh(Dz)Ht (DZ)]].Jt (Dz):| y
H = diag(L, h, - , hP).
Hence, by Lemma SA-3 and SA-4,

max max 1
te{0.1} 1<i<n il

[, e [rp(Di) (3 = 1)L (kn(Di) 2 0)

T3 " 3! ~1
— . _ N>
e max [r,(D)H™ (8,00 4 (8, — €7 U A(k(D) > 0)

~—1 ~—1
< T o‘ H\IJ —\IrlUH
< ma [ 8000+ mas (@ - wiu|



S;IP’ (nh)_l/Q’

Assume nh — oo, similar maximal inequality as in the proof of Lemma SA-3 shows

max AL Sp e max |&ial® Sp (nh) 7T,
< ] < —1/2 ,
max [ Azl e max, max |6 Se (nh) ™. (SA-3)

For Az, notice that a typical entry of has the form

On — E[gn]a

where
o= 30 () () 0= DA (D),

Since we have assumed supycq E[Y;}|X; = x| < 0o, and by Jensen’s inequality E[f;(D;)%] < oo, a

similar argument as for Lemma SA-3 implies
Viga] S (nh)™,
and hence

max|| Az Se (nh)~*/2. (SA-4)

Putting together Equation (SA-3) and (SA-4), we get | X; — Y¢| <p (nh)~Y/2. By Lemma SA-5
and Weyl’s theorem, we have 1 <p )\min('/ft) <p 1. Using Lemma SA-3 in addition, we can show

s = >-la =-1 _ _ -
nh|:t — :t| Sp |e;|—\I’t Tt‘IJt e — eir\Ilt 1Tt‘Ilt 1e1| S[P (nh) 1/2.
Lemma SA-2 and SA-5 imply (nh)~! <= < (nh)~!, hence (nh)~! <p = <p (nh)~L. O

SA-3.2 Mean Square Error Approximation

Theorem SA-1 (MSE Expansion). Suppose Assumptions SA-2 and SA-3 hold. If h — 0 and
nh — oo, then

E[( X0 (-1 (6] #; 104 +07(0) — 04(0))) | = B2+ =+ Op((n) ).

t=0,1

10



Proof. By definition of Y; we have,

1
E[0,0]] = —E

o () (%) bt - 0I<Di>>211ft<Dz~>]

Hence

t=0,1
= 2E[( 3 (-1 o] #;,100) (3 (-1 (0:(0) ~ 04(0))
t=0,1 t=0,1
FE[( S 0 elwton) |+ (30 (<06 0) - 60)
t=0,1 t=0,1
—z =+ (D CDME0) - 600))
t=0,1

where in the third line we have used E[O;] = 0 for ¢t = 0, 1, and the independence between Og and
O;. The conclusion follows. O

Corollary SA-1 (Convergence Rate). Suppose Assumption 1, SA-3 hold, and nh — co. Then
Fore — 77| Sp (nh) V2 4 B,
Proof. The conclusion follows from Lemma SA-2, SA-5 and Theorem SA-1. O

SA-3.3 Central Limit Theorem

The feasible t-statistics by

Theorem SA-2 (Asymptotic Normality). Suppose Assumptions SA-2 and SA-3 hold. If nh — oo
and Vnh|B,| — 0, then

sup |P (Tpre < u) — ®(u)| = o(1).
ucR

Proof. Define the stochastic linearization of Tpre to be Tpre ==Y 2e1T\Ilt_ 1Q,. First, we bound

11



the stochastic linearization error. Using the decomposition (SA-1) and convergence of é,

Tore = T =22 ()T GO - 00)) -2 2 (X ()T el % 01)

te{0,1} te{0,1}
= 41 41 _
1/2( S G0 - 00) — Y (-] \Po) (= A)
te{0,1} te{0,1}
+ (B2 =12 (-1)% el ¥; 0, (= Ao)
te{0,1}

By Lemma SA-3 and SA-4, and the decomposition Equation (SA-1),

S DT @0)-6,0) - Y (-1)F e ¥ 'O,

te{0,1} te{0,1}

sup

Sp (nh) ™! 4 [Bal.
xeX

Together with Lemma SA-6,
|A1| Sp (nh) ™2 4+ Vnh|B,). (SA-5)
By Lemma SA-3, Lemma SA-4 and Lemma SA-6, and assume nh — oo, then

Aol = 7 |ef w0y (272 27| <p (nm) 2. (SA-6)
te{0,1}

Putting together Equations (SA-5), (SA-6) gives
Tpre — Tpre| Sp (2h) Y2 4+ Vnh|B,,|.
Next, we consider the convergence of Tpye. Notice that if we define

1,_._ _ DZ *
Zn,i = ﬁ: 1/2e]—\:[lt lI‘p (h) kh (Dz) (Y; — Ht (Dz))ﬂ,]t(Dz);

then Tpre =Yy Zn;. Moreover, E[Z, ;] =0 and V[Z,;] = n~!. By Berry-Essen Theorem,

n
sup [P (Tpre < u) — ()| S Y E [\Zm\?’]
u€R i1

- R — Dz *
>0 o] iy (2 b (D) 1 (DY - 67 (D)
=1

< n722732E |k (D;) (Y — 07 (D))
< n 282Kk, (D:)(B[|Y: P 1X0] + 167 (D) )]
S (nh) ™2,

12



where in the third line we used ||r, (%) kn (D;)|| < 1 holds almost surely, in last line we have use
Lemma SA-1 with Assumptions 1 and SA-3 to get E[|ky,(D;)>(E[|Y;|?|X:] + 107 (D;)?)]] < h~2, and
the fact that Z > (nh)~/? from Lemma SA-6. O

SA-3.4 Approximation Error

Lemma SA-7 (Approximation Error). Suppose Assumptions SA-2 and SA-3 hold. If 0 is (s+1)-
times continuously differentiable at 0, and h — 0, then

Bt S, hmin{s,p}+1
fort € {0,1}.
Proof. Consider

S;=E [rp (%) kh(Di)Yi]lJz(Di)] =E [rp (%) kn(D;)0i (D)1 57, (D;)| -

Define n;(h) to be the p-dimensional vector that is (Gt(O),th(l)(O), e ,hpﬁip)(O)) if p < s, and
(0,(0), 10 (0), -+, h%6(0),0, - - ,0) otherwise.

Bnt| = ‘elT‘I’t_ISt - 9t(0)‘
— ‘elTlIlt_lE[rp (12) kn(D;)(04(D;) — 1y (%)Tm(h))njt(m)] )

Assuming 6; is s-times continuously differentiable, we have almost surely

max
1<i<n

Di ! min{s
HD = <h> m () [0k (Dy)) S pinlerbL,

By Lemma SA-2, |[®; '] < 1, and the same argument on each entry and finite dimensionality of

the basis implies

JE[Hrp (2) k(D) 1.5, (Dy)

] <1
The conclusion follows. O

SA-3.5 Verification of High Level Conditions

This section verifies part (ii)-(iv) of Assumption SA-3, and the additional smoothness assumed in

Lemma SA-7, for the special case when &% is a finite collection of connected linear segments.

Lemma SA-8 (Piecewise Linear Boundary). Suppose Assumption SA-2 holds with d = 2, and

d(-,-) is the Euclidean distance. If % is piecewise linear with finite many pieces, then

13



(i) Jid(-,B) = 1 m-almost everywhere on .%t( , and f% ]m]dx < 00,
(ii) limejo F(s) = F(0) is finite, where F(s fd(x B)=s Jld((:% d$H(x) for all s >0, and

(iii) 6 is continuous at 0,

for small enough € >0, and t € {0,1}.

If, in addition, pg, p1 and f are s-times continuously differentiable on &', then
(iv) 0o and 6, are s-times continuously differentiable on [0, €].

Proof. First, we verify the Jacobian condition (i). Since & is piecewise linear, we denote the linear
pieces by &1, -+, By with B = ujzlggj. For small enough e, for any x € % (¢€), the distance to
the boundary depends on at most two linear pieces. That is, there exists 1 < j1,jo < M such that

d(X, %) = d(X, z@jl U (@jé),

as in Figure SA-1. For any point x on line segment ce, the directional derivative of d(-, %) in the
direction normal to ¢e is 1, and the directional derivative of d(-, %) in the direction parallel to ce is
0. Hence with Vd(-, B)|x = O[1,0]", where O is some orthonormal change of coordinate matrix.
This shows Jid(-, #B)|x = 1. The same argument applies for x on the line segment df and on the
segment vp, vq.

For any x on the arc cd, the directional derivative of d(-, %) at x is 1 in the direction @c, and
the directional derivative of d(-, &) at x is 1 in the direction orthogonal to Ox. Thus Vd(-, B)|x =

0]1,0]", where O is some orthonormal change of coordinate matrix, and hence Jrd(-, B)|x = 1.

This shows Jid(-, #B) = 1 m-almost everywhere on %(€), and f% ] |[dx < oo follows

hdx%
from continuity of f on compact support .

Next, we want to show continuity of F' at 0 from (ii). It suffices to show |F(s) — F(0)| < Ce
for all s € (0,€). Again, since % has finitely many pieces, with € small enough, we can localize to
Figure SA-1, and suppose B = B; LI B;. Consider t = 0, and the level set {x € oy : d(x, B) =
r} = ¢e L cd U df. Define the projection on & by

P(x) = arg min||x — y||.
yERB

Then
F(r) - F(0) = / PECTIC / F)ds ' () — /@ L, 10000
=/<f<x>—f< (%)))d5% (x /f x)dsy 1 (x).
celldf

The definition of P implies ||x — P(x)|| < e. Moreover, % 1(cd) < 27me. Since f is continuous on

compact support 2, f is also uniform continuous on 2. Moreover, since & is compact, the pieces

14



Figure SA-1: Level sets to piecewise linear boundary.

B; and B; has finite length, say H7 (%) < L. Then

[F(r) = F(0)| < sup [f(x)— f(y)|L+ 2mesup f(x) =0, as € — 0.
Ix—yll<e xEX

This proves (ii).

To show (iii) holds, notice that the same argument as above implies that for ¢ = 0, 1, the function

5 ) pa(x)ds)’ ()
{x€d:d(x,B)=s}

is also continuously at 0. Since f is continouous on compact support &, f is also bounded from

below on &. This implies for ¢t = 0, 1,

Oy(r) = Jixe A my=ry T (x)dO ()
t\r) = f{xeAt:d(x,%’):T} f(x)dHI-1(x)

is also continuous at zero.
Now, we want to show (iv) holds. W.l.o.g., we assume 9 is composed with two linear pieces as in
Figure SA-1. Suppose v, is a curve length parametrization of the level set {x € &, : d(x, B) =r}.
First, consider ¢ = 0. Denote L; = $'(%;) and L; = $'(%;). Denote « to be the angle of Zaob.

Then we can define the curve length parametrization to be

'77‘,0(3) =

15



(L; — s,—1), s €10, Li],
r(cos(3m — s/r),sin(3/2m — s/r)), s € [Li, L; + 0r],
(s — Lj — 0r)(cos(e), sin(a)) + r(sin(a), cos(v)), s € [L; + 6r, L; + L; + 0r].

Hence for any function ¢ : R? — R, we have

/ P(x)dH' (x)
{xedp:d(x,B)=r}

L;+Lj+6r
- /0 B (mo(8)7.e(5) |ds

Li+L;+0r
- /O P(mols))ds

=1(r) + La(r) + I3(r),

where

L;
L(r) = /O O(Li — 5, —1))ds,

and using a change variable with u = s/r,
L;+6r 3
Ir(r) = / w(r(cos(gw —s/r),sin(3/2m — s/r)))ds

L;

L;+0 3
= / zp(r(cos(iﬂ —u),sin(3/2r — w)))rdu,

L;
and using a change of variable with v = s — L; — 0r,
I3(r) = / W((s — Li — 0r)(cos(a),sin(a)) + r(sin(«), cos()))ds
L1+0r
Lj
:/ Y(v(cos(a),sin(a)) + r(sin(a), cos(a)))dv.

0

It follows that if ¢ is s times continuously differentiable, then r — |, (xEclo:d(x,B)=r} P(x)dH(x) is

also s times continuously differentiable.

Similarly, for ¢ = 1, a curve length parametrization is given by

'Yr,l(s) =

(Lj —s,5), s €[0,L; —rcot(§)],

(rcot(a/2),s) + (s — Lj + rcot(a/2))(cos(a),sin(a)), s € [L; —rcot(§),L; + Lj — 2rcot(5)].
The smoothness of L; —rcot(§) and L; + L;j — 2r cot(§) in terms of r, smoothness of v,.1(s) in r

on each piece implies that for any function 1 : R? — R that is s times continuously differentiable,

16



we have 7+ | (xestd(x,B)=r} P(x)d$H!(x) is also s times continuously differentiable.

Hence if both y; and f are s times continuously differentiable, then both

o F)dH" (x)
{x€Ai:d(x,B)=r}

and

r— FO) e (x)dH ™ (x)
{x€As:d(x,B)=r}

are s times continuously differentiable. Since we have assumed f continuous and positive on I, it

is bounded from below on 2. Hence

0i(r) = f{xeAt:d(x,gg):T} Fx) e (x)dH4 (x)
t B f{xeAt:d(x,%’):T} f(X>d.6d—1(X)

is also s times continuously differentiable, for ¢ = 0, 1. [

Corollary SA-2 (Bias for Piecewise Linear Boundary). Suppose Assumption SA-2 holds with
d=2, and &(-,-) is the Fuclidean distance. If B is piecewise linear with finite many pieces, and

f is (p+ 1)-times continuously differentiable, then
%n t g h’p+17

fort € {0,1}.

Proof. The conclusion follows from Lemma SA-7 and Lemma SA-8. O

SA-4 Post-Aggregation Approach

Under the assumptions imposed, for t € {0, 1}, we have

~ ~ X, —
B, (x) = H*lrt;En {Rp (hx> Kn(X; —x)Yil(X; € szit)] :

where H = diag((h"")og‘v‘gp) with v running through all ‘fﬂ—t’!’ multi-indices such that |v| < p, and

= X — X; —x\ '
Tix = E, [Rp < . X) R, ( . X> Kn(X; — x)1(X; € ,th)}

The following assumption is the natural generalization of Assumption 3 in the paper to the case
d>2.

Assumption SA—4 (Kernel Function and Bandwidth). Let ¢t € {0,1}.

(i) K :R? = [0,00) is compact supported and Lipschitz continuous, or K(u) = 1(u € [—1,1]%).
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(ii) lim infh¢0 infxegg fﬁft Kh(u — x)du Z 1.

For x,x1,x2 € B and t € {0, 1}, we introduce the following quantities:
Xi — X Xz‘ — X T
I''x =E|R, T R, W Kp(X; —x)1(X; € o),
~ XZ — X X,L — X T ~ ~
Et,x1,XQ = thn |:Rp <hl> Rp <h2) Kh (Xz — Xl) Kh (Xz — X2) Si(Xl)&(Xg)ﬂ(Xi S .th):| N

Xi — X Xl — X T
Sty s = hIE [Rp <hl> R, <h2> K (X — x1) K (X — x2)02(X;)1(X; € dt)],

1 +4-1 4 1

Qt,xhxz = nhdel I‘t,xl 2t7x11x2rt7x2e1’ Qx1,X2 = QO7X1,X2 + Ql,thQ?
_ Tl —1 B
Qt,xth - nhdel I‘t,xl 2t7x17x21—‘t,)(2e17 QX1,X2 - Q0,X1,X2 + QLXLX2>

where &;(x) =Y; — 30013 L(Xi € dt)fi't(x)TRp(Xi —x) and o2(x) = V[Y;(t)|X; = x].

In addition, we have

(w) w

_ ~—1 X X, —x X;,—x _ _ _

Bix=eTx “fw!( )En[Rp( - >< - ) Kh(Xz-—x)], By = Bix — Box.
|w|=p+1

(w) w
_ X X; —x X; —x
Bix=e/T;4 > “tw,( )E[Rp ( - ) < - ) Kp(X; — x)}, Bx = Bix — Box,
|w|=p+1 '

X; —
Qt,x =E, |:Rp <hx> Kh(Xz - X)]].(XZ S ,szit)ul] ,
where u; = Yi — e 01y 1Xi € )i (X), and

~ 1 Tala ~—1 ~ ~ ~

Vt,x =h €q I‘t7x2t,x,xrt7xela Vi = Vb,x + Vl,m
1 Tl 1

‘/t,x =h € I‘t,xzt,x,xruxela Vi = VE),X + Vl,X7

Recall that we assumed, only for simplicity, that [, w(b)dH'(b) = 1. Then, the post-aggregation
estimator becomes

Tw = / 7(b)w(b) dH** (b).
R
Finally, we define the aggregated bias and variance quantities:
Bg = B, — By, %, By g = / Bipw(b)dH* ! (b),
%
Bg = Bi,g — By, Big = / B pw(b)dH ! (b),
B

Q= Qs+ Qo iy = / / Ot by by w(b1 ) (ba)dH™ (by)dH™ (bs),
B JRB
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Qg =g+ Qog, Qg = / / Qs by byw(b1)w(ba)dH% 1 (b)dH L (by),
%)%
for t € {0,1}.

SA-4.1 Preliminary Lemmas

This section states the preliminary results on matrix convergence. In what follows, we denote
X = (Xirv T 7X7—Lr) and W, = ((XI,H), T (Xr—LI—?Yn))T

Lemma SA-9 (Gram). Suppose Assumption SA-2(i)-(ii) and Assumption SA—/ hold. If logn(% =
o(1), then

=~ log(1/h ~ ~
sup HI‘t,x — I‘t,x P &é), 1 <]P’ inf H]-\t,x S sup Hrt,x ,S]P’ 17
xXERB nh XERB XERB
log(1/h)
r,,-T; ! ‘ < —
sup | =T <y 5
fort € {0,1}.
Proof. See Lemma 2.1 in the supplemental appendix of Cattaneo et al. [2025]. O

Lemma SA-10 (Bias). Suppose Assumption SA-2(i)-(iii) and Assumption SA—} hold. If log(l/h) =
o(1), then

sup [E[fi(x)[X] = pe(x)| Sp AP,
XERB

fort € {0,1}. If, in addition, h = o(1), then

Sug ‘E [ (%) X] — pe(x) — thBt,x‘ = o[p(thrl),
xXe

for t € {0,1}. Moreover, supycg |Btx — Bex| Sp %, which implies supycg |Bix| Sp 1 for
t €{0,1}.

Proof. See Lemma 2.2 in the supplemental appendix of Cattaneo et al. [2025]. O

Lemma SA-11 (Aggregated Bias Along ). Suppose Assumption SA-2(i)-(iii) and Assump-
tion SA—4 hold. If 10g 1/h =o0(1) and h = o(1), then

/% (Elf()[X] — (%)) w(x)d55 (x) = b By + op(h7+)
= hp+1Bg§ + OP(hp+1).

Proof. The conclusion follows from Lemma SA-10 and the assumption that fggw(x)dﬁd_l(x) =
1. O
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Lemma SA-12 (Stochastic Linear Approximation). Suppose Assumption SA-2(i)-(v) and As-
sumption SA—4 hold. If log(l/h) o(1), then

log(1/h) 10g(1/h)

<
oo Il 3o R
~ log(1/h) log(1/h)  log(1/h)
)X H'T; ! X‘ \/
ilelg ‘Ht(x) [ | } eH" xQix| S nhd nhd + néiﬁ hd ’
fort € {0,1}.
Proof. See Lemma 2.3 in the supplemental appendix of Cattaneo et al. [2025]. O

Lemma SA-13 (Covariance). Suppose Assumptions SA-2 and SA—/ hold. If log(l/h =o(1), then

log(1/h) +10g(1/h) sy

sup HELXMQ - Zt,X1,X2

X1,X2€R ~P nhd n2iv hd
Iy log(1/h)  log(1/h)
> Qx X2 Qx X hd v hp+1
5 o = oy (55 2R ),
fort e {0,1}.
Proof. See Lemma 2.4 from the supplemental appendix of Cattaneo et al. [2025]. O

Lemma SA-14 (Variance of Aggregated Estimator). Suppose Assumptions SA-2 and SA—j hold.
If 1Og 1/h =o(1) and h = o(1), then

a-1log(1/)! /2

VIRulX] = Qi + Op (12

) = Qg + op((nh) ™),
where

(nh)™" < Qg < (nh) ™

If, in addition, /M) — o(1), then

V[7|X] = Qg + op((nh) ™).

Proof. Observe that V[7,|X] = >,_o | V[ [z fir(b)w(b)d$H~! (b)], where for t = 0,1,
df)d 1 ‘X]

vl [
//COV fie(b1), fig (b) ‘X} (b1)w(b2)d$H% 1 (by)dH% ! (by).
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Consider

= X;—b X;—b
S = 18 Ry (X2 ) my (K22) s b, oo 010K, € 70|

(SA-T7)
Then the same argument as the proof of Lemma SA-9 implies if % = 0(1), then
— log(1/h
sup ||Et,b1,b2 - 2t7b17b2|| = OP( Lp) (SA-8)
b bR nh

Together with Lemma SA-9, we have when M =o(1),
nh

sup_[[Cov [fie(b1), fi(b2) X = Qs
b1, b2eX

= sup [[(nhh) e[ T, Sipypaly €1 — Uy bl
b1,b2€93’

log(l/h)l/2
= 0e (=)

We have assumed that K is supported on a compact set. W.l.o.g, assume the support of K has a
diameter no greater than R, 0 < R < co. Consider the set

g(h) = {(x,y) € Bx B : |x—y| <hR}. (SA-9)

Since % is d— 1 dimensional, we have m(&(h)) < h?~!, where m is the 2(d—1) dimensional Lebesgue
measure. Hence

V[/ fu(b)u(b)ds’ (b)]X] —

/ / Cov ,u,t (by) Mt(bQ)‘ } Qt,bl,bZ)w(bl)w(b2)dﬁd—1(bl)d@d—l(b2)

S sup [ Covlfiu(br), fir(b2)| X] = Qup, |
bi1,boe%

//]1((b1,b2)6%(h))w(bl)w(bg)dﬁd_l(bl)dﬁd_l(bg)

log(1/h)'/?
— Os <hd 1 (%fhc/z)g)/a )

= op((nh)™h), (SA-10)

where in the last line we have used the assumption that %

= o(1). This proves the first claim.
For the second argument,

Qo = /gg /@ Ut b, by w(by)w(ba)dH (by)dH* (b)
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IN

SUp |2y o] / / 1((b1, bs) € E(h))w(by)w(bs)d (by)ds (bs)
bi,b2e% RBJRB

< (nh®)"'m(&(h))
< (nh)_l.
This shows the upper bound. For the lower bound, let b; € % and by = by + hd for some vector

delta such that supycq Kp(x — b1)Kp(x — bg) > 0. A change of variable then implies a typical

element of ¥, p,, b, has the form

S S e AL

/ sU(s — 6) K (s)K (s + 8)o2(by + hs)ds
b1+hd;

Vv

1.

It follows that |Q b, by| = (nh?)~! for (b1, by) on a set &' (h) such that m(&’(h)) > h9~1. This
leads to the lower bound in the second claim.

The third claim follows from Lemma SA-13 and the same analysis as Equation (SA-10). O

SA-4.2 Mean Square Error Expansion

Theorem SA-3 (MSE Expansions). Suppose Assumptions SA-2 and SA—4 hold. If% =o(1)
and h = o(1), then

E[(Fw — Tw)?|X] = Qg + h*T2B% + op((nh) ") + op(h*1?).
Proof. Using the decomposition
E[(Tw — 70)?X] = V[7u|X] + (E[Fu|X] - 7)?,
the conclusion then follows from Lemmas SA-11 and SA-14. O

SA-4.3 Central Limit Theorem

The feasible t-statistics is

Theorem SA-4 (Asymptotic Normality). Suppose Assumptions SA-2 and SA—/ hold. Ifw =

n2+v pd
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o(1) and (nh)h?*2 = o(1), then

sup }]P’(Tw <) — ®(u)| = o(1).
u€R

Proof. We decompose the error 7, — 7y = (11,0 — f1,w) — (Fo,w — Mow), Where

Bow — it = /@ (71 (%) — i (3))w(x)dsy L (b)

_ _ ~—1 _ _
— /% eI T, Qs (b) + /@ e (T — T ) Qupdsy® (b) +0p (1)

linear error non-linear error

for t € {0,1}, and using Lemma SA-11 to bound the approximation error
For the non-linearity error, using X p, b, in Equation (SA-7),

B[ ([ el - ToQumio® b >)2X}
1

/ / o] (Brp — Tib ) (nh?) 155 by (B, — b Jertw(by )i (ba)ds% (by)dsy® (by).

Since X¢p, b, = 0 if by and by are farther away form each other than the diameter of Supp(K),
we can use Equation (SA-9) to get

/ / ef (Frn, — Tl )(nh®) 15, (B, — Ty Jerd ™ (b1)ds% (by)
< sup(Frp i) sup Syl sup fuo(b)|(nh)~'m(# (1))
be% b1,b2e% be%

~—1 . _ B
rg sup (Ft,b - I‘t,tl))2 sup ||2t,b1,b2 H (nh) 1)
beA

1,b2€

where the constant does not depend on n or X. Then, by Lemma SA-9 and Equation (SA-8),

~—1 . B
/gg ef (Typ — T7)Qepd$H? ™ (b)
1/2

SP{SHP(Ftb F_tl,)2 sup ||§t,b1,b2H(nh)71
beR by, b2€%

Se op((nh)™1/?)

because 26021 — o(1).

nhd
Consider now the stochastic linearized T-statistic

T, =0, / el T7 1 Qi pdH? 1 (b).
E% )
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Then, by Lemma SA-14 and the previous bounds,
s = 6-1/2 —-1/2 To—1 d—1 .
Ty —Tw=Qg"" — Qg )/ e; I' p QepdH (b) +0p(1) = 0p(1) (SA-11)
B

because 2L — 5(1) and (nh)h2+2 = o(1).
n2+v pd

Finally, we apply the Berry-Esseen lemma to the linearized statistic T,, = >y Zi, where

_ X; - b _
Z; = n_lﬁ%lﬂ/ e/ T[\R, <h> Kn(X; — b)L(X; € o)ujw(b)dH* 1 (b),
% 9

which satisfies E[Z;] = 0. The definition of Qg implies that > " | V[Z;] = Q;/QQ‘%Q;Q = 1L

Hence,

ZEHZE’ 1
— n 300" zzn;EK/gg e[ T, iR, <th> Ku(X; —b)1(X; € dt)uiw(b)dﬁdl(b))g]

Consider
G(b1,ba, bs) = g(X;, ui, b1)g(Xi, us, be)g(Xi, ui, bs),

where

X;—b

9(Xi,ui,b) = e/ TR, ( ;

) Kh(Xz — b)ﬂ(XZ S dt)uz
The same argument as Lemma SA-9 shows that

sup  E[|G(by, by, bs)|] < h %
b1,b2,b3€=%

% = o(1). Suppose the support of K has diameter less than R, and consider

when

F(h) = {(b1,ba,b3) € B : |b; —b;| < R,j = 1,2,3}.

Since & is d — 1 dimensional, m(F (h)) < h24=2. It follows that

E [( /% e/ T, R, (Xh_b> Kn(X; —b)1(X; € dt)uiw(b)df)dl(b)ﬂ
E

[/ / / G(bl,bg,bg)w(bl)w(bg)w(bg)dﬁd_l(b1)di)d_l(bg)dﬁd_l(bg)}
b1e% JboeRB Jb3eRB

<m(F(h)) sup E[G(by, by, b3)|] <nh 2

1,b2,bse
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Together with the rate of Qg from Lemma SA-14, we have
SCENZE) S (k)2
i=1

By Berry-Esseen lemma, we have

sup [B(T, < u) — 2(w)] = O((nh) /%),

and the final conclusion then follows from Equation (SA-11). O
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