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Abstract. In this article, we introduce two commands, rdpow and rdsampsi, that
conduct power calculations and survey sample selection when using local polyno-
mial estimation and inference methods in regression-discontinuity designs. rdpow

conducts power calculations using modern robust bias-corrected local polynomial
inference procedures and allows for new hypothetical sample sizes and bandwidth
selections, among other features. rdsampsi uses power calculations to compute the
minimum sample size required to achieve a desired level of power, given estimated
or user-supplied bandwidths, biases, and variances. Together, these commands
are useful when devising new experiments or surveys in regression-discontinuity
designs, which will later be analyzed using modern local polynomial techniques for
estimation, inference, and falsification. Because our commands use the community-
contributed (and R) package rdrobust for the underlying bandwidths, biases, and
variances estimation, all the options currently available in rdrobust can also be
used for power calculations and sample-size selection, including preintervention
covariate adjustment, clustered sampling, and many bandwidth selectors. Finally,
we also provide companion R functions with the same syntax and capabilities.

Keywords: st0554, rdpow, rdsampsi, regression-discontinuity designs, power cal-
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1 Introduction

Power calculations are used when designing experiments and field work in various disci-
plines in social, behavioral, and medical sciences. Recently, many empirical researchers
have designed and implemented surveys using regression-discontinuity (RD) designs. See
Imbens and Lemieux (2008); Lee and Lemieux (2010); Calonico, Cattaneo, and Titiu-
nik (2015a); Cattaneo and Escanciano (2017); Cattaneo, Titiunik, and Vazquez-Bare
(2017); Cattaneo, Idrobo, and Titiunik (Forthcoming a,b); and references therein for
introductions to RD designs. In this article, we introduce two commands (and compan-
ion R functions) specifically developed to conduct power calculations and survey sample
selection when using RD local polynomial estimation and inference methods.
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There are two main approaches to interpret and analyze RD designs in modern ap-
plied work. The first approach is based on continuity or smoothness assumptions and
typically uses local polynomial methods (for example, Calonico, Cattaneo, and Titiunik
[2014b]; Calonico, Cattaneo, and Farrell [2018a,b,c]; Calonico et al. [Forthcoming]; and
references therein). The second approach is based on a local (to the RD cutoff) indepen-
dence assumption and hence uses ideas and methods from the classical literature on the
analysis of experiments (Cattaneo, Frandsen, and Titiunik [2015]; Cattaneo, Titiunik,
and Vazquez-Bare [2017]; Sekhon and Titiunik [2017]; and references therein). Both
methods can be used for estimation, inference, and falsification in empirical work using
RD designs.

In this article, we focus on local polynomial methods and introduce the commands
rdpow and rdsampsi, which allow for power calculations and sample selection based
on large-sample approximations under continuity or smoothness assumptions. rdpow

conducts power calculations using modern robust bias-corrected local polynomial infer-
ence procedures and allows for new hypothetical sample sizes and bandwidth selections,
among other features. The companion command rdsampsi uses power calculations to
compute the minimum sample size required to achieve a desired level of power. Both
commands also offer graphical presentation of the main results. Together, these com-
mands are particularly useful when devising new experiments or surveys in RD design
settings, assuming they will later be analyzed using modern local polynomial techniques
for estimation, inference, and falsification.

The underlying main calculations (bandwidth selection, bias estimation, and vari-
ance estimation) in both commands rely on the package rdrobust (available in both
Stata and R; see Calonico, Cattaneo, and Titiunik [2014a,b] and Calonico et al. [2017]
for more details). This implies that all the options and features available in rdrobust

can be used when using our power calculation and sample selection implementations. In
particular, our commands allow for clustered sampling, preintervention covariate adjust-
ment, and different bandwidth selectors, among many other possibilities and features.

Our two commands complement the recently introduced Stata and R commands for
RD designs. See Calonico, Cattaneo, and Titiunik (2014a, 2015b) and Calonico et al.
(2017) for an introduction to the commands rdrobust, rdbwselect, and rdplot for
graphical presentation, estimation, and inference in RD designs using nonparametric lo-
cal polynomial techniques. See Cattaneo, Titiunik, and Vazquez-Bare (2016) for an in-
troduction to the commands rdrandinf, rdwinselect, rdsensitivity, and rdrbounds

for implementing randomization-based inference methods for RD designs under a local
randomization assumption. See Cattaneo, Jansson, and Ma (2018b) for an introduction
to rddensity and rdbwdensity for manipulation testing using the methods developed
in Cattaneo, Jansson, and Ma (2018a).

The rest of the article is organized as follows: Section 2 briefly reviews the main
conceptual and methodological issues underlying power calculations for RD designs when
using local polynomial inference techniques. Sections 3 and 4 provide details on the
syntax of the commands rdpow and rdsampsi, respectively. Section 5 gives a detailed
empirical illustration, and section 6 concludes.
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The latest version of this software and related software for RD designs can be found
at https://sites.google.com/site/rdpackages/.

2 Overview of methods

We briefly describe the main formulas and methods used in the commands rdpow and
rdsampsi to conduct power calculations and sample selection in RD designs when using
local polynomial methods for estimation, inference, and falsification testing. As clarified
below, the main formulas and methods require estimating several unknown quantities
such as bandwidths, biases, and variances, which are all estimated using the package
rdrobust (whenever not provided directly by the user). We do not discuss these es-
timators here but rather refer the reader to Calonico, Cattaneo, and Titiunik (2014a,
2015b), Calonico et al. (2017), and the references therein for further details.

Analyzing the statistical power of widely used RD inference procedures is important
for at least two distinct reasons. We briefly mention both now, but we will further
discuss them below in our methodology summary (this section) and in our numerical
illustration (section 5).

1. Ex-post (or observational) RD analysis. The researcher already has the final
data for analysis, and the goal is to assess the statistical power underlying the
testing procedures implemented in rdrobust. Specifically, rdpow will estimate the
statistical power of the robust bias-corrected inference methods implemented using
rdrobust for a given hypothesized RD treatment effect (denoted τA below). In this
case, the sample size is fixed, and the goal is to understand the statistical power
that different inference procedures have. For example, the researcher can compare
the statistical power between using local linear and local quadratic methods.

2. Ex-ante (or experimental) RD design. The researcher is designing a new survey
for an RD design, and the final data are not available yet. In some circumstances,
for instance, the RD design might be a preferable alternative to a classical ran-
dom assignment design, especially when such design is unfeasible for some reason
(ethical or otherwise). For example, the RD design allows for a normal program
operation—as opposed to purely randomized designs—because treatment assign-
ments for the study population are determined by rules developed by program
staff or policymakers rather than randomly assigned. In this sense, the treatment
can be targeted to those who normally receive them (for evaluations of existing
interventions) or to those who are likely to benefit most from them (for evaluations
of new interventions). In this case, rdsampsi implicitly uses power calculations.
The main goal of rdsampsi is to compute the minimal sample sizes needed to
achieve a desired level of power when the final dataset will be analyzed using the
testing procedures implemented in rdrobust. Typically, larger sample sizes are
required in RD designs to construct inference procedures with the same level of
statistical power as in classical randomized experiments.

https://sites.google.com/site/rdpackages/
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The methods developed and implemented in this article are useful for both ex-post
analysis and ex-ante design. In the remainder of this section, we first review classical
design of experiments in the context of randomized control trials and then present the
corresponding methodology for RD designs.

2.1 Review: Experimental designs

We first review standard approaches for power calculations and sample selection in
simple experiments or randomized control trials. Suppose {(Yi, Ti) : 1 ≤ i ≤ n}
is a random sample from a large population, with Ti denoting treatment status and
Yi = (1−Ti)Yi(0)+TiYi(1), with Yi(0) and Yi(1) denoting the underlying potential out-
comes without and with treatment, respectively. Here, by assumption, Ti is statistically
independent of [Yi(0), Yi(1)].

We assume the population parameter of interest is the average treatment effect
(ATE) τATE = E[Yi(1) − Yi(0)]. To fix ideas, we consider the standard difference-in-
means point estimator and corresponding t test statistic. The point estimator compares
the difference in means between treated and control units,

τ̂ATE = Y 1 − Y 0, Y 1 =
1

N1

n∑

i=1

TiYi, Y 0 =
1

N0

n∑

i=1

(1− Ti)Yi

where N0 and N1 are the sample sizes of the control and treatment groups, respectively.
If we employ a central limit theorem under appropriate regularity conditions, and if τ
is the true ATE (for example, τ = τATE under the true model), then

tATE(τ) =
τ̂ATE − τ√
V(τ̂ATE)

→d N (0, 1), V(τ̂ATE) =
σ2
1

N1
+

σ2
0

N0

where σ2
0 = V[Yi(0)] and σ2

1 = V[Yi(1)] are the population variances of the control and
treatment groups, respectively. In practice, the two unknown variances are estimated,
for instance, by

σ̂2
0 =

1

N0 − 1

n∑

i=1

(1− Ti)
(
Yi − Y 0

)2
and σ̂2

1 =
1

N1 − 1

n∑

i=1

Ti

(
Yi − Y 1

)2

respectively. Consider the two-sided hypothesis testing problem:

H0 : τ = 0 versus HA : τ = τA 6= 0

Then, the associated (asymptotic) two-sided α-level power function based on the t test
statistic and large-sample distribution theory given above is

βATE(τ) = 1− Φ

(
τ√

V(τ̂ATE)
+ z1−α/2

)
+Φ

(
τ√

V(τ̂ATE)
− z1−α/2

)
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where Φ(·) denotes the cumulative distribution function of the standard normal dis-
tribution and za denotes its a quantile; that is, za = Φ−1(a). In practice, V(τ̂ATE) is
replaced by the consistent estimator

V̂(τ̂ATE) =
σ̂2
1

N1
+

σ̂2
0

N0

Given the parameter of interest (τATE) and test statistic [tATE(τ)], one can use the
large-sample Gaussian approximation to determine i) the total sample size n = N0+N1

needed to achieve a predetermined level of power against a given alternative hypothesis
and ii) the optimal assignment of relative sample sizes N0 and N1. We briefly discuss
these choices next because the same logic will be used further below for RD designs. For
simplicity and without loss of generality, we set τATE = 0.

First, we determine the optimal relative sample size between control and treatment
groups by minimizing the asymptotic variance of the estimator, given an overall choice
of sample size n = N0 +N1. To be specific, set ̺ = N1/n, and observe that minimizing
V(τ̂ATE) with respect to ̺ gives the optimal choice:

̺ =
σ1

σ0 + σ1

For example, if σ0 = σ1, then ̺ = 1/2; thus, equal sample sizes for control and treatment
units are chosen. More generally, this approach leads to a relatively larger sample size for
the group with a relatively larger variability in the outcome variable. This optimal choice
of sample-size assignment between control and treatment groups is easily estimable in
practice: ̺̂= σ̂1/(σ̂0 + σ̂1).

Second, given the choice of ̺, we determine the total sample size

n = N0 +N1, N0 = (1− ̺)n, N1 = ̺n

using the (asymptotic) power function. Specifically, given a choice of alternative τA 6= 0
(usually determined as a fraction of σ0) and the desired power β ∈ [0, 1] (usually set at
β = 80%), the overall sample size n is chosen as the unique integer value n solving the
equation β = βATE(τA); that is,

n solves : β = 1− Φ


 τA√

σ2
1

̺n +
σ2
0

(1−̺)n

+ z1−α/2


+Φ


 τA√

σ2
1

̺n +
σ2
0

(1−̺)n

− z1−α/2




where the only unknown is n after ̺, σ2
0 , and σ2

1 are replaced by their corresponding
estimators ̺̂, σ̂2

0 , and σ̂2
1 , as commonly done in practice.

The approach above is used in empirical work to determine the total sample size,
n, and the relative proportion of sample sizes of control and treatment units, ̺. In the
following sections, we build on these ideas and apply them to the context of RD designs
using local polynomial methods.
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2.2 Regression discontinuity designs

For the remainder of this article, we study power calculation and sample selection in
RD designs. We assume that {(Yi, Ti, Xi) : 1 ≤ i ≤ n} is a random sample from a
large population, where for each unit i in the sample, Yi = (1 − Ti)Yi(0) + TiYi(1) is
the outcome variable, with Yi(0) and Yi(1) denoting the underlying potential outcomes
without and with treatment; Ti = 1(Xi < c)Ti(0) + 1(Xi ≥ c)Ti(1) is the treatment
status, with Ti(0) and Ti(1) denoting the underlying potential treatment status; Xi

denotes the so-called running variable, score, or index; and c denotes the RD cutoff.
In RD designs, treatment assignment for each unit is determined based on whether the
score Xi exceeds the known cutoff c. We cover all possible RD cases simultaneously;
therefore, we do not assume perfect compliance. That is, we do not force Ti = 1(Xi ≥ c)
as in sharp RD designs.

Our presentation is sufficiently high level enough that we avoid unnecessary repeti-
tion and overwhelming notation required to discuss each RD setting in detail, so we refer
the reader to Calonico et al. (2017) and the references therein for specific details. To be
more concrete, we denote a generic RD parameter of interest by τν , where ν = 0, 1, . . . , p
traces out the specific cases: i) ν = 0 corresponds to sharp RD cases (for example, the
average sharp RD treatment effect at the cutoff τ0 = E[Yi(1) − Yi(0)|Xi = c], or the
fuzzy RD estimand ς0 = E[Yi(1)−Yi(0)|Xi = c, compliers]); and ii) ν = 1 corresponds to
kink RD cases (for example, τ1 = ∂E[Yi(1)−Yi(0)|Xi = c]/∂c corresponds to the average
sharp kink RD treatment effect at the cutoff, and ς1 is the corresponding fuzzy–kink RD

estimand).

To describe how to do power calculations and sample selection in RD designs, and
continuing with our high level of generality, we let τ̂ν denote a generic (pth order)
local polynomial estimator constructed with bandwidths h− (for left estimation) and
h+ (for right estimation) of the corresponding RD treatment effect τν . Then, under
regularity conditions and bandwidth sequence restrictions, the following distributional
approximation holds whenever τ is the population RD treatment effect (for example,
τ = τν under the true model):

τ̂ν − τ − B√
V

→d N (0, 1) (1)

with

B = h1+p−ν
+ B+ − h1+p−ν

− B−, V =
1

nh1+2ν
+

V+ +
1

nh1+2ν
−

V−

B− and B+ denote the left and right (to the RD cutoff) misspecification biases, and
V− and V+ denote the left and right (to the RD cutoff) asymptotic variance of the RD

estimator. Depending on the estimand and estimator under consideration, the exact
form of these quantities is different. Nevertheless, the generic result above applies to
all main RD cases at this level of generality, including cases where the estimand of
interest is the fuzzy, kink, or fuzzy–kink RD parameter; cases where preintervention
covariate adjustment is considered; and cases where clustered sampling is present. For
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more details, see Calonico, Cattaneo, and Titiunik (2014b) as well as Calonico et al.
(Forthcoming) and references therein.

We use the generic large-sample Gaussian distributional approximation in (1) to
construct asymptotic power functions and to select sample sizes for survey design based
on them. Without loss of generality, we assume τν = 0 in the rest of this article.

Power calculations with misspecification bias

In this section, we consider an approach to power calculation and sample selection in RD

designs that explicitly ignores misspecification bias. This approach is not the default in
the rdpow and rdsampsi commands, but it can be recovered using some of the options
provided (more details are given below).

Misspecification bias arises when the local polynomial approximation used to esti-
mate the RD treatment effect is not good enough near the cutoff because it occurs when
a mean squared error (MSE) optimal or other “large” bandwidth is used. As in the case
of experimental designs discussed previously, the distributional result for RD designs
(1) gives a generic asymptotic power function for the corresponding (nominal) α-level
two-sided hypothesis test about τν of the form

βν(τ) = 1− Φ

(
τ + B√

V
+ z1−α/2

)
+Φ

(
τ + B√

V
− z1−α/2

)

In practice, the unknown biases, variances, and bandwidths are estimated using non-
parametric methods and accounting for the specific sampling assumptions and the spe-
cific choice of estimand and estimator. These estimates are all already available in the
package rdrobust. In general, we denote the bias estimators by B̂+ and B̂−, the vari-

ance estimators by V̂+ and V̂−, and the bandwidth estimators by ĥ+ and ĥ− (in many

applications, a common bandwidth is selected, in which case ĥ = ĥ+ = ĥ−).

Therefore, in practice all the unknown quantities can be estimated, and hence, the
power function can be computed. However, an interesting implication of the presence of
misspecification biases implies that the estimated power function will generally exhibit
size distortions (under the null hypothesis τ = τν = 0). That is, we have

β̂ν(0) = 1− Φ

(
B̂√
V̂

+ z1−α/2

)
+Φ

(
B̂√
V̂

− z1−α/2

)
> α

where

B̂ = ĥ1+p−ν
+ B̂+ − ĥ1+p−ν

− B̂−, V̂ =
1

nĥ1+2ν
+

V̂+ +
1

nĥ1+2ν
−

V̂−

Hence, conventional inference with misspecification bias will show higher power but at
the expense of size distortion, which depends on the magnitude of the bias relative to
the standard error. We discuss this point further in the empirical illustration given
below.
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Power calculations with robust bias correction

Calonico, Cattaneo, and Titiunik (2014b) and Calonico et al. (Forthcoming) develop ro-
bust bias-correction inference methods for RD designs, which allow for MSE optimal
bandwidth selection and provide higher-order refinements. See also Calonico, Cattaneo,
and Farrell (2018a,b,c) for related results. The idea is to first use an estimator of the
bias to correct the point estimator and then adjust the variance estimator to account
for the additional variability introduced by the bias estimate.

In the robust bias-correction approach, under regularity conditions, bandwidth se-
quence restrictions, and the assumption that τ is the population RD treatment effect,
the following distributional approximation holds:

τ̂ bcν − τ√
V̂bc

→d N (0, 1), τ̂ bcν = τ̂ν − B̂, V̂
bc =

1

nĥ1+2ν
+

V̂
bc
+ +

1

nĥ1+2ν
−

V̂
bc
−

V̂
bc
− and V̂

bc
+ are, respectively, consistent estimators of the asymptotic variances V

bc
− 6=

V− and V
bc
+ 6= V+. Crucially, the variances V

bc
− and V

bc
+ account for the effect of estimat-

ing the misspecification errors B− and B+, leading to hypothesis tests and confidence
interval estimators with demonstrably superior properties.

Therefore, in the robust bias-corrected framework, the generic (estimated) asymp-
totic power function for the α-level two-sided hypothesis test about τ takes the form

β̂bc
ν (τ) = 1− Φ

(
τ√
V̂bc

+ z1−α/2

)
+Φ

(
τ√
V̂bc

− z1−α/2

)

This power function is the default in rdpow and rdsampsi. We discuss some specifics
underlying these commands in the next two subsections.

rdpow: User-chosen bandwidths and sample sizes

The command rdpow computes an approximation to the power function using either the
misspecification approach (with estimated size distortion) or the robust bias-correction
approach. By default, rdpow uses the latter approach implemented via rdrobust and
setting all options to its data-driven choices whenever possible. Specifically, by default,
rdpow computes power for the robust bias-corrected statistics using all default data-
driven choices for bandwidth, bias, variance, and even alternative hypothesis τA, which
is set to half of a standard deviation of the outcome variable for the control group in
the estimated region [c − ĥ−, c), where ĥ− = ĥ+ = ĥ is (by default) the common MSE

optimal bandwidth for p = 1 according to rdrobust’s default options.

However, in practice, researchers may want to set different biases, variances, band-
widths, and effective sample sizes. rdpow allows user-specified choices of these quantities.
For example, in empirical applications, biases and variances may be estimated using a
data source, but then the researcher may want to consider a different bandwidth, sample
size, or both when planning a new survey or field work. That is, the follow-up survey
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may not use all the same data points available for estimation of biases and variances
when computing power, but perhaps focus on observations closer or further away from
the cutoff, depending on the specific field work planned.

To account for the above possibilities, rdpow allows for user-chosen biases and vari-

ances, which enter the power function directly in place of the estimated quantities V̂bc
−

and V̂
bc
+ (for robust bias-corrected methods) and B̂−, B̂+, V̂−, and V̂+ (for misspecified

methods). Furthermore, rdpow allows user-chosen bandwidths and sample sizes enter-
ing the power function, in which case the command uses the following adjusted power
function:

β̃bc
ν (τ) = 1− Φ

(
τ√
Ṽbc

+ z1−α/2

)
+Φ

(
τ√
Ṽbc

− z1−α/2

)

Ṽ
bc =

V̂
bc
+

mh1+2ν
+

+
V̂
bc
−

mh1+2ν
−

, m =
N+

Nh+

×M+ +
N−

Nh−

×M−

N− =
n∑

i=1

1(Xi < c), N+ =
n∑

i=1

1(c ≤ Xi)

Nh−
=

n∑

i=1

1(c− h− ≤ Xi < c), Nh+
=

n∑

i=1

1(c ≤ Xi ≤ c+ h+)

M− and M+ denote the new (postulated by the user) sample sizes in the neighborhoods
[c−h−, c) and [c, c+h+], respectively, for control and treatment. h− and h+ denote the
new bandwidths chosen below and above the cutoff, respectively. If M− and M+ are
not specified by the user, then rdpow sets M− = Nh−

and M+ = Nh+
, implying that

m = n. Similarly, if the user does not specify the new bandwidths h− and h+, then

rdpow sets h− = ĥ− and h+ = ĥ+; that is, rdpow uses the automatic bandwidth chosen
in a data-driven way to estimate the bias and variances entering the power function.

Finally, for power calculations with misspecification bias, the adjusted power func-
tion takes the form

β̃ν(τ) = 1− Φ

(
τ + B̃√

Ṽ

+ z1−α/2

)
+Φ

(
τ + B̃√

Ṽ

− z1−α/2

)

B̃ = h1+p−ν
+ B̂+ − h1+p−ν

− B̂−, Ṽ =
V̂+

mh1+2ν
+

+
V̂−

mh1+2ν
−

where m is constructed exactly like robust bias-corrected inference.

rdsampsi: Sample-size selection

The command rdsampsi uses the estimated, possibly adjusted, RD power functions pre-
sented above to compute the minimal sample size required to achieve a prespecified level
of power. It also computes the optimal relative sample sizes for control and treatment
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groups, following the same logic discussed previously in the context of experimental
designs. All the results are mapped to effective sample sizes within the neighborhood
around the cutoff determined by the user-supplied bandwidth or bandwidths or, if not
specified, then within the neighborhood around the cutoff determined by the estimated
bandwidth or bandwidths using rdrobust.

We first discuss selecting the relative sample sizes of control and treatment groups
within a given neighborhood around the cutoff c. Recall that rdrobust provides data-
driven point estimators of the robust bias-corrected variances at the cutoff for control
and treatment units: V̂bc

− and V̂
bc
+ . Thus, the relative (effective) control and treatment

sample sizes can be chosen in exactly the same way as previously discussed for experi-
mental designs: the estimated optimal proportion of effective treated units in RD designs
is

̺̂ν =

√
V̂bc
+√

V̂bc
− +

√
V̂bc
+

Suppose thatM is the effective sample; that is, M is the number of selected observations
in the neighborhood [c − h−, c + h+], then we recommend sampling (rounding to the
closest integer) the following number of observations on either side of the cutoff:

• M1 = ̺̂νM treatment units (that is, those with Xi ≥ c)

• M0 = (1− ̺̂ν)M control units (that is, those with Xi < c)

Finally, we discuss how to select the total number of effective observations M =
M0 + M1. As with experimental designs, the total number of observations can be
determined by preselecting a desired level of power β for a given alternative hypothesis
τA, using the power functions presented above and the already determined factor of
proportionality ̺̂ν . Specifically, the optimal effective sample sizeM in the neighborhood
[c− h−, c+ h+] is

M solves : β = 1− Φ

(
τA√

(

V bc

+ z1−α/2

)
+Φ

(
τA√

(

V bc

− z1−α/2

)

where

(

V
bc =

1

M
× 1

N+

Nh+

× ̺̂ν + N−

Nh−

× (1− ̺̂ν)
×
(

V̂
bc
+

h1+2ν
+

+
V̂
bc
−

h1+2ν
−

)

How to survey or sample in RD designs

For internal validity in RD designs, it is always best to first sample observations that
are the closest to the cutoff c in terms of their running variable Xi because of the
same assumptions underlying identification, estimation, and inference methods based on
continuity or smoothness of the unknown conditional expectations. In this framework,
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the parameter of interest is defined at the cutoff c, so having observations as close as
possible to Xi = c is most useful.

Therefore, once M0 and M1 are determined, the actual sampling or field work is
straightforward:

1. Order control (Xi < c) and treatment (Xi ≥ c) observations in terms of their
distance to the cutoff (|Xi − c|).

2. Begin sampling with the closest observation to the cutoff in each group, and
continue sampling in order according to their distance to the cutoff, within each
group, until the desired M0 and M1 sample sizes are reached.

Clustered sampling

All the results above apply directly to independent and identically distributed sampling
and can be extended to clustered sampling. Estimation of unknown biases and vari-
ances, both with misspecification and with robust bias correction, is readily available via
rdrobust. Therefore, power calculations and sample-size selection at the cluster level
are also readily available in our commands rdpow and rdsampsi. We do not discuss
details here to avoid repetition and overwhelming notation.

3 The rdpow command

In this section, we describe the syntax of the command rdpow, which performs power
calculations using robust bias-corrected local polynomial techniques for inference. This
command is useful for ex-post RD analysis and an input for ex-ante RD analysis via
the companion command rdsampsi. Options highlighted in gray are passed directly to
rdrobust, while the options in black are specific to this command.

3.1 Syntax

rdpow depvar runvar
[
if
] [

in
] [

, c(#) tau(#) alpha(#)

nsamples(# # # #) sampsi(# #) samph(# #) all plot

graph range(# #) graph step(#) graph options(graph opt) bias(# #)

variance(# #) covs(covars) deriv(dvalue) p(#) q(#) h(hvalueL hvalueR)

b(bvalueL bvalueR) rho(#) fuzzy(fuzzyvar
[
sharpbw

]
) kernel(kernelfn)

bwselect(bwmethod) vce(vcemethod) scalepar(#) scaleregul(#)
]

where depvar is the dependent variable and runvar is the running variable (also known
as the score or forcing variable).
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3.2 Options

c(#) specifies the RD cutoff. The default is c(0).

tau(#) specifies the treatment effect under the alternative at which the power function
is evaluated. The default is half the standard deviation of the outcome for the
untreated group.

alpha(#) specifies the significance level for the power function. The default is
alpha(0.05).

nsamples(# # # #) sets the total sample size to the left, sample size to the left inside
the bandwidth, total sample size to the right, and sample size to the right of the
cutoff inside the bandwidth to calculate the variance when the running variable is
not specified. By default, the values are calculated using the running variable.

sampsi(# #) sets the sample size at each side of the cutoff for power calculation. The
first number is the sample size to the left of the cutoff, and the second number is the
sample size to the right. The default values are the sample sizes inside the chosen
bandwidth.

samph(# #) sets the bandwidths at each side of the cutoff for power calculation. The
first number is the bandwidth to the left of the cutoff, and the second number is the
bandwidth to the right. The default values are the bandwidths used by rdrobust.

all displays the power using the conventional variance estimator and the robust bias-
corrected one.

plot plots the power function using the robust bias-corrected standard errors from
rdrobust. If all is specified, the conventional power function is also plotted.

graph range(# #) specifies the range of the plot when the plot option is used. The
default range is [−1.5× τ ; 1.5× τ ].

graph step(#) specifies the step increment of the plot when the plot option is used.
The default is graph step(0.2*range).

graph options(graph opt) specifies the graph options (title, axes titles, etc.) to be
passed to the plot when the plot option is used.

bias(# #) allows the user to set bias to the left and right of the cutoff. By default,
the biases are estimated using rdrobust.

variance(# #) allows the user to set variance to the left and right of the cutoff. By
default, the variances are estimated using rdrobust.

The following options are passed to rdrobust:

covs(covars) specifies the list of covariates to be used for covariate adjustment.
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deriv(dvalue) specifies the order of the derivative of the regression functions to be
estimated. The default is deriv(0) (sharp RD or fuzzy RD if fuzzy() is also spec-
ified). Setting deriv(1) results in estimation of a kink RD design (up to scale) or
fuzzy–kink RD if fuzzy() is also specified.

p(#) specifies the order of the local polynomial to be used to construct the point
estimator. The default is p(1) (local linear regression).

q(#) specifies the order of the local polynomial to be used to construct the bias cor-
rection. The default is q(2) (local quadratic regression).

h(hvalueL hvalueR) specifies the main bandwidth, h, to be used on the left and on the
right of the cutoff, respectively. If only one value is specified, then this value is used
on both sides. By default, the bandwidth or bandwidths h are computed by the
companion command rdbwselect.

b(bvalueL bvalueR) specifies the bias bandwidth, b, to be used on the left and on the
right of the cutoff, respectively. If only one value is specified, then this value is used
on both sides. By default, the bandwidth or bandwidths b are computed by the
companion command rdbwselect.

rho(#) specifies the value of ρ so that the bias bandwidth, b, equals b = h/ρ. The
default is rho(1) if h is specified but b is not.

fuzzy(fuzzyvar
[
sharpbw

]
) specifies the treatment status variable used to implement

fuzzy RD estimation (or fuzzy–kink RD if deriv(1) is also specified). The default is
sharp RD design. If the sharpbw option is set, the fuzzy RD estimation is performed
using a bandwidth selection procedure for the sharp RD model. This option is
automatically selected if there is perfect compliance at either side of the threshold.

kernel(kernelfn) specifies the kernel function used to construct the local polynomial
estimators. kernelfn may be triangular, uniform, or epanechnikov. The default
is kernel(triangular).

bwselect(bwmethod) specifies the bandwidth selection procedure to be used. By de-
fault, it computes both h and b unless ρ is specified, in which case it computes only
h and sets b = h/ρ. Implementation and numerical details are given in references
mentioned previously. bwmethod may be one of the following:

mserd specifies one common MSE-optimal bandwidth selector for the RD treatment-
effect estimator. This is the default.

msetwo specifies two MSE-optimal bandwidth selectors (below and above the cutoff)
for the RD treatment-effect estimator.

msesum specifies one common MSE-optimal bandwidth selector for the sum of regres-
sion estimates (as opposed to the difference thereof).

msecomb1 specifies min(mserd, msesum).

msecomb2 specifies the median(msetwo, mserd, msesum) for each side of the cutoff
separately.
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cerrd specifies one common coverage error-rate (CER)-optimal bandwidth selector
for the RD treatment-effect estimator.

certwo specifies two CER-optimal bandwidth selectors (below and above the cutoff)
for the RD treatment-effect estimator.

cersum specifies one common CER-optimal bandwidth selector for the sum of regres-
sion estimates (as opposed to the difference thereof).

cercomb1 specifies min(cerrd, cersum).

cercomb2 specifies the median(certwo, cerrd, cersum) for each side of the cutoff
separately.

vce(vcemethod) specifies the procedure used to compute the variance–covariance matrix
estimator. Implementation and numerical details are given in references mentioned
previously. vcemethod may be one of the following:

nn
[
nnmatch

]
specifies a heteroskedasticity-robust nearest-neighbor variance esti-

mator with nnmatch indicating the minimum number of neighbors to be used.
The default is vce(nn 3).

hc0 specifies a heteroskedasticity-robust plugin residuals variance estimator.

hc1 specifies a heteroskedasticity-robust plugin residuals variance estimator.

hc2 specifies a heteroskedasticity-robust plugin residuals variance estimator.

hc3 specifies a heteroskedasticity-robust plugin residuals variance estimator.

nncluster clustervar
[
nnmatch

]
specifies a cluster–robust nearest-neighbor vari-

ance estimator with clustervar indicating the cluster ID variable and nnmatch
indicating the minimum number of neighbors to be used.

cluster clustervar specifies a cluster–robust plugin residuals variance estimator with
degrees-of-freedom weights and clustervar indicating the cluster ID variable.

scalepar(#) specifies the scaling factor for the RD parameter of interest. This option
is useful when the population parameter of interest involves a known multiplicative
factor (for example, sharp kink RD). The default is scalepar(1) (no scaling).

scaleregul(#) specifies the scaling factor for the regularization term added to the
denominator of the bandwidth selectors. Setting scaleregulvalue(0) removes the
regularization term from the bandwidth selectors. The default is scaleregul(1).

4 The rdsampsi command

This section describes the syntax of the command rdsampsi, which performs sample-
size calculations using robust bias-corrected local polynomial techniques for inference
in RD designs. This command is most useful for ex-ante RD design and relies on the
companion command rdpow for power calculations. Options highlighted in gray are
passed directly to rdrobust, while the options in black are specific to this command.
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4.1 Syntax

rdsampsi depvar runvar
[
if
] [

in
] [

, c(#) tau(#) alpha(#) beta(#)

nsamples(# # # #) samph(# #) all plot graph range(# #)

graph step(#) graph options(graph opt) bias(# #) variance(# #)

nratio(#) init cond(#) covs(covars) deriv(dvalue) p(#) q(#)

h(hvalueL hvalueR) b(bvalueL bvalueR) rho(#) fuzzy(fuzzyvar
[
sharpbw

]
)

kernel(kernelfn) bwselect(bwmethod) vce(vcemethod) scalepar(#)

scaleregul(#)
]

where depvar is the dependent variable and runvar is the running variable (also known
as the score or forcing variable).

4.2 Options

c(#) specifies the RD cutoff. The default is c(0).

tau(#) specifies the treatment effect under the alternative at which the power function
is evaluated. The default is half the standard deviation of the outcome for the
untreated group.

alpha(#) specifies the significance level for the power function. The default is
alpha(0.05).

beta(#) specifies the desired power. The default is beta(0.8).

nsamples(# # # #) sets the total sample size to the left, sample size to the left inside
the bandwidth, total sample size to the right, and sample size to the right of the
cutoff inside the bandwidth to calculate the variance when the running variable is
not specified. By default, the values are calculated using the running variable.

samph(# #) sets the bandwidths at each side of the cutoff for power calculation. The
first number is the bandwidth to the left of the cutoff, and the second number is the
bandwidth to the right. The default values are the bandwidths used by rdrobust.

all displays the power using the conventional variance estimator and the robust bias-
corrected one.

plot plots the power function using the robust bias-corrected standard errors from
rdrobust. If all is specified, the conventional power function is also plotted.

graph range(# #) specifies the range of the plot when the plot option is used. The
default range is [−1.5× τ ; 1.5× τ ].

graph step(#) specifies the step increment of the plot when the plot option is used.
The default is graph step(0.2*range).
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graph options(graph opt) specifies the graph options (title, axes titles, etc.) to be
passed to the plot when the plot option is used.

bias(# #) allows the user to set bias to the left and right of the cutoff. By default,
the biases are estimated using rdrobust.

variance(# #) allows the user to set variance to the left and right of the cutoff. By
default, the variances are estimated using rdrobust.

nratio(#) specifies the proportion of treated units in the window. The default is the
ratio of the standard deviation of the treated to the sum of the standard deviations
for treated and controls.

init cond(#) sets the initial condition for the Newton–Raphson algorithm that finds
the sample size. The default is the number of observations in the sample with
nonmissing values of the outcome and running variable.

The following options are passed to rdrobust:

covs(covars) specifies the list of covariates to be used for covariate adjustment.

deriv(dvalue) specifies the order of the derivative of the regression functions to be
estimated. The default is deriv(0) (sharp RD or fuzzy RD if fuzzy() is also spec-
ified). Setting deriv(1) results in estimation of a kink RD design (up to scale) or
fuzzy–kink RD if fuzzy() is also specified.

p(#) specifies the order of the local polynomial to be used to construct the point
estimator. The default is p(1) (local linear regression).

q(#) specifies the order of the local polynomial to be used to construct the bias cor-
rection. The default is q(2) (local quadratic regression).

h(hvalueL hvalueR) specifies the main bandwidth, h, to be used on the left and on the
right of the cutoff, respectively. If only one value is specified, then this value is used
on both sides. By default, the bandwidth or bandwidths h are computed by the
companion command rdbwselect.

b(bvalueL bvalueR) specifies the values of the bias bandwidth, b, to be used on the
left and on the right of the cutoff, respectively. If only one value is specified, then
this value is used on both sides. By default, the bandwidth or bandwidths b are
computed by the companion command rdbwselect.

rho(#) specifies the value of ρ so that the bias bandwidth, b, equals b = h/ρ. The
default is rho(1) if h is specified but b is not.

fuzzy(fuzzyvar
[
sharpbw

]
) is the treatment status variable used to implement fuzzy

RD estimation (or fuzzy–kink RD if deriv(1) is also specified). The additional
option sharpbw forces bandwidth selection for the numerator of the fuzzy RD design
estimator (that is, the sharp RD intention-to-treat estimator).
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kernel(kernelfn) specifies the kernel function used to construct the local polynomial
estimators. kernelfn may be triangular, uniform, and epanechnikov. The default
is kernel(triangular).

bwselect(bwmethod) specifies the bandwidth selection procedure to be used. By default
it computes both h and b, unless ρ is specified, in which case it computes only h
and sets b = h/ρ. Implementation and numerical details are given in the references
mentioned previously. bwmethod may be one of the following:

mserd specifies one common MSE-optimal bandwidth selector for the RD treatment-
effect estimator. mserd is the default.

msetwo specifies two MSE-optimal bandwidth selectors (below and above the cutoff)
for the RD treatment-effect estimator.

msesum specifies one common MSE-optimal bandwidth selector for the sum of regres-
sion estimates (as opposed to the difference thereof).

msecomb1 specifies min(mserd, msesum).

msecomb2 specifies the median(msetwo, mserd, msesum) for each side of the cutoff
separately.

cerrd specifies one common CER-optimal bandwidth selector for the RD treatment-
effect estimator.

certwo specifies two CER-optimal bandwidth selectors (below and above the cutoff)
for the RD treatment-effect estimator.

cersum specifies one common CER-optimal bandwidth selector for the sum of regres-
sion estimates (as opposed to the difference thereof).

cercomb1 specifies min(cerrd, cersum).

cercomb2 specifies the median(certwo, cerrd, cersum) for each side of the cutoff
separately.

vce(vcemethod) specifies the procedure used to compute the variance–covariance matrix
estimator. Implementation and numerical details are given in references mentioned
previously. vcemethod may be one of the following:

nn
[
nnmatch

]
specifies a heteroskedasticity-robust nearest-neighbor variance esti-

mator with nnmatch indicating the minimum number of neighbors to be used.
The default is vce(nn 3).

hc0 specifies a heteroskedasticity-robust plugin residuals variance estimator without
weights.

hc1 specifies a heteroskedasticity-robust plugin residuals variance estimator with
hc1 weights.

hc2 specifies a heteroskedasticity-robust plugin residuals variance estimator with
hc2 weights.
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hc3 specifies a heteroskedasticity-robust plugin residuals variance estimator with
hc3 weights.

nncluster clustervar
[
nnmatch

]
specifies a cluster–robust nearest-neighbor vari-

ance estimator with clustervar indicating the cluster ID variable and nnmatch
indicating the minimum number of neighbors to be used.

cluster clustervar specifies a cluster–robust plugin residuals variance estimator with
degrees-of-freedom weights and clustervar indicating the cluster ID variable.

scalepar(#) specifies the scaling factor for the RD parameter of interest. This option
is useful when the population parameter of interest involves a known multiplicative
factor (for example, sharp kink RD). The default is scalepar(1) (no scaling).

scaleregul(#) specifies the scaling factor for the regularization terms of bandwidth
selectors. Setting scaleregulvalue(0) removes the regularization term from the
bandwidth selectors. The default is scaleregul(1).

5 Illustration of methods

We illustrate our commands using the dataset from Cattaneo, Frandsen, and Titiunik
(2015), which has also been used to illustrate related RD methods (Calonico, Catta-
neo, and Titiunik 2014a, 2015b; Cattaneo, Titiunik, and Vazquez-Bare 2017; Cattaneo,
Jansson, and Ma 2018b).

The dataset rdpower senate.dta contains information on 1,390 U.S. Senate elec-
tions between 1914 and 2010 and was used before to analyze the effect of the incumbent
status of a political party on the probability of winning future elections. The running
variable in this dataset is demmv, the Democratic margin of victory in a statewide Senate
election at time t, defined as the difference in vote share between the Democratic party
and its strongest opponent. A positive value of the running variable indicates that the
Democratic party won the election, and the cutoff is therefore r = 0.

We start by loading the dataset and providing some descriptive statistics:

. use rdpower_senate.dta

. summarize demmv demvoteshfor2 population dopen dmidterm

Variable Obs Mean Std. Dev. Min Max

demmv 1,390 7.171159 34.32488 -100 100
demvoteshf~2 1,297 52.66627 18.12219 0 100

population 1,390 3827919 4436950 78000 3.73e+07
dopen 1,380 .2471014 .4314826 0 1

dmidterm 1,390 .5136691 .499993 0 1

The running variable ranges from −100 to 100 with an average of 7 percentage
points. The outcome of interest is demvoteshfor2, the Democratic vote share in the
following election for the same Senate seat—which, given the staggered nature of senate
elections in the United States, occurs two elections later at t+ 2.
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5.1 Power calculations using rdpow

The most basic syntax to calculate power against an alternative hypothesis of τ = 5 is
the following:

. rdpow demvoteshfor2 demmv, tau(5)

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 17.708 17.708
New sample 359 322

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.088 0.300 0.631 0.818

The output of rdpow is divided in three panels. The upper-left panel shows some
descriptive statistics and parameters, including the number of observations at each side
of the cutoff the number of observations inside the chosen window, the order of the local
polynomials, used to estimate the effect and the bias, the corresponding bandwidths at
each side of the cutoff, and the ratio between these two. The upper-right panel displays
the number of observations in the sample and specifies the selected options for the
command, namely, the bandwidth selector, kernel, variance estimation method, and
value of the treatment effect under the alternative (τ). Finally, the bottom panel shows
the size of the test (that is, the value of the power function at the null hypothesis of
τ = 0) and the power of the test against values under the alternative that range from
0.2τ to τ (hence, the power for the value selected by the user is given in the last column).
Note that, by construction, the value in the first column will be equal to the significance
level (although this may not be true when using conventional inference, as explained
later). By default, this panel uses the robust bias-corrected estimator (see section 2 and
references therein for details).
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The output shows that the power against τ = 5 is 0.818, which is slightly above
the usual threshold of 0.8. In many contexts, empirical researchers include covariates
hoping to reduce the variability of the estimator. This option can be added to the rdpow
command as follows:

. rdpow demvoteshfor2 demmv, tau(5) covs(population dopen dmidterm)

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 358 317 VCE method = NN
BW loc. poly. (h) 17.415 17.415 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 17.415 17.415
New sample 358 317

Outcome: demvoteshfor2. Running variable: demmv. Number of covariates: 3.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.088 0.296 0.624 0.812

However, in this case there seems to be no gain in power by including covariates.
Note that when the covs() option is specified, the output displays the number of
included covariates in the line just above the bottom panel.

The plot option allows the user to plot the power function. The graph range() and
graph step() options can be used to change the labeling of the x axis. Additionally,
the graph options() option can be used to change the appearance of the graph. For
instance, the following syntax yields the graph shown in figure 1:

. rdpow demvoteshfor2 demmv, tau(5) plot graph_range(-9 9) graph_step(2)
> graph_options(title(Power function)
> xline(0, lcolor(black) lpattern(dash))
> yline(.05, lpattern(shortdash) lcolor(black))
> xtitle(tau) ytitle(power)
> graphregion(fcolor(white)))

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 17.708 17.708
New sample 359 322

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.088 0.300 0.631 0.818
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Figure 1. Robust bias-corrected power function

By default, rdpow uses rdrobust to select the bandwidths used to estimate the effect
and the bias. The user can manually specify these bandwidths using the h() and b()

options:

. rdpow demvoteshfor2 demmv, tau(5) h(16 18) b(18 20)

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = Manual

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 332 325 VCE method = NN
BW loc. poly. (h) 16.000 18.000 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 16.000 18.000
New sample 332 325

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.079 0.240 0.517 0.707
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rdpow allows for most of the options from rdrobust. For instance, the following
syntax specifies a uniform kernel and clusters the standard errors at the state level:

. rdpow demvoteshfor2 demmv, tau(5) kernel(uniform) vce(cluster state)

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Uniform
Eff. Number of obs 295 258 VCE method = Cluster
BW loc. poly. (h) 13.242 13.242 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 13.242 13.242
New sample 49 48

Number of clusters 50 50

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.114 0.454 0.839 0.958

Standard errors clustered by state.

On the other hand, the following syntax specifies different CER-optimal bandwidths
at each side of the cutoff, a heteroskedasticity-robust plugin residuals variance estimator
with hc3 weights, removes the regularization term from the bandwidth selectors, and
sets equal bandwidths for the estimator and bias terms (see Calonico, Cattaneo, and
Titiunik [2014a] and Calonico et al. [2017] for technical details):

. rdpow demvoteshfor2 demmv, tau(5) bwselect(certwo) vce(hc3) scaleregul(0) rho(1)

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = certwo

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 393 401 VCE method = HC3
BW loc. poly. (h) 20.524 24.805 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 20.524 24.805
New sample 393 401

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.082 0.259 0.556 0.747
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Finally, the all option allows the user to compare the robust bias-correction and
conventional approaches:

. rdpow demvoteshfor2 demmv, tau(5) all

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000
Size dist = 0.0133

Sampling BW 17.708 17.708
New sample 359 322

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.088 0.300 0.631 0.818
Conventional 0.063 0.176 0.537 0.868 0.964

In this case, we see that the conventional approach yields higher power but at the
expense of ignoring the misspecification bias, which creates a size distortion of 0.0133.

Manually setting bias and variance

By default, rdpow uses rdrobust to estimate the bias and variance of the local poly-
nomial estimator. However, the user can also manually specify the desired bias and
variance used to calculate power. We will start by illustrating how to replicate the
results from rdrobust but setting the bias and variance manually. The code to perform
this calculation is as follows:
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. quietly rdrobust demvoteshfor2 demmv

. local samph = e(h_l)

. local sampsi_l = e(N_h_l)

. local sampsi_r = e(N_h_r)

. local bias_l = e(bias_l)/e(h_l)

. local bias_r = e(bias_r)/e(h_r)

. matrix VL_RB = e(V_rb_l)

. matrix VR_RB = e(V_rb_r)

. local Vl_rb = e(N)*e(h_l)*VL_RB[1,1]

. local Vr_rb = e(N)*e(h_r)*VR_RB[1,1]

. rdpow demvoteshfor2 demmv, tau(5) bias(`bias_l´ `bias_r´)
> var(`Vl_rb´ `Vr_rb´) samph(`samph´) sampsi(`sampsi_l´ `sampsi_r´)

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = .

Number of obs 595 702 Kernel = .
Eff. Number of obs 359 322 VCE method = .
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 17.708 17.708
New sample 359 322

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.088 0.300 0.631 0.818

The first line simply runs rdrobust (omitting the output). The following three lines
save the bandwidth and sample sizes inside the window. Next, we save the bias and
variance to the left and right of the cutoff. Because these terms include the rates (see
section 2), we must rescale the bias by dividing it by h1+p−ν and the variance by nh1+2ν

(with p = 1 and ν = 0 in this case). Once these magnitudes are obtained, we simply add
them to the rdpow syntax using the bias() and variance() options. As we can see in
the output above, the results are identical to those using rdrobust from within rdpow,
with the difference that some values are missing from the output because rdrobust is
actually not run.

The asymptotic variances of the local polynomial estimator at each side of the cutoff
take the following form,

V+ →P

σ2
+(c)

f(c)
× C+ and V− →P

σ2
−(c)

f(c)
× C−

where σ2
+(c) = limx↓c V{Yi(1)|Xi = x}, σ2

−(c) = limx↑c V{Yi(0)|Xi = x}, f(c) is the
density of the running variable at the cutoff and C−, C+ are constants that capture
the variability of the design (depending on the kernel and the order of the polynomial,
among other things).
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These terms may be hard to interpret in practice, so the user will rarely have a
specific number for these magnitudes to specify as an option of rdpow. However, it is
easy to answer the question of how the power decreases if the variance increases by, say,
20%. To do this, we simply take the variance estimates from rdrobust and multiply
them by 1.2, as follows:

. quietly rdrobust demvoteshfor2 demmv

. matrix VL_RB = e(V_rb_l)

. matrix VR_RB = e(V_rb_r)

. local Vl_rb = e(N)*e(h_l)*VL_RB[1,1]*1.2

. local Vr_rb = e(N)*e(h_r)*VR_RB[1,1]*1.2

. rdpow demvoteshfor2 demmv, tau(5) var(`Vl_rb´ `Vr_rb´)

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 17.708 17.708
New sample 359 322

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.082 0.258 0.554 0.745

We see that the power decreases from 0.818 to 0.745 after increasing the variance
terms by 20%.

Finally, rdpow can be run without reference to the data. In practice, the researcher
must input estimates of the biases, variances, sample sizes, and bandwidths at each side
of the cutoff. The following code illustrates how to do this by using all the numbers
calculated from rdrobust.
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. quietly rdpow demvoteshfor2 demmv, tau(5)

. rdpow, tau(5) nsamples(r(N_l) r(N_h_l) r(N_r) r(N_h_r))
> bias(r(bias_l) r(bias_r))
> var(r(Vl_rb) r(Vr_rb)) sampsi(r(sampsi_l) r(sampsi_r))
> samph(r(samph_l) r(samph_r))

Cutoff c = 0 Left of c Right of c Number of obs = .
BW type = .

Number of obs . . Kernel = .
Eff. Number of obs . . VCE method = .
BW loc. poly. (h) . . Derivative = 0

Order loc. poly. (p) . . HA: tau = 5.000

Sampling BW 17.708 17.708
New sample 359 322

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.088 0.300 0.631 0.818

5.2 Comparing power across specifications

By changing the different options in rdpow, the user can compare the power given by
different estimation or inference strategies, as described in section 2. The outputs below
show the power for a given bandwidth (equal to 20) when using a linear and quadratic
specification. The output shows that, for this given bandwidth, the linear specification
has higher power.

. rdpow demvoteshfor2 demmv, tau(5) p(1) h(20) plot

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = Manual

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 389 346 VCE method = NN
BW loc. poly. (h) 20.000 20.000 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 20.000 20.000
New sample 389 346

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.080 0.248 0.534 0.724
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. rdpow demvoteshfor2 demmv, tau(5) p(2) h(20) plot

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = Manual

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 389 346 VCE method = NN
BW loc. poly. (h) 20.000 20.000 Derivative = 0

Order loc. poly. (p) 2 2 HA: tau = 5.000

Sampling BW 20.000 20.000
New sample 389 346

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.067 0.162 0.339 0.488

The two outputs below illustrate the same idea but using optimal bandwidths for
each specification. Using the optimal bandwidth increases power compared with the
previous case, and again, the linear specification has higher ex-post power compared
with the quadratic specification.

. rdpow demvoteshfor2 demmv, tau(5) p(1) plot

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 17.708 17.708
New sample 359 322

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.088 0.300 0.631 0.818
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. rdpow demvoteshfor2 demmv, tau(5) p(2) plot

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 409 370 VCE method = NN
BW loc. poly. (h) 22.210 22.210 Derivative = 0

Order loc. poly. (p) 2 2 HA: tau = 5.000

Sampling BW 22.210 22.210
New sample 409 370

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.077 0.223 0.480 0.666

These facts are illustrated in figure 2, which depicts the power functions for these
cases.
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(a) Linear, fixed bandwidth (h = 20)
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(b) Quadratic, fixed bandwidth (h = 20)
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(c) Linear, MSE optimal bandwidth
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Figure 2. Comparing power across specifications
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5.3 Sample-size calculation using rdsampsi

The syntax of rdsampsi is similar to that of rdrobust. The most basic syntax to
calculate the sample size to the left and right of the cutoff for an alternative of τ = 5 is

. rdsampsi demvoteshfor2 demmv, tau(5)
Calculating sample size...
Sample size obtained.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000
Power = 0.800

Sampling BW 17.708 17.708

Outcome: demvoteshfor2. Running variable: demmv.

Chosen sample sizes Sample size in window Proportion
[c-h,c) [c,c+h] Total [c,c+h]

Robust bias-corrected 290 366 656 0.443

As with rdpow, the output of rdsampsi is divided in three panels. The upper-left
panel displays the total number of observations at each side of the cutoff, the number
of observations in the specified bandwidth (by default, the rdrobust bandwidth), the
bandwidth chosen for rdrobust, and the sampling bandwidth chosen. The upper-
right panel displays the total number of observations in the sample, some rdrobust

options, the desired effect (τ), and the desired power. The main panel shows the number
of observations inside the window at each side of the cutoff required to achieve the
specified power and the proportion of units to the right of the cutoff inside the window.
By default, this ratio is estimated using the variances of each group as explained in
section 2. In this example, given the chosen parameters, we need 656 observations
inside the window, 290 to the left, and 366 to the right of the cutoff.
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The user can specify the desired power level, sampling bandwidths, and proportion
of treated units, then plot the resulting power function (see figure 3). The syntax is the
following:

. rdsampsi demvoteshfor2 demmv, tau(5) beta(.9) samph(18 19) nratio(.5) plot
Calculating sample size...
Sample size obtained.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000
Power = 0.900

Sampling BW 18.000 19.000

Outcome: demvoteshfor2. Running variable: demmv.

Chosen sample sizes Sample size in window Proportion
[c-h,c) [c,c+h] Total [c,c+h]

Robust bias-corrected 431 431 862 0.500

0
.2

.4
.6

.8
1

p
o
w

e
r

0 130 260 390 520 650 780 910 1040 1170 1300
total sample size in window

Power function for tau = 5, alpha = .05, beta = .9 (horizontal dashed line).

Figure 3. Robust bias-corrected power function
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Note that the variances can be adjusted exactly as explained in the previous sub-
section for rdpow. As before, the all option adds the results based on the conventional
approach to the output:

. rdsampsi demvoteshfor2 demmv, tau(5) all
Calculating sample size...
Sample size obtained.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000
Power = 0.800

Sampling BW 17.708 17.708 Size dist. = 0.057

Outcome: demvoteshfor2. Running variable: demmv.

Chosen sample sizes Sample size in window Proportion
[c-h,c) [c,c+h] Total [c,c+h]

Robust bias-corrected 290 366 656 0.443
Conventional 173 208 381 0.453

The conventional approach yields a smaller sample size but generates a size distortion
of 0.057.

A final check can be done by evaluating rdpow using the sample sizes obtained via
rdsampsi, as follows:

. quietly rdsampsi demvoteshfor2 demmv, tau(5)

. rdpow demvoteshfor2 demmv, tau(5) sampsi(r(sampsi_h_l) r(sampsi_h_r))

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000

Sampling BW 17.708 17.708
New sample 290 366

Outcome: demvoteshfor2. Running variable: demmv.

Power against: H0: tau= 0.2*tau = 0.5*tau = 0.8*tau = tau =
0.000 1.000 2.500 4.000 5.000

Robust bias-corrected 0.050 0.088 0.296 0.625 0.813

As we can see from the above output, rdsampsi yields a slightly conservative sample
size because of the rounding needed to obtain integer numbers. The obtained power is
0.813, which is close to the desired value of 0.8.
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Like rdpow, rdsampsi can be used without data, as illustrated in the following code:

. quietly rdsampsi demvoteshfor2 demmv, tau(5)

. local init = r(init_cond)

. rdsampsi, tau(5) nsamples(r(N_l) r(N_h_l) r(N_r) r(N_h_r))
> bias(r(bias_l) r(bias_r))
> var(r(var_l) r(var_r))
> samph(r(samph_l) r(samph_r))
> init_cond(`init´)
Calculating sample size...
Sample size obtained.

Cutoff c = 0 Left of c Right of c Number of obs = .
BW type = .

Number of obs . . Kernel = .
Eff. Number of obs . . VCE method = .
BW loc. poly. (h) . . Derivative = 0

Order loc. poly. (p) . . HA: tau = 5.000
Power = 0.800

Sampling BW 17.708 17.708

Chosen sample sizes Sample size in window Proportion
[c-h,c) [c,c+h] Total [c,c+h]

Robust bias-corrected 290 366 656 0.443

Finally, rdsampsi can be used to compare required sample sizes across specifications.
Below, we compare required sample sizes for a local constant specification, which is the
one used in a randomized control trial, and a local linear specification with a fixed
bandwidth (h = 20) and the MSE optimal bandwidth.

. rdsampsi demvoteshfor2 demmv, tau(5) p(0) h(20) plot
Calculating sample size...
Sample size obtained.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = Manual

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 389 346 VCE method = NN
BW loc. poly. (h) 20.000 20.000 Derivative = 0

Order loc. poly. (p) 0 0 HA: tau = 5.000
Power = 0.800

Sampling BW 20.000 20.000

Outcome: demvoteshfor2. Running variable: demmv.

Chosen sample sizes Sample size in window Proportion
[c-h,c) [c,c+h] Total [c,c+h]

Robust bias-corrected 204 239 443 0.460
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. rdsampsi demvoteshfor2 demmv, tau(5) p(1) h(20) plot
Calculating sample size...
Sample size obtained.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = Manual

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 389 346 VCE method = NN
BW loc. poly. (h) 20.000 20.000 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000
Power = 0.800

Sampling BW 20.000 20.000

Outcome: demvoteshfor2. Running variable: demmv.

Chosen sample sizes Sample size in window Proportion
[c-h,c) [c,c+h] Total [c,c+h]

Robust bias-corrected 388 506 894 0.434

. rdsampsi demvoteshfor2 demmv, tau(5) p(0) plot
Calculating sample size...
Sample size obtained.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 143 131 VCE method = NN
BW loc. poly. (h) 5.906 5.906 Derivative = 0

Order loc. poly. (p) 0 0 HA: tau = 5.000
Power = 0.800

Sampling BW 5.906 5.906

Outcome: demvoteshfor2. Running variable: demmv.

Chosen sample sizes Sample size in window Proportion
[c-h,c) [c,c+h] Total [c,c+h]

Robust bias-corrected 96 118 214 0.448

. rdsampsi demvoteshfor2 demmv, tau(5) p(1) plot
Calculating sample size...
Sample size obtained.

Cutoff c = 0 Left of c Right of c Number of obs = 1297
BW type = mserd

Number of obs 595 702 Kernel = Triangular
Eff. Number of obs 359 322 VCE method = NN
BW loc. poly. (h) 17.708 17.708 Derivative = 0

Order loc. poly. (p) 1 1 HA: tau = 5.000
Power = 0.800

Sampling BW 17.708 17.708

Outcome: demvoteshfor2. Running variable: demmv.

Chosen sample sizes Sample size in window Proportion
[c-h,c) [c,c+h] Total [c,c+h]

Robust bias-corrected 290 366 656 0.443
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These facts are illustrated in figure 4. We can see that, with both fixed and MSE

optimal bandwidth choices, the local constant specification requires a smaller sample
size (between half and a third of the required sample size for a local linear specification).
The reason is that the linear specification introduces multicolinearity, which increases
the variance of the local polynomial estimator. Goldberger (1972) pointed out this fact
in the context of power calculations for classical linear regression settings. However, this
feature should not be interpreted as implying that the constant specification is superior
because, as discussed in section 2, a lower polynomial order implies a higher-order
misspecification bias.
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(a) Constant, fixed bandwidth (h = 20)
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(b) Linear, fixed bandwidth (h = 20)
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(c) Constant, MSE optimal bandwidth
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(d) Linear, MSE optimal bandwidth

Figure 4. Comparing sample sizes across specifications

6 Conclusion

We introduced the command rdpow to perform power calculations and sample-size se-
lection in RD designs using robust bias-corrected local polynomial inference techniques.
These commands are particularly useful for planning new surveys and related field work
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based on available RD data. We also provided a companion R function with the same
syntax and capabilities.
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