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We present a practical guide for the analysis of regression discontinuity (RD)
designs in biomedical contexts. We begin by introducing key concepts, assump-
tions, and estimands within both the continuity-based framework and the
local randomization framework. We then discuss modern estimation and infer-
ence methods within both frameworks, including approaches for bandwidth
or local neighborhood selection, optimal treatment effect point estimation, and
robust bias-corrected inference methods for uncertainty quantification. We also
overview empirical falsification tests that can be used to support key assump-
tions. Our discussion focuses on two particular features that are relevant in
biomedical research: (i) fuzzy RD designs, which often arise when therapeu-
tic treatments are based on clinical guidelines, but patients with scores near
the cutoff are treated contrary to the assignment rule; and (ii) RD designs with
discrete scores, which are ubiquitous in biomedical applications. We illustrate
our discussion with three empirical applications: the effect CD4 guidelines for
anti-retroviral therapy on retention of HIV patients in South Africa, the effect of
genetic guidelines for chemotherapy on breast cancer recurrence in the United
States, and the effects of age-based patient cost-sharing on healthcare utilization
in Taiwan. Complete replication materials employing publicly available data and
statistical software in Python, R and Stata are provided, offering researchers
all necessary tools to conduct an RD analysis.
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1 INTRODUCTION

Drawing causal inferences from quantitative data is a fundamental goal in epidemiology, comparative effectiveness,
health services, and outcomes research.1-3 It is now well understood that while randomized controlled trials are the gold
standard for learning about treatment effects, reliance on observational studies is unavoidable—there are simply too
many contexts where randomization is infeasible or unethical. When randomization is not possible, evidence from natu-
ral experiments is often viewed as the next best alternative for causal inference and program evaluation.3-6 Some scholars
have advocated for greater use of the regression discontinuity (RD) design in biomedical contexts,7-10 which can be viewed
as a prime example of a natural experiment.11 As a result, RD designs have become more common in biomedical research:
a recent review identified over 325 studies based on RD designs in medical studies alone.12

Abbreviation: RD, regression discontinuity.
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The popularity of the RD design stems from its high internal validity. Causal inferences from RD designs are often more
credible and robust than those from other nonexperimental impact evaluation strategies such as selection-on-observables,
difference-in-difference, or instrumental variable (IV) designs. The feature that contributes to the superior credibility of
the RD design is the existence of an objective and verifiable treatment assignment rule that offers a design-based way
to validate some of its key assumptions. In the canonical RD design, each unit i receives a score Xi, and a treatment is
assigned according to the rule Ti = 1(Xi ≥ c), where c is a fixed known cutoff and 1(⋅) the indicator function, so that all
units with score above the cutoff are assigned to the active treatment condition (Ti = 1) and all units with scores below
the cutoff are assigned to the control condition (Ti = 0). The score Xi can be continuous (each unit has a unique score
value) or discrete (multiple units share the same score value). In the so-called sharp RD design, all units comply perfectly
with the treatment condition they are assigned: no units below the cutoff receive the treatment and no units above the
cutoff refuse the treatment. In the more general case, referred to as the fuzzy RD design, the treatment assignment rule
induces many units to take the treatment, but compliance with the assignment is imperfect. Each variant of the RD design
requires conceptually and methodologically different approaches for analysis.

The RD design was first introduced by Thistlethwaite and Campbell13 in education research to study the effect of
receiving a certificate of merit based on test scores. In biomedical contexts, RD designs naturally arise from treatment
guidelines based on diagnostic test results. For instance, a specific treatment is recommended when test results exceed a
known cutoff—for example, start blood pressure medication when systolic blood pressure is above 130 mmHg. The key
idea behind the RD design is that units just above and just below the cutoff should be comparable in terms of all unob-
servable and observable characteristics not affected by the treatment, which in turn implies that these units’ differences in
outcomes can be understood as the result of differences in treatment status rather than the result of differences in observ-
able or unobservable characteristics. For example, assuming that patients do not have precise control over their blood
pressure measurement, patients whose systolic pressure is 130 mmHg should be similar to patients whose systolic pressure
is 129 mmHg: in a small neighborhood around the 130 cutoff, patients’ particular measures will be governed by random
chance (variable device accuracy, inadequate arm support, elevated anxiety, etc.) more than by patients’ underlying health
risks or other confounding factors affecting the outcome of interest.

We provide a systematic overview of the state-of-the-art statistical methodologies to analyze and interpret RD designs
employing the two most used methodological frameworks: the continuity-based framework and the local randomization
framework. Our discussion covers key assumptions, estimation methods, inference procedures, and diagnostic tests com-
plementing and expanding on early introductory articles for the biomedical sciences,7,8,10 which do not discuss the most
recent RD methods that are now widely used in the statistical, social, and behavioral sciences.14-16 Furthermore, we dis-
cuss two complications that frequently arise in biomedical research that have not been addressed by prior biomedical
reviews: imperfect treatment compliance and noncontinuous score variables.

The manuscript is organized as follows. Sections 2 and 3 focus on RD methodology when the score is (approximately)
continuous; for illustration, we reanalyze and expand a recent study that used the RD design to estimate the effect of
immediate vs deferred anti-retroviral therapy (ART) on retention in care.17 In this application, the score (CD4 count) takes
on many distinct values and thus may be analyzed using RD methods suitable for continuous scores. Section 4 then dis-
cusses RD designs with a discrete score, that is, settings where the score takes on at most a few distinct values. We overview
how the methods for RD designs with a (approximately) continuous score can be modified and extended, illustrating our
discussion with two additional empirical examples. One example looks at genetic guidelines for chemotherapy and serves
mostly as a cautionary tale because the key RD assumptions are not supported empirically. The other example studies
patient cost-sharing and healthcare utilization and showcases how RD methods with discrete scores can be deployed suc-
cessfully. Finally, Section 5 summarizes key takeaways for practice and concludes. The online materials include the three
data sets as well as computer code to replicate all our analyses. Replication codes are available in Python, R, and Stata,
and can be found at https://rdpackages.github.io/. The supplementary materials also include code to demonstrate a basic
RD analysis.

2 SETUP AND TREATMENT EFFECTS

In the canonical RD design, there are i = 1, 2, … ,n units of analysis, each unit receives a score Xi (also known as
running variable, forcing variable, or index), and a binary treatment is assigned based on whether this score exceeds
or not a known cutoff c: units whose score is above the cutoff are assigned to the treatment condition, and units
whose score is below the cutoff are assigned to the control condition. Thus, the probability of treatment assignment
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as a function of the score changes discontinuously at the cutoff: all units above the cutoff are assigned to the treat-
ment condition with probability one, while all units below the cutoff are assigned to the control condition with
probability one. These three elements—score, cutoff, and treatment—are the key components of all RD designs.
Crucially, the RD treatment assignment rule is known, at least to the researcher, and hence empirically verifiable.
This distinctive feature contributes to the RD design’s superior credibility when compared to other nonexperimental
methods.

2.1 Empirical example: ART and retention in care

We revisit the recent study by Bor et al,17 who used a RD design to estimate the effect of immediate (vs deferred)
anti-retroviral therapy (ART) on retention in care. The authors analyzed the Hlabisa HIV Treatment and Care Programme
in South Africa, conducted by the Africa Health Research Institute and the South African Department of Health. This
program collected data on all patients receiving HIV care and treatment services at government facilities (17 clinics and
1 hospital) between 12 August 2011 and 31 December 2012.18,19 Patients were eligible for ART if their CD4 count was less
than 350 cells/μl, and they had a WHO stage III/IV condition. Patients did an initial blood draw for a CD4 count, and
were instructed to return to the clinic in one week to receive their result. ART-eligible patients were enrolled in several
weeks of counseling and were then initiated on ART.

The investigators compared differences in retention between patients with CD4 counts (Xi) just above vs just below
the 350-cells/μl threshold (c). The cohort included n = 11 306 patients and the data contained information on several
predetermined covariates, including sex, age, date of testing, and testing location. This is a prototypical biomedical RD
example, where the units of analysis are patients and the score (CD4 count) is the result of a diagnostic test. The cutoff
is 350 cells/μl and the treatment is the immediate initiation of ART. The outcome of interest is a binary variable with
value 1 if there was any evidence of any routine clinic visits, lab result (CD4 or viral load), or date of ART initiation 6 to
18 months after a patient’s first CD4 count, regardless of receipt of ART. The RD design is fuzzy because not all patients
with a score of less than 350 initiated ART (see Figure 3 in the next section). Henceforth, we refer to this example as the
ART application.

Note that the treatment is assigned when the CD4 count is below (rather than above) the 350 cutoff. However, the
score and cutoff can always be redefined so that treatment assignment occurs when Xi ≥ c (ie, multiplying both variables
by −1, a relabeling of the data with no substantive effects in the analysis). Alternatively, the analysis can proceed given
the original setup, and treatment effects are simply understood with a change of sign.

2.2 Graphical illustration of RD design

An important first step in RD analysis is a graphical illustration of the design. Figure 1 showcases two basic plots.
When properly executed, a graphical RD analysis adds transparency and credibility by displaying the observations used
for estimation and inference, both globally (over the entire support of the score) and locally (near the cutoff deter-
mining treatment assignment). RD plots can also highlight other features of the design such as the coarseness of the
score and outcome variables, the variability of the data, and the potential curvature of the underlying regression func-
tions.20 Despite their visual usefulness, RD plots should not be used as the main tool for the analysis, as they can
often be misleading;21 their main role should be as supplementary to the formal statistical analyses that we discuss
in Section 3.

Figure 1A depicts a histogram of the score variable Xi, which captures the relative frequency of different observed
values by first binning its support. In general, the score can be continuously or discretely distributed. When the score is
continuous each unit has a unique score value, while when the score is discrete several units share the same score value
and thus the score exhibits “mass points.” In the ART application, Xi takes on K = 1229 distinct values in a sample of
11 306 total observations, so several observations share the same score value (K < n = 11 306). Given the sizable number
of distinct values, we treat this application as having an approximately continuous score and discuss RD methods for
that context. This is a common approach in practice when the discrete score has “many” mass points,14,16 and was the
approach adopted by Bor et al.17 In Section 4, we discuss RD methods appropriate in cases when the score is discrete
with possibly only a “few” distinct values. We also use Figure 1A as the starting point for validation of the RD design via
discontinuity-in-density testing22 in Section 3.
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F I G U R E 1 Basic plots—ART application. The score Xi is patient i’s CD4 count, and all patients below the cutoff are assigned to receive
ART. In panel (B), the outcome is Yi, an indicator equal to 1 if patient i was retained in care (0 otherwise); dots are local means of Yi

calculated for patients in different nonoverlapping bins of Xi; and the solid line is a 4th-order polynomial of Yi on Xi, fitted separately for
patients above and below the cutoff.

Figure 1B presents a canonical RD plot of the observed outcome variable given the score.20 Although we could
construct a raw scatter plot of the outcome against the score, such plot is often be uninformative and hides many inter-
esting features in the outcome-score relationship like discontinuities or nonlinearities. For this reason, it is customary
to “smooth” the data before plotting, which is done by binning the support of the score into disjoint (ie, nonoverlap-
ping) intervals, and then reporting the average outcome for units with score within each bin, an approach conceptually
analogous to the histogram in Figure 1B. These binned means can be interpreted as a nonsmooth local approxima-
tion to the unknown regression functions of Yi given Xi. The standard RD plot consists of these binned means with
the addition of two global polynomials fits, one above and one below the cutoff, based on regressing the outcome Yi
on a polynomial of Xi using the raw (ie, not binned) data. The global polynomial fits can be interpreted as a smooth
global approximation of the unknown regression functions, in contrast to the nonsmooth approximation provided by
the local means. Choosing the appropriate global polynomial order is important: when the order of the polynomial is
“too” high, the global polynomial regression will over-fit the data. This over-fitting is usually referred to as Runge’s
phenomenon, and is known to be particularly detrimental at boundary points, which is the area of interest in RD
designs. See Cattaneo et al15(section 2) for more details, and Cattaneo et al23 for related visualization methods in other
empirical contexts.

The RD plot in Figure 1B gives a first glance at the RD design for the ART application. It shows that patients assigned
to treatment (CD4 count strictly below 350) had an average retention higher than those assigned to control. In RD designs,
however, identification of treatment effect occurs at or near the cutoff, where treatment assignment changes discontin-
uously but all other confounders are assumed to change smoothly or not at all. To formalize this intuition, we need
to introduce key assumptions underlying RD designs and also define treatment effects (or parameters) of interest by
“localizing” near the cutoff. Following the taxonomy introduced by Cattaneo et al,24 we consider the continuity frame-
work and the local randomization framework for the analysis and interpretation of RD designs in both sharp and fuzzy
RD designs.

2.3 Sharp RD designs

We first discuss settings with perfect treatment compliance. This is not the case for the ART application, or many
other biomedical applications, but this simpler setup helps us put forth key concepts without added complications.
The next section generalizes the setup to allow for imperfect compliance (ie, fuzzy RD designs). As discussed there, if
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researchers are interested on intention-to-treat effects, then the sharp RD design is indeed the appropriate setup to con-
sider even in the presence of noncompliance. As a result, the discussion in this section is a key building block for Fuzzy
RD analysis.

We adopt the standard potential outcomes framework and assume that each unit has one outcome corresponding to
each possible value of the treatment assignment: Yi(0) under control assignment, and Yi(1) under treatment assignment.
The observed outcome is determined by the potential outcome corresponding to the treatment assigned to each unit:
Yi = (1 − Ti) ⋅ Yi(0) + Ti ⋅ Yi(1). The observed data is (Y1,X1), … , (Yn,Xn). In most of our discussion, we assume that the
observations are a random sample with random potential outcomes. We deviate from this setup only when discussing
analysis of experiments approaches based on Fisherian inference or Neyman methods, which assume that the potential
outcomes are nonstochastic and hence that the observed outcomes are random only because of the randomness induced
by the treatment assignment mechanism, that is, the probability distribution determining (T1,T2, … ,Tn).

2.3.1 Continuity-based framework

In the sharp RD design with continuous score, the leading conceptual approach is the continuity-based framework,25

where the causal treatment effect is the average treatment effect at the cutoff:

𝜏SRD ≡ E[Yi(1) − Yi(0)|Xi = c]. (1)

In this framework, potential outcomes are always assumed to be random, so the conditional expectations are interpreted
and computed in the usual way. The sharp RD treatment effect 𝜏SRD is the average effect of treatment for units local to the
cutoff—that is, for units with score values Xi = c.

The identification of 𝜏SRD is based on the idea that units with similar values of the score but on opposite sides of the
cutoff should be “comparable” in all predetermined characteristics except for the fact that units whose scores are above
the cutoff are assigned to treatment while units whose scores are below the cutoff are not. Predetermined characteris-
tics, also known as pretreatment or predetermined covariates, are all features of the units whose values are determined
before the treatment is assigned. For example, in the ART example, the age and sex of patients are predetermined
covariates.

We can formalize the logic of comparability at the cutoff using continuity, which relies on mild extrapolation for
units with score near the cutoff. First, we define the average potential outcomes given the score: E[Yi(1)|Xi = x] and
E[Yi(0)|Xi = x]. These conditional expectation functions are usually called regression functions, and are unknown; the
two solid lines in Figure 1B depict global polynomial approximations to these functions in the ART application. If the
regression functions E[Yi(1)|Xi = x] and E[Yi(0)|Xi = x], seen as functions of x, are continuous at x = c, then the units will
be comparable “just” above and below the cutoff. That is, under the assumption of continuity, we can use the regression
functions to link observed data to counterfactual quantities in the following way:

𝜏SRD = lim
x↓c

E[Yi|Xi = x] − lim
x↑c

E[Yi|Xi = x]. (2)

In Equation (2), continuity implies that as the score value gets closer to the cutoff c, the average potential outcome
function E[Yi(0)|Xi = x] gets closer to its value at the cutoff, E[Yi(0)|Xi = c], and analogously for E[Yi(1)|Xi = x]. Thus,
continuity gives a formal justification for estimating the sharp RD effect by focusing on observations in a small neigh-
borhood above and below the cutoff to estimate, respectively and separately, E[Yi(1)|Xi = c] and E[Yi(0)|Xi = c]. The
observations in this neighborhood, by construction, will have similar score values; and by virtue of continuity, their aver-
age potential outcomes will also be similar. As mentioned above, employing global polynomial approximations should be
avoided due to poor boundary behavior of such estimates; instead, the approximation should be local.

The logic of the continuity-based framework is graphically illustrated in Figure 2A. Continuity of the two conditional
expectations ensures that the vertical distance between the two curves at c represents the RD estimand. We cannot directly
estimate this quantity since we never observe the two curves at c: units with scores exactly at or just above c are treated,
but units with scores just below c are control. Nevertheless, if the average potential outcomes at c are not abruptly different
from the average potential outcomes at values of the score just below c, then units just above and below the cutoff should
be comparable, and we can approximately identify the vertical distance at c using the local observed data, relying on
minimal extrapolation in finite samples.
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(B) Local Randomization Framework

F I G U R E 2 Graphical illustration of sharp RD design frameworks. 𝜇1(x) and 𝜇0(x) are the conditional expectation functions of the
potential outcome under treatment and control, respectively, given the score—that is, 𝜇1(x) = E[Yi(1)|Xi = x] and 𝜇0(x) = E[Yi(0)|Xi = x].
Dashed lines represent unobserved functions, solid lines represent observed functions.

The RD treatment effect 𝜏SRD differs from the two most common estimands often targeted in observational studies:
the average treatment effect (ATE) and the average treatment effect on the treated (ATT). The ATE measures the
average difference in outcomes when all individuals in the study population are assigned to treatment vs when all
individuals are assigned to control. On the other hand, the ATT measures the average difference in outcomes among
those individuals in the population that were actually exposed to the treatment. The RD estimand, however, is far
more local than both of these estimands as it only applies to units close to the cutoff. Ideally, we would like to
study more general treatment effects, such as the ATE, in order to learn about the average difference in outcomes
that would occur if all units in the study were switched from treated to untreated. Unfortunately, this kind of treat-
ment effects is not generally available in RD designs because the nonexperimental treatment assignment only justifies
studying effects for units whose scores are near the cutoff—see Cattaneo et al26 for further discussion and related
references.

2.3.2 Local randomization framework

The second framework for the analysis of RD designs is based on the idea of local randomization,24,27 where poten-
tial outcomes could be viewed as random variables or as fixed quantities, exactly as in the analysis of experiments
literature.3-5 To formalize this framework, we introduce notation for the local randomization neighborhood or window,
 = [c − w, c + w], where w > 0 is its half length and  is assumed symmetric around the cutoff only for simplicity.
In this setting, we call  a window to distinguish it from the local neighborhood or bandwidth used in the context of
continuity-based methods.

While in the continuity-based framework the key assumption is continuity of conditional expectations to enable
extrapolation to the cutoff, in the local randomization framework the idea is to impose conditions to induce an experi-
mental setting near the cutoff. Thus, the key two assumptions are: (i) known treatment assignment mechanism for all
units with score in ; and (ii) lack of relationship between score and outcomes for all units with score in . The second
assumption is important. In the continuity-based RD design, the fact that the score is related to the potential outcomes
does not present challenges because the parameter of interest is defined at the (single) cutoff point. In contrast, in the local
randomization framework, the potential outcomes can be related to the score far from the cutoff, but this relationship
must vanish in the window . As such, we must assume that the value of the score within this interval is unrelated to
the potential outcomes—a condition that is not guaranteed by the random assignment of the score Xi, nor by the random
assignment of the treatment Ti. Such an assumption is plausible for small neighborhoods around the cutoff, that is, for
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those units that have scores closest to the cutoff. See Cattaneo et al16(section 2) and references therein for more discussion
and extensions.

In the local randomization framework, we can define treatment effects that are analogous to those discussed in the
continuity-based framework. The main difference is that the continuity-based estimands are defined at the cutoff, and
the analogous local randomization estimands are defined in the window around the cutoff. The local randomization
sharp RD parameter is the average treatment effect inside the window , analogous to 𝜏SRD, defined as

𝜃SRD ≡ E [Yi(1) − Yi(0)] =
1

N

∑

i∶Xi∈
E

[
TiYi

P [Ti = 1]

]

− 1
N

∑

i∶Xi∈
E

[
(1 − Ti)Yi

1 − P [Ti = 1]

]

, (3)

where the potential outcomes Yi(0) and Yi(1) can be taken as random or fixed depending on the approach taken, P [⋅]
and E [⋅] denote the probability and expectation taken conditionally for those units with Xi ∈ , and N is the num-
ber of units with Xi ∈ . The last expression after the equality sign indicates that 𝜃SRD can be estimated from the
data just like in the standard analysis of experiments, but using only units with score within the local randomization
window .

Figure 2B showcases the local randomization framework, showing a local neighborhood around c defined by  .
The key idea is that there exists a neighborhood or window around the cutoff where the treatment assignment resem-
bles what it would have been in a randomized experiment. Given this fact, we can simply estimate the treatment
effect as if this was an experiment for the units that fall within the local neighborhood around c. As we discuss below,
the analogy between RD local randomization and a true experiment is not perfect, and the local randomization RD
framework requires stronger assumptions than the continuity-based framework. However, local randomization meth-
ods are valid when the score is discrete, while continuity-based methods may be invalid if the score is too coarse
(Section 4).

2.4 Fuzzy RD designs

An important feature of the ART application, which is common in many RD designs in biomedical research, is that
being assigned to the treatment condition is not the same as actually receiving the treatment. We use the binary vari-
able Di to denote whether the treatment is actually received by unit i (Di = 1) or not (Di = 0), while we continue to
use the binary variable Ti to record whether the treatment is offered (Ti = 1) or not (Ti = 0). In the sharp RD design,
we always have Ti = Di because compliance with treatment assignment is perfect, while the defining feature of a fuzzy
RD design is that there are some units for which Ti ≠ Di. For example, in the ART application, there are patients with
CD4 counts of less than 350 (Ti = 1(Xi < 350) = 1) who never initiate ART (Di = 0). This is depicted visually in Figure 3
using RD plots. Figure 3A shows that all patients with Ti = 1(Xi < 350) = 1 where assigned to treatment with probabil-
ity one, while all patients with Ti = 0 where assigned to control with probability one. However, treatment assignment
was not always followed, as shown in Figure 3B, which plots the proportion of patients actually receiving ART against
the score.

We employ potential outcomes to formalize fuzzy RD designs. Every unit has two potential treatments: Di(1)
is the treatment that unit i receives when this unit is assigned to the treatment condition (ie, when Ti = 1),
while Di(0) is the treatment that unit i receives when this unit is assigned to the control condition (ie, when
Ti = 0). Both Di(1) and Di(0) can be one or zero, depending on unit i’s compliance decisions. For example, if
unit i is assigned to the treatment condition but refuses to receive the treatment, Di(1) = 0; and a unit that
complies perfectly with their assignment has Di(1) = 1 and Di(0) = 0. Thus, the observed treatment received is
Di = (1 − Ti) ⋅ Di(0) + Ti ⋅ Di(1).

For the outcome of interest, this framework implies that every unit has four different potential outcomes
depending on the combination of treatment assignment and compliance decisions: Yi(1, 0), Yi(1, 1), Yi(0, 0), and
Yi(0, 1). We denote them generally as Yi(Ti,Di(Ti)), a function of both the treatment assigned and the treatment
received. For example, Yi(0, 1) corresponds to the potential outcome that would occur if unit i were assigned
to the control condition (Ti = 0) but received the treatment anyway (Di(0) = 1). However, we only observe the
potential outcome and the potential treatment corresponding to the values of Ti and Di that are realized for
unit i. Formally, the observed outcome is now Yi = (1 − Ti) ⋅ Yi(0,Di(0)) + Ti ⋅ Yi(1,Di(1)), and the observed data is
(Y1,D1,X1), … , (Yn,Dn,Xn).
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CATTANEO et al. 4491

(A) (B)

F I G U R E 3 Treatment assignment vs treatment take-up—ART application. The score Xi is patient i’s CD4 count, and all patients below
the cutoff are assigned to receive ART. In panel (A) the y-axis is Di, an indicator equal to 1 if patient i received ART (0 otherwise); the dots are
local means of Di calculated for patients in different nonoverlapping bins of Xi, separately above and below the cutoff. In panel (B), the y-axis
is Yi, an indicator equal to one if patient i was retained in case (0 otherwise); the dots are local means of Yi calculated for patients in different
nonoverlapping bins of Xi; and the solid line is a 4th-order polynomial of Yi on Xi, fitted separately for patients above and below the cutoff.

2.4.1 Continuity-based framework

In the fuzzy RD design, the standard RD estimand, 𝜏SRD, is unavailable except under strong assumptions that will be
implausible in many applications (eg, constant treatment effects as a function of the score). Instead, when there is non-
compliance, researchers typically focus on two types of treatment effects: the effects of assigning the treatment for all units,
and the effect of receiving the treatment for a subpopulation of units. Each type of effect requires different assumptions,
and which one is of interest depends on the particular application.

The effect of the treatment received is of obvious importance. For example, in the ART application we are inter-
ested in the effect of initiating ART on patient retention. However, in some cases, researchers are also interested in
the effect of assigning the treatment on the outcome, which is commonly known as the intention-to-treat (ITT) effect.
This effect includes not only the effect that the treatment received may directly have on the outcome, but also the
effect caused by strategic compliance decisions that individuals make in response to knowledge about their assign-
ment. Policy-makers interested in anticipating the overall effects of establishing a new program are often interested in
ITT effects.

Within the continuity-based framework, we start by considering the effect of treatment assignment on the outcome
(Yi) and on the treatment received (Di), both of which can be seen as sharp RD effects of the treatment assignment. The
RD effect of the treatment assignment on the observed outcome is

𝜏Y ≡ lim
x↓c

E[Yi|Xi = x] − lim
x↑c

E[Yi|Xi = x]. (4)

Under continuity assumptions analogous to those in the canonical sharp RD case, 𝜏Y captures the ITT effect of the treat-
ment assignment on the outcome at the cutoff, which we can write as 𝜏Y = E[Yi(1,Di(1)) − Yi(0,Di(0))|Xi = c], the average
change in potential outcomes at the cutoff from switching the assignment from control to treated. In the ART application,
this effect is plotted in Figure 1B using global polynomial approximations. The ITT effect of the treatment assignment
on the outcome follows a sharp RD design where the Ti is seen as the treatment of interest. Thus, we estimate the same
difference in limits limx↓c E[Yi|Xi = x] − limx↑c E[Yi|Xi = x] that we estimate in a sharp RD setting, but we modify the
assumptions and interpretation to accommodate imperfect compliance. Because some units fail to comply with their
assignment, the sharp RD treatment effect of Ti on Yi is no longer the effect of the treatment itself, but rather the effect of
assigning the treatment. For example, in the ART application, 𝜏Y captures the average effect of offering ART to patients
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4492 CATTANEO et al.

whose CD4 is 350 who may or may not accept the offer, while the parameter 𝜏SRD would capture the effect of actually
starting ART for those patients.

The RD effect of the treatment assignment on the treatment received at the cutoff is

𝜏D ≡ lim
x↓c

E[Di|Xi = x] − lim
x↑c

E[Di|Xi = x]. (5)

Since Di is binary, 𝜏D captures the difference in the probability of receiving the treatment at the cutoff between units just
assigned to the treatment vs assigned to the control condition. In the ART application, this is the difference between
the proportion of patients with CD4 counts just below 350 who initiate ART and the proportion of patients with CD4
counts just above 350 who initiate ART. This treatment effect is illustrated in Figure 3B. Under continuity conditions, the
difference in treatment probabilities captured by 𝜏D can be attributed to the RD assignment rule; in this case, 𝜏D represents
the average effect of assigning the treatment on receiving the treatment at the cutoff, that is, 𝜏D = E[Di(1) − Di(0)|Xi = c].
This effect is usually called the first-stage or take-up effect. Both 𝜏Y and 𝜏D are sharp RD parameters.

Investigators are often also interested in the effect of receiving the treatment, not merely of assigning it. While 𝜏SRD is
infeasible in the fuzzy RD design due to noncompliance, under additional assumptions, it is possible to estimate a related
parameter that captures the average effect of the treatment at the cutoff for a particular subpopulation of units. We define
the fuzzy RD treatment effect as

𝜏FRD ≡
𝜏Y

𝜏D
, (6)

which is the ratio of the sharp RD effect of Ti on Yi and the sharp RD effect of Ti on Di.
The parameter 𝜏FRD can be interpreted as the average effect of the treatment received at the cutoff for the subpopu-

lation of units who are compliers—informally defined as units who receive the treatment when their score is above the
cutoff and refuse the treatment when their score is below the cutoff. Different authors have formalized the definition of
compliers differently in RD settings; a thorough discussion is beyond the scope of our discussion, but we refer the reader
to References 28-30 for examples, and to References 16 (section 3) for a practical discussion. See also Baiocchi et al31 for
a review of IV methods for causal inference.

Regardless of the technical details, interpreting the fuzzy RD parameter as the effect of Di on Yi for the compli-
ers requires three assumptions. The formalization of these assumptions varies depending on the particular definitions
adopted, but the conceptual ideas are similar in all cases. First, the parameter 𝜏D must be nonzero, and well-separated
from zero for estimation and inference to be meaningful. In other words, being above vs below the cutoff must induce
some units to actually take the treatment. This rules out, for example, a situation where having a CD4 count below 350
induces no patients to start ART. This is usually referred to as the relevance assumption or the first-stage in IV settings,
and is testable. We will showcase this point in Section 3.

Second, we need continuity conditions similar to those invoked in the sharp RD case, but generalized for the more
complex setting of noncompliance. These continuity conditions will implicitly require, among other things, that the treat-
ment assignment only affect the average outcomes via its effect on the treatment received, but not directly, analogous to
the exclusion restriction in IV settings. In other words, Ti should only have an affect on Yi through Di: crossing the cut-
off should only affect the outcome if it has an effect of changing the actual treatment received, but not otherwise. This
key assumption is untestable and requires careful qualitative reasoning for justification, particularly in medical settings
where placebo effects are common.32

In the ART application, the exclusion restriction requires that having a CD4 count below 350 have no effect on reten-
tion in care except by inducing people to initiate ART. This assumption might be implausible if seeing a CD4 count below
350 leads physicians to order additional tests or to communicate with patients differently, which can in turn lead to discov-
ery of other health issues and return for care of a different condition. The exclusion restriction would be more plausible
if the outcome were a biological manifestation of HIV rather than retention in care, as it is more plausible that the only
way future HIV symptoms would be reduced is through exposure to ART.

Finally, it is also common to assume monotonicity or a similar condition for the interpretation of the fuzzy RD treat-
ment effect 𝜏FRD. Informally, monotonicity requires that a patient who decides to receive the treatment when they are not
eligible for it, continues to take the treatment when they are eligible. One way to interpret this in the RD setting where
Ti = 1(Xi ≥ c), is to require that a unit with score Xi who refuses the treatment when the cutoff is c must also refuse the
treatment for any cutoff c′ > c, and a unit who takes the treatment when the cutoff is c must also take the treatment for
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CATTANEO et al. 4493

any cutoff c′ < c. In our example, this implies that a patient who, say, has a CD4 count of 340 and refuses ART when the
cutoff is 350, he or she must also refuse ART when the cutoff is 330.

2.4.2 Local randomization framework

In the local randomization framework for fuzzy RD designs, we can consider parameters of interest that are analogous to
those discussed in the continuity-based framework. The sharp RD estimator of the effect of Ti on Yi and the effect of Ti
on Di are defined, respectively, as

𝜃Y ≡
1

N

∑

i∶Xi∈
E

[
TiYi

P [Ti = 1]

]

− 1
N

∑

i∶Xi∈
E

[
(1 − Ti)Yi

1 − P [Ti = 1]

]

(7)

and

𝜃D ≡
1

N

∑

i∶Xi∈
E

[
TiDi

P [Ti = 1]

]

− 1
N

∑

i∶Xi∈
E

[
(1 − Ti)Di

1 − P [Ti = 1]

]

, (8)

which parallel the continuity-based parameters 𝜏Y and 𝜏D. Under the local randomization assumptions, the parameters
𝜃Y and 𝜃D capture the average effect of assigning the treatment for observations with scores in the window. Finally, we
can also define the local-randomization fuzzy RD parameter as the ratio: 𝜃FRD ≡ 𝜃Y∕𝜃D.

As in the continuity-based framework, under appropriate assumptions, 𝜃FRD can be interpreted as the average treat-
ment effect in the window for compliers. The assumptions typically used are similar to those required in IV settings,
now applied to observations with scores in the window , and hence similar to those discussed for the continuity-based
framework. Once again, the effect of the treatment assignment on the treatment received, 𝜃D, must be well separated from
zero. The exclusion restriction that the treatment assignment have no direct effect on the outcomes must also hold for all
units with scores within the window; this restriction is implied by the local randomization condition that the (distribu-
tion of the) potential outcomes and potential treatments is not a function of the score inside . Finally, the assumption of
monotonicity requires that there be no units with scores in who receive a treatment condition that is always opposite
to their assignment.

Finally, it is important to understand how to interpret the fuzzy RD estimands 𝜏FRD and 𝜃FRD. These estimands differ
from the (local) average treatment effects that are commonly used in the IV literature:31 the fuzzy RD estimands capture
the average treatment effect for a subpopulation (eg, compliers) with a score value at or near the cutoff, and by implication
often have lower external validity than the standard IV estimand. In the ART application, the fuzzy RD treatment effects
only apply to the set of compliers with scores near 350. The fuzzy RD treatment effect may differ compared to those
patients with much higher or lower CD4 counts. For more discussion on extrapolation of RD treatment effects away from
the cutoff, see Reference 26 and references therein.

3 ANALYSIS WITH CONTINUOUS SCORE

We now discuss estimation, inference, and validation methods within the continuity-based and the local randomization
RD frameworks with a continuously distributed score, using again the ART application as the running empirical example.
All the results in this section can be reproduced using the replication materials.

3.1 Continuity-based methods

A common problem in RD settings is that there are often few observations with score values very close to the cutoff, which
means that estimating the effect at Xi = c requires using observations whose values of Xi are relatively far from c. Because
a sufficiently smooth function can be well approximated by a polynomial function, up to misspecification error, standard
continuity-based RD estimation methods approximate the regression functions, E[Yi(0)|Xi = x] and E[Yi(1)|Xi = x] using
a polynomial function of the score.
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4494 CATTANEO et al.

3.1.1 Point estimation

Modern RD estimation is based on local polynomial approximations that discard observations sufficiently far away from
the cutoff and then employ a low-order polynomial approximation (usually linear or quadratic) for estimation. This
approach is known as local polynomial regression in the statistical literature.33 State-of-the-art RD methods use two sep-
arate linear polynomial fits for treated and control units using only observations near the cutoff as determined by the
choice of a bandwidth parameter. This local approach is more robust and less sensitive to boundary and over-fitting
problems.

Local polynomial methods require the user to make three choices: the bandwidth, the kernel function, and the polyno-
mial order. The bandwidth controls the width of the neighborhood around the cutoff that is used to fit the local polynomial
models, and hence determines the number of observations above and below the cutoff that are used for estimation. Within
the neighborhood determined by the bandwidth, it is common to adopt a weighting scheme to ensure that the observa-
tions closer to c receive more weight than those further away. The weighting scheme is referred to as a kernel function,
K(⋅), and two common options are the triangular kernel, K(x) = (1 − |x|)1(|x| ≤ 1), which linearly down-weights obser-
vations within the bandwidth, and the uniform kernel, K(x) = 1(|x| ≤ 1), which gives equal weight to all observations
within the bandwidth. The polynomial order p determines the order of the polynomial approximation near the cutoff. In
the software resources used in this tutorial, the defaults are linear fit (p = 1) and triangular kernel. These choices have
objective theoretical advantages in the nonparametrics literature,33 but the researcher can also investigate the robustness
of the empirical results by choosing p = 2 or a uniform kernel.

The RD estimate is thus constructed as follows. For observations above the cutoff (ie, observations with Xi ≥

c), fit a weighted least squares regression of the outcome Yi on a constant and (Xi − c), (Xi − c)2, … , (Xi − c)p with
weight K

(
Xi−c

h

)

for each observation, leading to the estimated equation ̂Yi = 𝜇+ + 𝜇+,1(Xi − c) + 𝜇+,2(Xi − c)2 + · · · +
𝜇+,p(Xi − c)p, where the estimated intercept, 𝜇+, is a point estimate of 𝜇+ = E[Yi(1)|Xi = c]. Similarly, for observations
below the cutoff, fit a weighted least squares regression of the outcome Yi on a constant and (Xi − c), (Xi − c)2, … , (Xi − c)p

with weight K
(

Xi−c
h

)

for each observation, leading to ̂Yi = 𝜇− + 𝜇−,1(Xi − c) + 𝜇−,2(Xi − c)2 + · · · + 𝜇−,p(Xi − c)p, where
the estimated intercept, 𝜇−, is a point estimate of 𝜇− = E[Yi(0)|Xi = c]. Therefore, the sharp RD point estimate is

𝜏SRD = 𝜇+ − 𝜇−. (9)

The choice of bandwidth h, which determines which observations near the cutoff are used, is the most critical when
implementing local polynomial RD methods. A small bandwidth will reduce the approximation error of the local poly-
nomial approximation because it only uses observations very close to the cutoff. However, a small bandwidth will also
increase the variance of the estimates because only a few observations are used in the local fit. Analogously, a large
bandwidth may increase the approximation error if the underlying regression function differs considerably from the poly-
nomial approximation used, but will result in lower variance due to the relatively larger number of observations included.
Thus, bandwidth selection embodies a bias-variance trade-off: smaller bandwidths will tend to have less bias but higher
variance, and viceversa. The mean squared error (MSE) of any estimator is the sum of its bias squared plus its variance;
given the bias-variance tradeoff, bandwidth selection can be automated in a principled, data-driven way by first deriving
an approximation to the MSE of the RD point estimator, and then choosing the value of h that minimizes it. This so-called
MSE-optimal bandwidth selection approach has become the standard for RD estimates. See Calonico et al34,35 for the
most recent methodological developments, and Cattaneo et al36 and Calonico et al37 for an overview on neighborhood
selection methods in RD designs more generally.

3.1.2 Confidence intervals

The MSE-optimal bandwidth is used to construct an MSE-optimal point estimator, 𝜏SRD, but using that bandwidth to
conduct standard least squares inference is in general invalid.34,35,37 To be more precise, the MSE-optimal bandwidth
balances bias and variance in such a way that the point RD estimator exhibits a misspecification bias in its distribu-
tion, which leads to confidence intervals and hypothesis tests that are invalid in general, even in large samples. This
implies that the usual asymptotic 95-percent confidence interval for 𝜏SRD given by CI =

[

𝜏SRD ± 1.96 ⋅
√
V̂
]

, where V̂

denotes a variance estimator, is invalid because the underlying Gaussian distribution of the RD point estimator has a
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CATTANEO et al. 4495

nonzero bias when the MSE-optimal bandwidth is used. It can be shown that CI will cover the population treatment
effect 𝜏SRD roughly 80% of the time in repeated sampling, implying a false rejection rate of about 15-percentage
points.

A principled alternative is to use the robust bias corrected confidence intervals proposed by Calonico et al,34 and later
extended to other settings.35,38-41 Robust bias corrected confidence intervals modify the classical confidence intervals
CI in two ways: (i) the point estimator 𝜏SRD is debiased by including an estimate of the leading misspecification error
(denoted by B̂), and (ii) the variance estimator V̂ is increased to incorporate the contribution of the bias correction step
to the overall variability of the confidence interval (denoted by Ŵ). Thus, the robust bias corrected confidence intervals
take the form

CIRBC =
[ (

𝜏SRD − B̂
)
± 1.96 ⋅

√
V̂ + Ŵ

]

.

These confidence intervals are valid even when the MSE-optimal bandwidth is used, and have several demonstrable the-
oretical properties, including smaller coverage errors and less sensitivity to tuning parameter choices.42-45 Furthermore,
the improved finite sample performance of these intervals has been validated empirically.46-48

Our practical recommendation is therefore to (i) report the MSE-optimal RD point estimate 𝜏SRD, which is constructed
using an MSE-optimal bandwidth choice, and (ii) report robust bias corrected confidence intervals, which employ the
same MSE-optimal bandwidth choice. All these methods are readily available in Python, R, and Stata general-purpose
software packages (https://rdpackages.github.io/). We use these methods for the analysis of our three empirical examples,
as illustrated in the accompanying replication files.

The local polynomial methods for sharp RD continuity-based analysis can be extended to fuzzy RD designs to estimate
𝜏Y, 𝜏D, and 𝜏FRD. The first point estimator is exactly the same as described above, using local polynomials to estimate
the relationship between Yi and the score Xi—that is, 𝜏Y = 𝜏SRD. The estimator 𝜏D of 𝜏D is constructed analogously, after
replacing the observed outcome variable Yi with the observed treatment status Di. Once 𝜏Y and 𝜏D are available, the fuzzy
RD estimand 𝜏FRD is estimated using 𝜏FRD = 𝜏Y∕𝜏D.

The estimator 𝜏FRD is consistent for 𝜏FRD under standard regularity conditions, although it may exhibit more bias
or other potential problems due to its intrinsic ratio structure. Heuristically, everything discussed in this section still
applies to this estimator, but some more details are necessary. First, bandwidth selection can still proceed based on a
MSE approximation, although now such approximation should also take into account the ratio structure of the esti-
mator. Furthermore, more than one natural MSE-optimal bandwidth choice is available: it is possible to consider one
single bandwidth for the ratio 𝜏FRD, or two distinct bandwidth choices, one each for the numerator and denominator.
In practice, most researchers employ a single MSE-optimal choice for 𝜏FRD or for 𝜏Y = 𝜏SRD, although some researchers
prefer to choose two different bandwidths for 𝜏Y and 𝜏D. As a general rule, it is usually recommended to use a single
MSE-optimal bandwidth for the estimator of interest, in this case, 𝜏FRD. For inference, the same problems of misspecifi-
cation biases arise in the fuzzy RD design, usually made more acute by the ratio structure of the point estimator. As a
consequence, robust bias correction continues to be recommended whenever an MSE-optimal bandwidth choice is used
for point estimation. Because these formulas are cumbersome we do not reproduce them here, but they can all be found in
Calonico et al.34,35,37

3.1.3 Continuity-based analysis of ART example

We now illustrate all the methods discussed so far using the ART application. The effects on the main outcome of inter-
est are reported in Table 1. All the results in this table can be generated using rdrobust in any of the three software
platforms (Python, R, Stata). First, we focus on the effect of being assigned to treatment (in this case, having a score
below the cutoff). We find that having a CD4 count of 350 or greater reduces the likelihood of ART initiation by 21 per-
centage points (𝜏D) and also reduces program retention by 14 percentage points (𝜏Y). This means that being just below
the 350 threshold increases likelihood of both ART and program retention. These are the effects of assignment to ART
rather than of actual ART initiation, and as such do not fully capture the primary effect of interest—the effect of ART
initiation on program retention. To explore the latter effect, we focus on the fuzzy RD estimate, 𝜏FRD, which is simply the
ratio of the two ITT effects. We find that ART initiation increases program retention by more than 67 percentage points,
and the confidence interval is bounded away from zero. Thus, we conclude that patients who initiated ART were much
more likely to be retained in the treatment program. Under standard fuzzy RD assumptions, this is the effect on program
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4496 CATTANEO et al.

T A B L E 1 RD estimation and Inference— ART application.

Continuity-based methods

RD Effect 95% Robust CI Bandwidth (h) N−
h

N+
h

ITT effect of ART assignment on ART initiation −0.21 [−0.28, −0.12] 114.36 1494 1188

ITT effect of ART assignment on program retention −0.14 [−0.22, −0.05] 114.36 1494 1188

Fuzzy effect of ART initiation on program retention 0.67 [0.34,1] 114.36 1494 1188

Local randomization methods

Risk Difference 95% Confidence interval Window () N−


N+


ITT Effect of ART assignment on ART initiation 0.02 [−0.15, 0.19] [346,354] 62 58

ITT Effect of ART assignment on program retention −0.02 [−0.2, 0.16] [346,354] 62 58

Fuzzy effect of ART initiation on program retention −0.8 [−12.5, 10.91] [346,354] 62 58

Note: The first three rows show, respectively, 𝜏D, 𝜏Y, and 𝜏FRD, corresponding to the continuity-based estimates based on local linear estimation with
MSE-optimal main bandwidth reported in third column. Column labeled “95% Robust CI” reports the robust 95% confidence intervals based on robust
bias-corrected inference. Column N−

h reports the number of observations with score in [c − h, c) and column N+
h reports the number of observations with score

in [c, c + h]. The last three show, respectively, ̂𝜃D, ̂𝜃Y, and ̂
𝜃FRD, corresponding to the local randomization estimates based on the data-driven chosen local

randomization window reported in third column. Column N−


reports the number of observations with score in and below the cutoff (Ti = 0) and column
N+


reports the number of observations with score in and above the cutoff (Ti = 1).

retention of initiating ART for patients with a CD4 count of 350 who are compliers. Recall that this interpretation
requires, among other assumptions, that there is no effect of having a CD4 count below 350 on patient retention except via
ART initiation.

We note that the analysis of RD designs can be enhanced by including predetermined covariates, which can be incor-
porated in a variety of ways. As in randomized experiments, a natural use of covariates is to improve the efficiency of the
local polynomial RD estimator, as developed in Calonico et al.35 However, predetermined covariates cannot be used to
salvage an invalid RD design because incorporating covariates on those settings necessarily changes the RD parameters
interest. See Cattaneo et al49 for more discussion and references.

3.2 Local randomization methods

The practical implementation of the local randomization framework requires two steps: (i) choosing the window where
the local randomization conditions are assumed to hold, and (ii) deploying methods from the analysis of experiments to
perform estimation and inference for observations whose scores are inside the window.

Window selection is the most important step in the implementation of the local randomization approach for RD anal-
ysis. Although could be selected in an ad-hoc fashion, a more principled approach is to select it using predetermined
covariates, as proposed by Catteneo et al.27 See also Catteneo et al24 and Catteneo et al16(section 2).

This data-driven window selection method requires that there be a set of predetermined covariates, Z, that
are related to the score everywhere except inside  . Once these predetermined covariates are chosen, the imple-
mentation of the window selection can be based on methods that assume random sampling (usually called
super-population methods) or methods that condition on the units in the sample and assume that the only ran-
domness comes from the treatment assignment mechanism (called Fisherian methods after statistician Ronald
Fisher). For an in-depth review of super-population vs Fisherian methods in the causal inference framework, see
Rosenbaum4 and Imbens and Rubin.5 Unlike super-population methods, Fisherian inference methods are exact in
finite samples. Thus, in the context of RD window selection, it is often preferable to employ Fisherian methods
because the windows considered typically have very few observations, which can invalidate the use of large-sample
approximations.

For implementation, the researcher chooses a test statistic and performs a sequence of hypothesis tests that test the null
hypothesis that the treatment has no effect on the covariates inside the window. The first test is conducted in the smallest
window around the cutoff that has enough observations (typically a minimum of at least 10 observations on either side
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CATTANEO et al. 4497

is recommended); the sequence continues testing the null hypothesis of no treatment effect on Z in progressively larger
windows until this hypothesis is rejected. While clearly this methodology relies on multiple hypothesis testing, there is
no need to adjust the inferences because over-rejection of the null hypothesis leads to a more conservative window choice
(ie, a smaller one). Consequently, a recommended rule is to reject all windows leading to p-values smaller than 0.15 or
0.10—these recommendations are based on power calculations under specific assumptions. (When Z includes multiple
covariates, researchers can use the single p-value from an omnibus balance test, or the minimum p-value across individual
balance tests.) The chosen is the largest (symmetric) interval around the cutoff such that the predetermined covariates
of the units inside the window are balanced between treated and control in that window, and in all smaller windows
contained in it.

Once window selection is complete, analysis within the local randomization framework is straightforward. Under
super-population methods, for example, a natural estimator for 𝜃SRD is the difference in means between the observed
outcomes in the treated and control groups. When compliance is imperfect, we can estimate the sharp RD effects of
Ti on Yi and Di, 𝜃Y, and 𝜃D, with the difference in the average observed outcomes between the treated and control
groups inside the window, denoted by ̂

𝜃Y and ̂
𝜃D, respectively. We can then estimate the local randomization fuzzy

RD parameter, 𝜃FRD, with ̂
𝜃FRD = ̂

𝜃Y∕̂𝜃D. In the super-population framework, statistical inferences are based on stan-
dard large-sample approximations. In the specific context of RD, this means that the number of units within  is
assumed to be large enough for distributional approximations to hold. This approach directly justifies the use of con-
fidence intervals and p-values based on the large-sample properties of common test statistics such as standardized
difference-in-means, least-squares and two-stage least-squares coefficients, and so forth, frequently used in the analysis of
experiments.

When the number of observations in is small, adopting a Fisherian approach is more appropriate. This approach
takes potential outcomes as nonrandom and assumes that the randomization mechanism that assigned units to treated
and control is either known or can be approximated. The fixed-margins assignment assumption is a natural choice. Fishe-
rian randomization inference employs the sharp null hypothesis of no treatment effect for any unit within , controlling
Type I error for any sample size. Most applications employ the difference-in-means between control and treatment units
as the test statistics, but other choices are possible. Under additional assumptions on the treatment effect structure, point
estimators and confidence intervals can also be constructed. For example, if we assume Yi(1) = Yi(0) + 𝜏, called a constant
treatment effect model, we can form a point estimator and confidence intervals for 𝜏 based on standard Fisherian meth-
ods. Fisherian methods are also available for fuzzy RD designs where compliance is imperfect. See Ernst50 for a review on
permutation-based methods, Catteno et al16,24,27 for more details on local randomization RD analysis, and Keele et al51

and Kang et al52 for related methodological developments for IV designs, which could be developed in the context of RD
designs.

We illustrate the local randomization RD approach with the ART application. The analysis begins with window
selection. The rdlocrand package contains tailored functions for the analysis of RD designs under local random-
ization, including a function for window selection. Using the data-driven methods for window selection outlined
above, the window selected is [346,354]—that is, we find that predetermined covariates in the data are balanced
for patients with CD4 counts between 346 and 354. We omit the balance test results for space considerations, but
the window selection was based on the same covariates shown in Table 2. The resulting local randomization win-
dow is much narrower than the neighborhood implied by the bandwidth estimated using continuity-based methods,
which is a common phenomenon in practice. The local randomization approach leads to a local neighborhood  =
[346,354] with 121 patients, while the estimated bandwidth from the continuity-based analysis in Table 1 leads to
the local region [239,461] with 2,593 patients. By their very nature, local randomization methods focus on much
smaller neighborhoods around the cutoff, and thus use substantially fewer observations, which implies that they
generally have less statistical precision than continuity-based methods. Nevertheless, local randomization methods
can offer a useful complement and a robustness check for continuity-based methods when both frameworks are
applicable.

Table 1 presents the main empirical results for the ART application using local randomization methods. Given the
small sample sizes, all estimated effects are statistically indistinguishable from zero at conventional levels. But the
confidence intervals do cover the point estimates reported with the continuity-based methods in Table 1. Thus, the
results are statistically consistent with each other, albeit the local randomization methods are less informative than the
continuity-based methods. One way to further investigate the role of lack of statistical precision is to increase the local
randomization neighborhood. We regard this approach as a sensitivity test for the RD design, so we discuss it further
below along with other falsification methods. Table 4 reports results for three wider windows—[340,360], [335,365], and
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4498 CATTANEO et al.

T A B L E 2 Continuity-Based ITT RD estimates for predetermined covariates with robust bias corrected inference—ART application.

Mean below Mean above 𝝉Y Robust p-value MSE-optimal bandwidth N−
h

N+
h

Age 0-18 0.07 0.08 0.01 0.44 126.62 2389 1893

Age 18-25 0.27 0.30 0.03 0.53 116.23 2178 1759

Age 25-30 0.24 0.19 −0.04 0.16 153.19 2860 2223

Age 30-35 0.14 0.14 −0.01 0.84 109.77 2056 1653

Age 35-40 0.09 0.10 0.01 0.69 143.56 2689 2102

Age 40-45 0.07 0.07 −0.00 0.93 106.65 1992 1617

Age 45-55 0.10 0.09 −0.00 0.81 131.88 2463 1953

Age 55+ 0.04 0.03 −0.01 0.50 92.74 1733 1457

2011 Qtr3 0.13 0.11 −0.03 0.23 139.49 2666 2092

2011 Qtr4 0.18 0.17 −0.01 0.68 108.15 2085 1668

2012 Qtr1 0.19 0.21 0.02 0.49 158.60 2982 2330

2012 Qtr2 0.18 0.18 0.00 0.93 108.14 2085 1668

2012 Qtr3 0.18 0.19 0.01 0.58 130.95 2494 1974

2012 Qtr4 0.14 0.14 0.00 0.93 137.76 2632 2067

Female 0.68 0.73 0.05 0.18 89.75 1698 1422

Clinic A 0.17 0.13 −0.04 0.07 100.46 1916 1579

Clinic B 0.12 0.15 0.03 0.21 108.18 2085 1668

Clinic C 0.14 0.15 0.01 0.69 114.85 2182 1755

Note: Each row reports the average effect (at the cutoff) of being assigned to the treatment vs the control condition on a given predetermined covariate. Analysis
based on local linear estimation with MSE-optimal bandwidth. The first and second columns report, respectively, the intercepts of the local linear fits to the left
and right of the cutoff. The third column, 𝜏Y, reports the difference between the first two columns, the intention-to-treat RD effect. p-value based on robust bias
correction inference methods. The fifth column reports the MSE-optimal bandwidth. Column N−

h reports the number of observations with score in [c − h, c)
and column N+

h reports the number of observations with score in [c, c + h].

[330,370]; the results are already closer to results obtained with continuity-based methods in the smallest window, and
nearly identical in the other two windows.

3.3 Evaluating the RD assumptions

While one the strongest methods for causal inference and program evaluation, RD designs are ultimately a type of
observational study and their key underlying assumptions are not guaranteed to hold by design.53,54 The main threat
to the validity of any RD design is the possibility of the units changing or “manipulating” their score in order to sys-
tematically select into the treatment. Analysts can offer supporting evidence in favor of the validity of the RD design in
two main ways. First, investigators should provide qualitative information about the administrative process by which
scores are assigned and cutoffs are determined—including whether this information is public knowledge. In medical
applications, we might expect the RD design to be more robust when the score is a lab test. For example, in the ART
example, patients might try to influence their CD4 count in order to qualify for ART. However, so long as the CD4 count
is determined by laboratory procedures that cannot be precisely manipulated by patients or physicians, this is not a
concern.

Second, the analysis of RD designs should include a series of falsification tests and diagnostics. As a gen-
eral rule, falsification tests cannot prove that an assumption holds, but they can provide indirect empirical evi-
dence that an assumption is likely to be invalid. Falsification tests arise from the fact that causal theories often
predict an absence of treatment effects in addition to predicting the presence of such effects. We review several
key falsification and diagnostic tests for RD designs, and illustrate their use with the ART application. All these
methods are applicable to both sharp and fuzzy RD settings. In addition, similarly to IV settings, we stress the
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CATTANEO et al. 4499

(A) (B)

F I G U R E 4 Density plots for CD4 count (score) around the cutoff—ART application. The score Xi is patient i’s CD4 count, and all
patients below the cutoff are assigned to receive ART. In panel (B), the solid line is a local polynomial estimate of the density of Xi and the
shaded regions represent 95% confidence intervals, both calculated separately for patients above and below the cutoff.

importance of checking the strength of the first-stage estimate in the fuzzy RD design (ie, 𝜏D and 𝜃D should be
well-separated from zero). See Cattaneo et al15,16 for more discussion, and Cattaneo et al14 for an overview of the
literature.

3.3.1 Score density near the cutoff

This diagnostic test examines whether, in a local neighborhood near the cutoff, the number of observations below
the cutoff is surprisingly different from the number of observations above it.22 The underlying assumption is that
if individuals do not have the ability to precisely manipulate the value of the score that they receive, the number
of treated observations just above the cutoff should be approximately similar to the number of control observations
below it. Although this assumption is neither necessary nor sufficient for the validity of an RD design, RD applica-
tions where there is an unexplained abrupt change in the number of observations at the cutoff will tend to be less
credible.

This test is usually implemented in two ways, each motivated by one of the main two RD frameworks discussed in
previous sections. The first method is the Binomial Test introduced by Cattaneo et al,24,27 building on the local randomiza-
tion framework. The second method is the Density Test introduced by McCrary,22 which is based on the continuity-based
framework for RD analysis. Informally, both tests seek to detect whether there is a significant amount of “bunching” at
or near the cutoff. A small p-value under both tests indicates a significant amount of bunching, which is a concern. Cat-
taneo et al55 develop a version of the density test based on local polynomial density estimation which can be plotted. All
these tests are available in the software resources.

Figure 1A showed the raw histogram of the score in the ART application; in Figure 4A, we zoom in, show-
ing the histogram only for the region [345,355]. Informally, there appear to be no obvious signs of bunching near
the 350 cutoff. Formally, we do not reject the hypothesis of a change in density near the cutoff using the bino-
mial test in the window [349,350] (p-value = 0.2026). We also implement the density test based on local polyno-
mials, which we illustrate in Figure 4B. We fail to reject the null hypothesis that, at the cutoff, the limit of the
score density from above the cutoff is the same as the limit from below (p = 0.1858). (For implementation, we
used the rddensity and the rdlocrand software packages.) Overall, we find no evidence that the density of
the score changes abruptly at or near the 350 cutoff and thus we see no evidence of intentional manipulation of
the score.
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4500 CATTANEO et al.

3.3.2 Predetermined covariates and placebo outcomes

Another important falsification test is based on the idea that if units lack the ability to precisely manipulate the value of
their score, units just above and just below the cutoff should be similar in terms of all characteristics that could not have
been affected by the treatment. These characteristics can be divided into two groups: predetermined covariates—variables
that are determined before the treatment is assigned, and placebo outcomes—variables that are determined after the
treatment is assigned but, according to substantive knowledge, could not have been affected by the treatment. In gen-
eral, baseline covariates should be available in most applications, but the availability of placebo outcomes will vary from
application to application.

This falsification test consists of repeating the RD analysis with baseline covariates or placebo outcomes in place
of the main outcome of interest. The implementation can be done using both the continuity-based and local ran-
domization frameworks. The underlying assumptions and methods for each case are analogous to those described
previously, with the only change that now the outcome variable is either a predetermined covariate or a placebo
outcome. As such, implementing this falsification test does not require any special software resources other than
those for standard RD estimation and inference. With continuity-based methods, the implementation should use a
bandwidth that is specific to each baseline covariate or placebo outcome, instead of the bandwidth selected for the
main outcome of interest. In the local randomization framework, some predetermined covariates Z are used to select
the window while others could be used for falsification testing after the local randomization window is selected;
all falsification tests are conducted in the same chosen window. Regardless of the specific framework and methods
employed, from the perspective of falsifying the RD design using predetermined covariates or placebo outcomes, the
null hypothesis of no treatment effect should not be rejected in order to offer empirical evidence in favor of the
RD assumptions.

We illustrate these ideas with the ART application, estimating the RD treatment effect for predetermined covari-
ates. The results are based on the function rdrobust in the rdrobust package, which is used for estimation of RD
effects and includes both bandwidth selection and robust bias correction inference methods. Table 2 analyzes the avail-
able baseline covariates in the data. The results are calculated using robust local polynomial methods to estimate RD
effects, treating each predetermined covariate as an outcome. We find that covariate differences at the cutoff are gen-
erally quite small and none of the p-values are below 0.10. These results are reassuring, as they do not show signs
of systematic differences near the cutoff: patients just above the cutoff are similar in terms of baseline covariates to
patients just below the cutoff. Similar results are obtained when using local randomization methods, which we omit to
conserve space.

3.3.3 Bandwidth sensitivity, donut hole, and placebo cutoffs

This battery of diagnostic tests have all the same underling principle: they investigate the sensitivity of the results to
small changes of different features of the implementations and data. The tests consider whether varying the bandwidth
or local randomization neighborhood changes the empirical results; whether the observations closest to the cutoff over-
whelmingly affect the extrapolation; and whether a fake treatment assignment rule (cutoff) leads to nonzero treatment
effects.

The first method focuses on bandwidth or local randomization neighborhood sensitivity, which is a common strategy
to probe the robustness of the empirical conclusions results to variations of the local neighborhood used for analysis. For
example, as discussed previously for continuity-based methods, a larger bandwidth will on average lead to a more precise
but also more biased RD treatment effect, if misspecification of the unknown conditional expectations approximations
near the cutoff is a concern. To illustrate using the ART application, Table 3 reports results based on two wider bandwidths
(relative to the MSE-optimal choice in Table 1); the results show that the conclusions are robust: treatment effects and
their associated statistical significance remain qualitatively unchanged. A similar procedure can be used to probe the
local randomization window, which can also be shrunk or enlarged to investigate the sensitivity of the main empirical
findings; see Table 4.

A related falsification method is the so-called donut hole sensitivity method, which is based on the idea that the few
observations closest to the cutoff should not drastically determine the empirical results. This is the mirror image of the
bandwidth sensitivity: in both cases some observations are included or excluded depending on their score values rel-
ative to the cutoff. The donut hole falsification test removes a few observations closest to the cutoff in an attempt to
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CATTANEO et al. 4501

T A B L E 3 Continuity-based sensitivity diagnostics—ART application.

Bandwidth sensitivity checka

RD Effect 95% Robust CI Bandwidth (h) N−
h

N+
h

ITT effect of ART assignment on ART initiation −0.22 [−0.28, −0.13] 124.36 1634 1303

ITT effect of ART assignment on program retention −0.15 [−0.22, −0.05] 124.36 1634 1303

Fuzzy effect of ART initiation on program retention 0.68 [0.37,1.00] 124.36 1634 1303

ITT effect of ART assignment on ART initiation −0.23 [−0.29, −0.14] 149.36 1965 1525

ITT effect of ART assignment on program retention −0.16 [−0.23, −0.07] 149.36 1965 1525

Fuzzy effect of ART initiation on program retention 0.69 [0.42,0.98] 149.36 1965 1525

Donut hole diagnosticb

ITT effect of ART assignment on ART initiation −0.23 [−0.3, −0.14] 122.24 1594 1262

ITT effect of ART assignment on program retention −0.14 [−0.21, −0.04] 122.24 1594 1262

Fuzzy effect of ART initiation on program retention 0.59 [0.27,0.89] 122.24 1594 1262

Placebo cutoffs diagnostic c = 300

ITT effect of ART assignment on ART initiation −0.02 [−0.19,0.13] 29.95 551 547

ITT effect of ART assignment on program retention 0.03 [−0.14,0.21] 35.91 467 442

Placebo cutoffs diagnostic c = 400

ITT effect of ART assignment on ART initiation −0.01 [−0.10,0.05] 39.11 676 571

ITT effect of ART assignment on program retention 0.00 [−0.16,0.18] 44.13 528 413

Note: The two/three rows in each panel show, respectively, 𝜏D, 𝜏Y, and 𝜏FRD. Analysis based on local linear estimation with MSE-optimal main bandwidth
reported in third column. Column labeled “95% Robust CI” reports the robust 95% confidence intervals based on robust bias-corrected inference. Column N−

h
reports the number of observations with score in [c − h, c) and column N+

h reports the number of observations with score in [c, c + h].
a Bandwidth used in the sensitivity check are ±10 relative to the benchmark MSE-optimal bandwidth reported in Table 1.
b Analysis based on local linear estimation with MSE-optimal main bandwidth reported in third column, but excluding observations with CD4 count equal to
349, 350, and 351.

understand the sensitivity of the results to those observations, since polynomial approximations can suffer from biases
near the cutoff because of Runge’s phenomenon. In practice, this method is easily implemented by using either the
continuity-based framework or the local randomization framework, using different subsamples where observations
in a symmetric interval around the cutoff are removed, starting with those closest to the cutoff and then progress-
ing with larger intervals around cutoff. No special software is needed beyond the packages used for RD treatment
effect estimation and inference (rdrobust, rdlocrand). Importantly, unlike the case of predetermined covariates
and placebo outcomes, the same bandwidth or local randomization window used for treatment effect estimation
should be used, instead of re-estimating a new bandwidth or window for each new subsample generated by the donut
hole. We illustrate the donut hole diagnostic test with the ART application, dropping patients with CD4 count val-
ues of 349, 350, and 351 and re-estimating the RD effects using continuity-based methods only to conserve space.
We report the results in Table 3, which show only minor differences between the donut hole estimates and the main
results. This implies that our results are not sensitive to the small set of patients with CD4 counts right around
the cutoff.

A third sensitivity approach investigates placebo cutoffs using either only control or only treated observations. The
idea is to provide evidence in favor of continuity of the regression functions or, more generally, validity of the treatment
assignment rule. In a nutshell, this approach analyzes either control or treatment units separately, and sets a sequence
of artificial or placebo RD cutoffs to check that there is no RD treatment effect at those alternative cutoffs, since the
expectation is that a treatment effect should occur only at the true cutoff and not at artificial cutoffs where treatment
status is constant by construction. Empirical evidence of treatment effects at artificial cutoffs may undermine the design
if the researcher cannot explain why these effects occur: nonzero effects at artificial cutoffs suggest the possibility that
other factors are affecting the units in the background. Table 3 illustrates the idea with placebo cutoffs 300 and 400,
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4502 CATTANEO et al.

T A B L E 4 Local randomization neighborhood sensitivity diagnostic—ART application.

Risk difference 95% confidence interval N−


N+


 = [340,360]

ITT effect of ART assignment on ART initiation −0.14 [−0.25, −0.04] 144 127

ITT effect of ART assignment on program retention −0.09 [−0.20, 0.030] 144 127

Fuzzy effect of ART initiation on program retention 0.60 [−0.06, 1.27] 144 127

 = [335,365]

ITT effect of ART assignment on ART initiation −0.21 [−0.30, −0.13] 212 189

ITT effect of ART assignment on program retention −0.11 [−0.20, −0.01] 212 189

Fuzzy effect of ART initiation on program retention 0.50 [0.13, 0.86] 212 189

 = [330,370]

ITT effect of ART assignment on ART initiation −0.25 [−0.32, −0.18] 277 245

ITT effect of ART assignment on program retention −0.13 [−0.21, −0.06] 277 245

Fuzzy effect of ART initiation on program retention 0.52 [0.25, 0.79] 277 245

Note: The three rows in each panel show, respectively, ̂𝜃D, ̂𝜃Y, and ̂
𝜃FRD, corresponding to the local randomization estimates based on local randomization

window . Benchmark local randomization window is reported in Table 1. Column N−


reports the number of observations with score in and below the
cutoff (Ti = 0) and column N+


reports the number of observations with score in and above the cutoff (Ti = 1).

using continuity-based methods only to conserve space. For both intention-to-treat effects on program retention and ART
initiation, we find that the robust 95% confidence intervals include zero, a reassuring result.

All the empirical results in this section are based on varying arguments in therdrobust package for continuity-based
methods, and in rdlocrand package for local randomization methods, and hence are readily available using general
purpose software. See accompanying replication files.

3.3.4 Fuzzy RD validation

To close our discussion of RD falsification methods, we review some validation methods that are specific to fuzzy RD
designs. Since the fuzzy RD design shares several features with the IV design, these tests are generally based on diagnostics
methods for IV designs. See References 31,56-58, and references therein, for reviews and examples of empirical evaluation
of IV assumptions in biomedical research and causal inference.

The canonical fuzzy RD estimator is a local version of the standard two-stage least squares estimator in IV settings,
and hence it requires a first stage well-separated from zero. Failure of this condition leads to a problem known as “weak
instruments” in the IV literature, and is a serious concern when analyzing fuzzy RD designs.59 In IV designs, a weak IV
test is used to ensure that the effect of the instrument on the treatment exposure is sufficiently strong. The validation
analysis of the fuzzy RD design should include this test, with the key difference that the standard weak IV test should
be applied within the local neighborhood around the cutoff. Performing the test in a local neighborhood is important: a
weak IV test that uses all observations is likely to overstate the strength of the instrument, since it would include data
that is excluded from the main analysis by bandwidth or window selection.

Similarly to the sharp RD design, predetermined covariates should be used to validate the assumptions of the fuzzy
RD design. These tests are implemented in the same way as in the sharp RD design, exploring whether the covariates
are balanced in a neighborhood of the cutoff. These balance tests should use only the predetermined covariates and the
score; the treatment received should not be used for covariate falsification purposes. Another IV diagnostic reports some
measure of bias associated with the instrument rather than balance, since bias from a baseline covariate can be amplified
by how strongly the IV is predictive of the treatment. This second diagnostic approach can be easily accommodated to the
RD setting by applying the fuzzy RD ratio estimator to the baseline covariates (instead of the standard sharp RD estimator)
when testing for differences in baseline covariates. See Davies et al60 and Branson and Keele61 for related formal and
graphical methods, which we omit to conserve space.
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CATTANEO et al. 4503

T A B L E 5 Continuity-based fuzzy RD estimates for predetermined covariates with robust bias corrected inference—ART application.

𝝉FRD Robust p-value MSE-optimal bandwidth N−
h

N+
h

Age 0-18 −0.05 0.41 122.00 2281 1835

Age 18-25 −0.10 0.58 91.15 1718 1440

Age 25-30 0.14 0.37 111.16 2093 1674

Age 30-35 0.01 0.88 94.99 1767 1473

Age 35-40 −0.02 0.89 110.41 2073 1660

Age 40-45 −0.01 0.88 85.55 1592 1357

Age 45-55 0.00 0.90 105.77 1981 1606

Age 55+ 0.01 0.83 114.10 2138 1725

2011 Qtr3 0.09 0.33 112.25 2152 1717

2011 Qtr4 0.09 0.54 79.37 1505 1299

2012 Qtr1 −0.09 0.45 106.25 2034 1646

2012 Qtr2 −0.00 0.99 85.82 1624 1383

2012 Qtr3 −0.05 0.64 114.33 2182 1755

2012 Qtr4 0.03 0.70 99.25 1891 1569

Female −0.27 0.16 76.70 1443 1243

Clinic A 0.20 0.13 74.44 1416 1229

Clinic B −0.11 0.38 85.94 1624 1383

Clinic C −0.03 0.69 110.76 2116 1690

Note: The first column is the fuzzy RD effect (𝜏FRD) for each predetermined covariate. Analysis based on local linear estimation with MSE-optimal bandwidth.
p-value based on robust bias correction inference methods. The third column reports the MSE-optimal bandwidth. Column N−

h reports the number of
observations with score in [c − h, c) and column N+

h reports the number of observations with score in [c, c + h].

The key assumption known as the exclusion restriction—that being assigned to the treatment has no effect on the
outcome except via actual treatment exposure—is untestable. This is a fundamental identifying assumption. For fuzzy RD
designs, it is important to evaluate the exclusion restriction using qualitative information. See Arai et al30 and references
therein.

We illustrate these falsification methods with the ART application. We focus on two tests that are specific to RD designs
with noncompliance: a weak instrument test, and covariate “balance” tests based on the ratio fuzzy RD estimator. We
implement a weak IV test in the following way. First, we estimate the MSE-optimal bandwidth for both sides of the cutoff,
using ART initiation (the treatment) as the outcome. We then implement a weak IV test using only the observations
within this bandwidth. This test consists of regressing the treatment on an indicator variable for whether the CD4 score
is less than 350, and assessing the F-value from this regression. The F-value from the weak IV test is approximately 698,
well above the standard critical value thresholds used in the IV literature. Standard methods can be used to generate these
F-values while using bandwidth selection methods in rdrobust; see the replication materials for details. We also test for
differences in baseline covariates at the cutoff using the fuzzy RD estimator in Table 5. The balance results in Table 2
inflate the estimates in Table 2 by the strength of the instrument, which may make it more likely to find imbalances.
However, the results are similar to those results in Table 2 based on the intention-to-treat RD estimator: we still find that
there are no significant differences in the baseline covariates at the cutoff.

4 ANALYSIS WITH DISCRETE SCORE

When the score only exhibits a “few” unique values (30 or fewer in typical applications), it is more appropriate to think
of the RD design as truly having a discrete score. In that case, the methods presented in the previous sections need to
be modified in order to be applicable. Continuity of the score is a key identifying assumption in the continuity-based
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4504 CATTANEO et al.

RD framework, since the continuity assumption is used to extrapolate the information of units near the cutoff under
the thought experiment that, in large samples, eventually many units will be arbitrary close to the cutoff. Although
continuity-based methods can be used under parametric assumptions when the score exhibits repeated values or mass
points in its distribution, the local randomization RD framework is more naturally applicable in this setting because,
by construction, this framework assumes valid extrapolation within the local randomization neighborhood—no further
parametric assumptions are needed. Furthermore, the local randomization framework allows for employing only the
closest observations to the cutoff, which tends to minimize extrapolation biases. In this section, we discuss how to employ
both RD frameworks when the score is discrete with a few mass points, focusing only on the changes in interpretation
and implementation that are required.

We consider a second biomedical empirical illustration on patient cost-sharing and healthcare utilization. In many
countries, health care costs are subsidized through government programs, and research in health policy and management
seeks to understand whether lower levels of cost-sharing encourages patients to use healthcare services at higher rates.
Government health care cost-sharing often varies by age, thereby creating a discontinuity in health care subsidization
that can be analyzed using RD methods. In this type of RD design, researchers compare health care utilization for those
just above and below the age at which cost-sharing levels change. For example, in the U.S., eligibility for the healthcare
program Medicare starts at age 65, and thus a common RD empirical strategy compares health care usage or other out-
comes of interest for adults just above and below this age threshold. We reanalyze the recent work of Han et al,62 who
studied patient cost-sharing and healthcare utilization in Taiwan, where all inpatient and outpatient services for children
under the age of 3 are exempt from co-payments. They used this discontinuity in age to compare levels of health care
utilization just before and after the third birthday. Henceforth, we refer to this study as the cost-sharing application.

The raw data includes 414 282 children born between 2003 and 2004, and records the number of days until the child’s
third birthday—normalized to be zero on the day of the third birthday. Data on healthcare utilization was collected for
up to 180 days before and after each child’s third birthday. The treatment is an indicator equal to 1 if the child’s age at
the time of their visit is 3 or greater. This captures the higher level of patient’s cost-sharing due to the expiration of the
subsidy after the third birthday. The outcome of interest is the number of medical visits per 10 000 person days, and thus
the outcome variable Yi records the average for all children within a day relative to the cutoff. The data was aggregated
at the day-level, but the score records only the associated week for each day, with a total of 50 weeks. While the unit of
analysis is at the day-level, the score variable records the week relative to the cutoff, so there are seven observations for
each value of the score Xi ∈ {−25,−24, … , 0, … , 23, 24}. Unlike the ART application, this RD design is sharp because
once the child is 3 years of age or older there are no exceptions to the change in cost-sharing.

Graphical presentation continues to be important when the score is discrete. However, in this case, histograms, scat-
terplots, and RD plots can be constructed directly by employing the unique values of the score; there is no need for binning
the score data first as in Section 3. In the case of the cost-sharing application, the histogram would not be informative
since each mass point contains exactly seven observations. Thus, Figure 5 presents a scatter plot and a RD plot instead.

Figure 5A shows that indeed seven observations share each unique value of the score. Furthermore, the scatter plot
suggests that when children are three or older, the rate of hospital visits drops. Figure 5B presents an RD plot, where
each bin is equivalent to one value of the score, so each dot reports the sample average of the seven observations for that
week. More generally, if the score variable takes on the values {xK− , … , x−2, x−1, c, x1, x2, … , xK+}, with K− denoting the
number of unique values below the cutoff and K+ denoting the number of unique values above the cutoff, then the RD plot
reports K = K− + K+ + 1 sample averages of the outcome for each score value, {Y K− , … ,Y−2,Y−1,Y c,Y 1,Y 2, … ,Y K+},
where Y j = 1

#{i∶xi=xj}
∑

i∶xi=xj
Yi for j ∈ {K−, … ,−2,−1, c, 1, 2, … ,K+} and #{A} denotes the number of elements in the

set A. The global polynomial fits are added for visual presentation only, as they represent a global parametric interpolation
across the K unique values or mass points available for the score.

4.1 Continuity-based methods

In RD settings where there are repeated score values among the units, continuity-based methods can be applied if the
score takes on a relatively large number of distinct values and the researcher is willing to make additional assumptions. A
reasonable approach is to view the number of unique values of the score K as the effective sample size, and thus treat the
units with identical scores as independent measurements of each particular score level. From this perspective, the total
sample size continues to be n but the effective sample size is smaller because there is only K ≤ n unique values among
X1,X2, … ,Xn.
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CATTANEO et al. 4505

(A) (B)

F I G U R E 5 Basic plots—Cost-sharing application. The score Xi is the number of weeks until the child turns five years of age, where the
date of birth is normalized to zero, so that positive numbers represents weeks past the third birthday, and negative numbers represent weeks
before the third birthday. The cutoff is zero. Children below the cutoff are eligible for a health care subsidy; the subsidy is not available for
children above the cutoff. The outcome Yi is the number of medical visits per 10 000 person days. Both panels display the outcome against the
score. In panel (B), dots are local means of Yi calculated in different nonoverlapping bins of Xi, and the solid line is a 4th-order polynomial of
Yi on Xi, fitted separately for patients above and below the cutoff.

Whenever the number of the unique score values K is large enough and the closest mass points to the cutoff are close
enough, the continuity-based framework can be taken as a reasonable approximation for identification purposes and
hence 𝜏SRD, 𝜏Y, 𝜏D, and 𝜏FRD are reasonable treatment effects of interest. The key requirement is that whatever extrapolation
takes place from the closest observed score value to the cutoff has a sufficiently small error. Clearly, some extrapolation
would be needed, which is ultimately achieved via the estimation and inference methods employed.

Local polynomial methodology can be adapted and used for both optimal point estimation and robust bias corrected
inference in settings with a large number of unique score values. The only important change is related to the sample size
used, in addition to the key identifying assumptions invoked. From an approximation error perspective, only variation
in the score variable can reveal the shape of the conditional expectation functions, and hence the correct sample size
to be considered is K, not n. On the other hand, from an uncertainty perspective, either K or n could be the correct
sample size, depending on the assumptions imposed about how the data was generated. Either way, the presence of
repeated score values in the sample affects bandwidth selection and inference methods, but the necessary modifications
are straightforward and readily applicable in general purpose software (rdrobust and rddensity packages). This
logic justifies the empirical analysis in Section 3, where we used continuity-based methods despite having some repeated
score values, because K was large. See Reference 16(section 3) and references therein.

The situation is different when K is small, that is, when there are only a few unique values in the score (usually 30
or less). In this case, it may be unreasonable to assume valid nonparametric extrapolation to the cutoff because it would
be hard (or impossible) to learn the shape of the conditional expectation functions arbitrarily close to the cutoff. In this
scenario, a solution to validate continuity-based methods is to rely on parametric extrapolation, where by virtue of the
coarseness of the score, the postulated local polynomial model must be assumed to be correctly specified. This is a strong
assumption, but necessary to restore point identification of RD treatment effect parameters at the cutoff.

To illustrate the point with an extreme example, suppose the score Xi takes only on five distinct values x−2 < x−1 < c <

x1 < x2, where c continues to denote the RD cutoff. It follows that only E[Yi(0)|Xi = x−2], E[Yi(0)|Xi = x−1], E[Yi(1)|Xi = c],
E[Yi(1)|Xi = x1] and E[Yi(1)|Xi = x2] are identifiable from the data. In particular, 𝜏SRD = E[Yi(1)|Xi = c] − E[Yi(0)|Xi = c]
will never be nonparametrically identifiable because E[Yi(0)|Xi = c] is not identifiable without parametric assumptions
about the functional form of E[Yi(0)|Xi = x] for x ∈ (x−1, c]. Moreover, E[Yi(1)|Xi = c] will be nonparametrically iden-
tifiable in a super-population sense only in settings where P[Xi = c] > 0, that is, when the number of repeated values
at Xi = c is sufficiently large. This example shows a more general phenomenon: if the score is discrete, the canonical
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4506 CATTANEO et al.

T A B L E 6 Continuity-based sharp RD methods—Cost-sharing application.

RD effect 95% Robust CI Bandwidth (h) N−
h

N+
h

Number of doctor visits per 10 000 −1.29 [−2.08, −0.75] 6.08 42 49

Note: Analysis based on local linear estimation with MSE-optimal main bandwidth reported in third column. Column labeled “95% Robust CI” reports the
robust 95% confidence intervals based on robust bias-corrected inference. Column N−

h reports the number of observations with score in [c − h, c) and column
N+

h reports the number of observations with score in [c, c + h].

continuity-based RD parameters 𝜏SRD, 𝜏Y, 𝜏D, or 𝜏FRD are not point identifiable without strong, parametric assumptions
about the functional form of E[Yi(0)|Xi = x] and E[Yi(1)|Xi = x]. This leads to two possible conceptual approaches: (i)
assume such parametric assumptions hold, or (ii) change the parameter of interest. As already discussed, continuity-based
RD methods can be deployed to RD designs with discrete score variables whenever the local parametrizations are assumed
to generate small misspecification bias, that is, when the local polynomial model is assumed to be approximately correctly
specified.

We illustrate these ideas with the cost-sharing application. The RD effect is −1.29 with robust confidence interval of
[−2.08,−0.75] and robust p-value of zero (main MSE-optimal bandwidth equal to 6.08 weeks). See Table 6 for the full
results.

4.2 Local randomization methods

Provided the parameter of interest is changed or reinterpreted appropriately, RD identification, estimation and inference
under a local randomization framework remains valid when the score exhibits mass points. To formalize the core ideas, we
continue to assume that the support of the score variable is {xK− , … , x−2, x−1, xc, x1, x2, … , xK+}, with K = K− + K+ + 1
the total number of unique values. The local randomization assumption reduces to specifying a window containing some
of these unique values where the two local randomization conditions discussed in Section 2 are assumed to hold.

We can define the following alternative RD parameters for settings where the score has few mass points:
̃
𝜃SRD = E[Yi(1)|Xi = c] − E[Yi(0)|Xi = x−1], ̃

𝜃Y = E[Yi(1,Di(1))|Xi = c] − E[Yi(0,Di(0))|Xi = x−1], ̃
𝜃D = E[Di(1)|Xi = c] −

E[Di(0)|Xi = x−1], and ̃
𝜃FRD = ̃

𝜃Y∕ ̃𝜃D. The notation makes clear that the parameters of interest have changed: they now cor-
respond to comparisons of potential outcomes at different values of the score variable (Xi = c vs Xi = x−1). This approach
allows for the deployment of local randomization RD methods. First, because the Fisherian approach is finite-sample
valid, this method can be used even with small sample size at the two score evaluation points Xi = c and Xi = x−1. The
super-population approach, in contrast, relies on large sample approximations and consequently requires a large enough
number of repeated values at Xi = c and Xi = x−1. In practice, this idea can be used for the two closest values to the cut-
off or, alternatively, for a collection of unique values closest to the cutoff. As before, the number of unique points on the
score closest to the cutoff used is determined by the choice of window .

The choice of in this case is simplified considerably. The implementation of the window selector based on covariates
should start with the smallest possible window, [x−1, c], and continue increasing this window one mass point at a time
on either side. If there are enough observations in the window [x−1, c], researchers should report results for this window.
Even if a larger window is chosen by the covariate-based window selector, it will be important to show the results when
only the observations closest to the cutoff are included in the analysis. Whenever contains enough unique values of
the score, it is also possible to use parametric extrapolation ideas. In this case, a parametric relationship is postulated
between the outcome variables and the score, and regression-based methods are used for adjustment.

We illustrate these ideas with the cost-sharing application. We use the local randomization approach and implement
a window selector to find the largest window around the cutoff where all covariates are balanced in that window and in
all the windows contained in it. We use four predetermined covariates in our window selector: share of male children,
household income per capita, share of children born in Taipei, and birth year. The results show that only the first window,
which has seven observations on each side, has all covariates balanced; starting in the second window (14 days on either
side of the cutoff), the minimum p-value is well under 5% (in fact, it is zero for all windows after the second). Table 7
shows the results of the balance tests in our selected window, where not only are the p-values above a 0.15 threshold, but
the differences in means are very small for all four covariates.

We now estimate the effect of the treatment in the selected window. Since the number of observations in this win-
dow is only 14, it is important that we use Fisherian methods for inference, since those do not rely on large-sample
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CATTANEO et al. 4507

T A B L E 7 Distribution of predetermined covariates for = [−1, 0]—Cost-sharing application.

Mean below Mean above Diff. in means p-value

Share of male 0.55 0.55 0.00 0.78

Household income per capita 12 494.53 12 532.86 38.33 0.21

Share of children born in Taipei 0.08 0.08 0.00 0.80

Birth year 2003.49 2003.49 −0.00 0.21

Note: Only including children who are within 7 days of their third birthday; there are 14 total observations, 7 on each side of the cutoff. The last column shows
the Fisherian p-value assuming a fixed margins randomization mechanism that assigns these 14 observations to be above or below the birthday cutoff (which
is normalized at zero).

T A B L E 8 Local randomization sharp RD methods—Cost-sharing application.

Local randomization estimate

Mean below Mean above Diff. in means Fisherian p-value

Number of doctor visits per 10 000 16.610 15.248 −1.362 0.006

Local randomization placebo estimate (pretreatment period)

Number of doctor visits per 10 000 11.918 11.987 0.069 0.720

Note: Only including children who are within 7 days of their third birthday; there are 14 total observations, 7 on each side of the cutoff. The last column shows
the Fisherian p-value assuming a fixed margins randomization mechanism that assigns these 14 observations to be above or below the birthday cutoff (which
is normalized at zero).

approximations and provide exact p-values even when sample sizes are very small as in this case. The results are shown
in Table 8, where we see that the mean difference in the number of doctor visits per 10 000 is −1.362: the number of visits
per 10 000 is 16.61 for children who are two years old and whose third birthday is within 7 days, compared to 15.248 for
children who turned three in the past seven days. The Fisherian p-value associated with the test of the hypothesis that
there is no effect for any unit is well below 1%, despite the low sample size. This suggests, as expected, that cost sharing
causes families to use medical care at higher rates.

Finally, we conduct a placebo analysis to assess the validity of the design. The data contains information on health-
care utilization for the period from 1997 to 2002, when cost-sharing was not higher for children under three. Thus, we
expect no treatment effects from a similar analysis in this pretreatment period. Indeed, Table 8 shows that the Fishe-
rian sharp null of no treatment effect cannot be rejected, with a p-value of 0.209. Moreover, the difference in means
of −0.127 is less than one tenth of the −1.362 difference observed in the posttreatment period. Similar null results
are obtained if the window in the placebo analysis is widened to plus or minus four weeks of the date of the third
birthday.

4.3 Evaluating the RD assumptions

In Section 3, we discussed an array of falsification and validation methods for RD designs with a continuous score
variable. Those methods can be directly employed in settings where the score is discrete but the number of unique
score values K is large enough. When K is small, some of these methods are easily applicable while others are
not. For the score density near the cutoff diagnostic, the binomial test continues to be valid regardless of the size of
K because this is a finite-sample valid test about the relative proportion of units on either side of the cutoff. On
the other hand, the density test must be handled with more care because that method was developed for (approxi-
mately) continuously distributed scores. For predetermined covariates and placebo outcomes diagnostics, all ideas and
methods discussed in this section can be applied directly. Bandwidth sensitivity diagnostics can be applied when
the score is discrete, while the donut hole and placebo cutoff diagnostic are more difficult to implement without
strong parametric assumptions. Finally, fuzzy RD validation diagnostics can be adapted from the standard IV literature
straightforwardly.
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4508 CATTANEO et al.

4.4 A flawed RD application: Genetic assay guidelines for chemotherapy

The ART and cost-sharing applications showcase RD designs with many and with few discrete score values that pass all
the key diagnostic tests, and produce robust and statistically significant treatment effect estimates. To contrast, we now
discuss a third empirical application where the key falsification methods do not support the use of RD methods.

While treatment options for breast cancer have greatly expanded over the last two decades, chemotherapy is still often
indicated for patients. To guide whether chemotherapy should be administered there are several commercially available
gene-expression assays that provide prognostic information in hormone-receptor positive breast cancer patients. One
widely used score is the Oncotype DX by Genomic Health, which is a 21-gene recurrence-score assay that ranges from 0
to 100 and is predictive of chemotherapy benefit when it is high—with a high score defined as 31 or higher. When the
oncotype score is low (0 to 10), it is prognostic for a very low rate of distant breast cancer recurrence (2%) and adjuvant
chemotherapy is not recommended. There is, however, considerable uncertainty as to whether chemotherapy is beneficial
for patients who have a mid-range oncotype score. Current clinical guidelines suggest initiation of adjuvant chemotherapy
for patients with an oncotype score of 26 or higher.63-65 Thus, this setup suggests the use of an RD design with a discrete
running variable being the oncotype score and the cutoff is 26.

For this application, we analyze a cohort of patients from the Penn Breast Database from 2009 to 2017 with oncotype
scores of less than 40 who underwent surgery and were then eligible for adjuvant chemotherapy. Excluding patients with
oncotype scores of 40 or greater reduces the cohort from 16 488 to 3269, after also excluding three patients who did not
undergo oncotype scoring. The database includes several predetermined covariates: age, race, tumor size, tumor grade, an
indicator for lymphovascular invasions, an indicator for estrogen receptor, an indicator for progesterone receptor, type of
surgery (mastectomy or breast conservation), and an indicator for endocrine therapy. This is an RD design where the unit
of observation is the patient, Xi is the oncotype score, c = 26, the treatment is the receipt of adjuvant chemotherapy, and the
outcome of interest is an indicator for recurrence of breast cancer. This RD design is fuzzy since adjuvant chemotherapy
was only prescribed to patients. Henceforth, we refer to this empirical application as the chemotherapy application.

Figure 6 illustrates the fuzzy RD design. Figure 6A shows the plot of the breast cancer recurrence indicator on the
oncotype score, while Figure 6B shows the treatment take-up. Since this score takes only a smaller number of values,
this is an example of an RD design with discrete score. We thus simply plot the proportion of patients with breast cancer
recurrence for each one of these values. There is an increase in the proportion of patients that receive chemotherapy at the
26 cutoff, but not all patients with oncotype score of 26 receive it, and a considerable share of patients with oncotype scores
below 26 are treated with chemotherapy. Moreover, the proportion of treated patients “jumps” not only at 26, but also
at 25 and at 24, suggesting that some physicians are using a cutoff that is lower than the guideline, or perhaps not using
a cutoff at all and simply steadily increasing the probability of chemotherapy treatment as the oncotype score increases.
The evidence thus shows that many physicians initiate treatment for patients that are below the clinical guideline that
is the basis for the RD design. In general, this pattern will tend to occur in applications where the physician deems the
side effects of treatment to be small but the effects of treatment worthwhile. As we demonstrate below, this phenomenon
will tend to make the instrument weak in the fuzzy RD design, and preclude the researcher’s ability to learn about the
treatment effect.

We attempt to validate the RD design by analyzing whether the number of treated and control observations is similar
in a small neighborhood of the cutoff, by studying whether these observations are similar in terms of predetermined
characteristics or covariates, and by investigating the presence of weak instruments. We implement the density test by
applying the binomial test to the oncotype data. For the neighborhood of W = [25, 26], there are 38 observations below
the threshold and 27 above the threshold; assuming the null probability is 1/2, the p-value from the binomial test is 0.215.
If instead we use the neighborhood W = [24, 27], there are 83 observations with 50 above the threshold for a p-value of
less than 0.005. The latter result is not consistent with a Bernoulli trial with probability of success 1∕2. As oncotype scores
increase, they become less common, and as such there is a clear downward trend in the density of the score. This results
in a statistically significant imbalance in the number of units below and above the cutoff as soon as the second largest
window is considered.

Next, we explore whether there is a window around the cutoff where all the covariates are balanced. We summa-
rize the results without reporting details to conserve space. Considering the p-value for differences-in-means obtained
for each increasing symmetric window from [25, 26] to [21, 30], we find that for the smallest window the p-value for one
covariate, tumor size, is less than 0.05. If tumor size affects cancer recurrence, an imbalance in this covariate can invali-
date the outcome comparisons between the treated and the control groups. Ideally, no important confounders should be
imbalanced in the chosen local randomization window. Furthermore, the minimum p-value is below 0.10 in all of these
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CATTANEO et al. 4509

(A) (B)

F I G U R E 6 Basic plots—Chemotherapy application. The score Xi is the Oncotype DX score for patient i. The cutoff is 26: the guideline
is to initiate adjuvant chemotherapy for patients with a score of 26 or higher. The outcome Yi is an indicator for recurrence of breast cancer.
Panel (A) plots the proportion of patients receiving treatment against the score; panel (B) reports the outcome against the score. In both
panels, the dots are sample means and the bars represent 95% confidence intervals.

windows, showing that covariate balance is getting worse as the window size increases—a pattern that is expected when
the score correlates strongly with units’ characteristics. We also found a second covariate, lymphovascular invasion, that
is imbalanced in the second smallest window. These preintervention covariates are likely to be important determinants
of the outcome, and thus the outcome of the RD methods are likely to be confounded and fail to provide a valid esti-
mate of the true effect of chemotherapy on cancer recurrence. In sum, we find statistically significant differences in key
preintervention features that are likely to confound the RD design.

Finally, we consider the first-stage treatment effect, 𝜃D, to understand whether reaching an oncotype score of 26
resulted in a significant increase in the probability of being treated with adjuvant chemotherapy. For the smallest window,
 = [25, 26]with N = 65, we find ̂

𝜃D = 0.15 with a Fisherian p-value of 0.32. In addition, the large-sample F-statistic is
1.51, suggesting a clear problem of weak instruments, as already anticipated in Figure 6A. Reaching the cutoff of 26 does
not seem to have induced an increase in the probability of receiving adjuvant chemotherapy. Fuzzy RD treatment effects
are weakly identifiable and thus unreliable in this application.

In sum, the chemotherapy application does not pass basic RD validation/diagnostic tests, and the evidence does not
support an RD analysis. The clinical guideline was not followed closely, which resulted in a very weak instrument, and the
fact that important confounders are imbalanced even in the smallest windows around the cutoff makes this application
an example of a flawed RD design.

5 CONCLUSION

The RD design offers biomedical researchers the possibility of rigorously studying the effect of a treatment that is assigned
based on a score and a cutoff, such as a recommendation to treat patients with a diagnostic laboratory test above or
below a given threshold. Although the patient population above the cutoff will typically be very different from the patient
population below the cutoff, the RD design restores comparability by focusing on patients whose scores are close to the
cutoff on either side.

Our discussion, empirical examples, and accompanying computer code provides a state-of-the-art introduction and
practical guide for the analysis of canonical RD designs in biomedical contexts. We covered modern estimation, inference,
validation, and visualization approaches for the analysis and interpretation of RD designs based on both continuity-based
and local randomization frameworks. The main takeaways are as follows: (i) always employ graphical approaches to
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4510 CATTANEO et al.

uncover basic features of the design but never for formal estimation and inference; (ii) always localize near the cutoff when
deploying principled statistical methods and never rely on global estimation and inference approaches; (iii) depending on
the coarseness of the score, employ continuity-based or local randomization methods being cognizant of the unavoidable
extrapolation (to the cutoff) underlying the methods (eg, ART and Cost-Sharing applications); (iv) always employ falsi-
fication and validation diagnostics to offer evidence in favor of the RD design; and (v) be aware that not every treatment
assignment mechanism based on a hard-thresholding rule can be analyzed via RD designs methods because sometimes
the key underlying identifying assumptions do not hold (eg, Chemotherapy application).

The canonical RD design can be generalized to the case of multiple scores,66,67 the geographic RD design,68,69 multiple
cutoffs,26,29 kink RD designs,70 RD designs with rounded scores,71 and RD designs with measurement error,72 among
many other possibilities. We do not discuss all these extensions and generalization due to space constraints. See Cattaneo
et al14 for more examples and references, and Cattaneo et al15,16 for practical introductions.

All the methods discussed in this tutorial employ open source general-purpose software for R, Stata, and Python,
available at https://rdpackages.github.io/. We also provide full replication materials (data and codes) for the three
applications, available at https://rdpackages.github.io/replication/.
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APPENDIX A. ANNOTATED SAMPLE CODE

Full replication files can be found at https://rdpackages.github.io/. The replication files include the data and scripts for
Python, R and Stata to generate every result in the paper. Below we provide an abbreviated version of R code for the
ART application for illustration purposes. Note that these commands will not exactly replicate the results in the tables
due to handling of missing values. For exact replication of tables, see the replication codes.

> library(foreign)
> library(rdrobust)
> library(rddensity)
> library(rdlocrand)
>

> # Read dataset
> data <- read.dta("CKT_2023_SIM--ART.dta")
> X = data$cd4
> Y = data$visit_test_6_18
> D = data$art_6m
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> ## Generate RD Plot
> rdplot(Y, X, c=350, y.label="Retained", x.label="CD4 Count", p=3)

> ## Continuity-Based RD Analysis: ITT effect on outcome
> rdrobust(Y, X, c=350)
> ## Continuity-Based RD Analysis: ITT effect on treatment
> rdrobust(D, X, c=350)
> ## Continuity-Based RD Analysis: Fuzzy effect on outcome
> rdrobust(Y, X, c=350, fuzzy=D)

> ## Local Randomization Window selection
> vars <- c("age1", "age2", "age3", "age4","age5", "age6", "age7", "age8", "qtr1",
"qtr2",

+ "qtr3", "qtr4", "qtr5", "qtr6", "clinic_a", "clinic_b", "clinic_c")
> Z <- data[vars]
> out = rdwinselect(X, Z, c=350, seed = 50, reps = 1000, wstep=1)

> ## Local Randomization Analysis: ITT effect on outcome
> ci_vec = c(0.05, seq(from = −.5, to = .5, by = 0.01))
> rdrandinf(Y, X, cutoff = 350, seed= 5023, wl=346, wr=354, ci=ci_vec)

> ## Local Randomization Analysis: Fuzzy effect on outcome
> ci_vec = c(0.05, seq(from = −1, to = 1, by = 0.01))
> rdrandinf(Y, X, fuzzy=c(fuzzy.tr=D, fuzzy.stat="tsls"),
+ cutoff = 350, seed= 5023, wl=346, wr=354, ci=ci_vec)
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