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SA-1 Empirical Examples of Multi-Cutoff RD Designs

Table SA-1 collects over 30 empirical papers in social, behavioral and biomedical sciences,

where RD designs with multiple cutoffs are present. In most of these papers, the multi-cutoff

feature of the RD designs was not exploited, but rather a pooling-and-normalizing approach

was taken to conduct the empirical analysis (see Cattaneo et al., 2016, for methodological

background).

Table SA-1: Empirical Papers Employing RD Designs with Multiple Cutoffs.

Citation Place Running Variable Outcome Variable Cutoffs

Abdulkadroglu et al. (2017) US Test scores Test scores Many
Angrist and Lavy (1999) Israel Cohort size Test scores 2
Behaghel, Crépon and Sédillot (2008) France Age Layoff rates Many
Berk and de Leeuw (1999) U.S. Prison score Re-conviction 4
Black, Galdo and Smith (2007) U.S. Training eligibility score Job training and aid Many
Brollo and Nannicini (2012) Brazil Population Federal transfers Many
Buddelmeyer and Skoufias (2004) Mexico Poverty score Education attainment Many
Canton and Blom (2004) Mexico Elgibility score College outcomes Many
Card and Shore-Sheppard (2004) U.S. Child age and income Doctor visits 2
Card and Giuliano (2016) US Elgibility score Test score Many
Chay, McEwan and Urquiola (2005) Chile Elgibility score School aid 13
Chen and Shapiro (2004) U.S. Prison score Rearrest 5
Chen and Van der Klaauw (2008) U.S. Age Disability awards 3
Clark (2009) UK Majority vote Test scores Many
Crost, Felter and Johnston (2014) Phillipines Poverty index Conflict 22
Dell and Querubin (2017) Vietnam Geographic regions Military strategy by location Many
Dobkin and Ferreira (2010) U.S. Birthday Education attainment 3
Edmonds (2004) S. Africa Age Child outcomes 2 - 3
Garibaldi et al. (2012) Italy Income Graduation 12
Goodman (2008) U.S. Test score Scholarship Many
Hjalmarsson (2009) U.S. Adjudication score Re-conviction 2
Hoekstra (2009) US Test and grades Earnings Many
Hoxby (2000) U.S. Cohort size Test scores Many
Kane (2003) U.S. GPA College attendance Many
Klašnja and Titiunik (2017) Brazil Margin of victory Incumbency advantage Many
Kirkeboen, Leuven and Mogstad (2016) Norway Test scores Earnings Many
Litschig and Morrison (2013) Brazil Population Poverty reduction 17
Spenkuch and Toniatti (2018) US County borders Advertising and vote shares Many
Snider and Williams (2015) US Distance from airports Airfares Many
Urquiola (2006) Bolivia Cohort size Test scores 2
Urquiola and Verhoogen (2009) Chile Cohort size Test scores 3
Van der Klaauw (2002) U.S. Aid score Financial aid Many
Van der Klaauw (2008) U.S. Poverty Score School aid Many

Note: “Many” refers to examples where either a large number of cutoff points are present or a continuum of cutoff points can

be generated (e.g., the cutoff is a continuous random variable). This table excludes a large number of political science and

related applications reported in Cattaneo et al. (2016, Supplemental Appenedix).
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Table SA-2: Results for ACCES loan eligibility on Post-Education Enrollment in restricted
ample

Robust BC Inference
Estimate Bw Eff. N p-value 95% CI

RD effects
C = −850 0.061 85.0 85 0.282 [ -0.052 , 0.179 ]
C = −571 0.169 136.3 133 0.103 [ -0.039 , 0.428 ]
Weighted 0.121 218 0.056 [ -0.003 , 0.274 ]
Pooled 0.073 161.5 307 0.254 [ -0.046 , 0.173 ]

Naive difference
µ`(−650) 0.728 239.4 440
µh(−650) 0.706 131.2 202
Difference 0.021 0.634 [ -0.050 , 0.081 ]

Bias
µ`(−850) 0.560 58.0 57
µh(−850) 0.667 144.2 230
Difference -0.106 0.017 [ -0.252 , -0.025 ]

Extrapolation
τ`(−650) 0.128 0.022 [ 0.022 , 0.286 ]

Notes. Local polynomial regression estimation with MSE-optimal bandwidth selectors and robust bias
corrected inference. See Calonico et al. (2014) and Calonico et al. (2018) for methodological details, and
Calonico et al. (2017) and Cattaneo et al. (2020) for implementation. “Eff. N” indicates the effective
sample size, that is, the sample size within the MSE-optimal bandwidth. “Bw” indicates the MSE-optimal
bandwidth.

SA-2 Additional Empirical Results

In this section we explore the sensitivity of our empirical results when restricting the sample

to the period 2007-2010. This check allows us to reduce the heterogeneity of the sample due

to variation over time. The results are shown in Table SA-2. We find overall similar results,

with a positive and significant extrapolated effect of 12.8 percentage points.

SA-3 Simulation Setup

We provide further details on the simulation setup used in the paper. Potential outcome

regression functions are generated in the following way:

µ0,h(x) = rp(x)′γ, µ0,`(x) = µ0,h(x) + ∆, µ1,c(x) = µ0,c(x) + τ
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Table SA-3: Segments and Corresponding Parameters in Figure ??

Segment Parameter Description

ab τl(x̄) = µ1,l(x̄)︸ ︷︷ ︸
Observable

− µ0,l(x̄)︸ ︷︷ ︸
Unobservable

Extrapolation parameter of interest

bc B(x̄) = µ0,l(x̄)︸ ︷︷ ︸
Unobservable

− µ0,h(x̄)︸ ︷︷ ︸
Observable

Control facing l vs. control facing h, at Xi = x̄

ac τl(x̄) +B(x̄) = µ1,l(x̄)︸ ︷︷ ︸
Observable

− µ0,h(x̄)︸ ︷︷ ︸
Observable

Treated facing l vs. control facing h, at Xi = x̄

ed B(l) = µ0,l(l)︸ ︷︷ ︸
Observable

− µ0,h(l)︸ ︷︷ ︸
Observable

Control facing l vs. control facing h, at Xi = l

where rp(x) is a p-th order polynomial basis for x. We set p = 4. The value of γ, given

below, is chosen by running a regression of the observed outcome for the high-cutoff on a

fourth order polynomial using data from our empirical application. The observed variables

are generated according to the following model:

Xi ∼ Uniform(−1000,−1)

{Ci}Ni=1 ∼ FixedMargins(N,N`)

Di = 1(Xi ≥ Ci)

Yi = µ0,h(Xi) + τDi + ∆1(Ci = `) + Normal(0, σ2)

where FixedMargins(N,N`) denotes a fixed-margins distribution that assigns N` observations

out of the total N sample to face cutoff ` and the remaining N −N` ones to face cutoff h.
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Proceeding as above, we set the parameters of the data generating process as follows:

γ = (−14.089,−0.074,−1.372e(−4),−1.125e(−07),−3.444e(−11))′

∆ = −0.14, τ = 0.19, σ2 = 0.32

N ∈ {1000, 2000, 5000}, N` = N/2

` = −850, h = −571, x̄ = −650.

All these parameters were estimated using local polynomial and related methods.

SA-4 Extensions and Generalizations

We briefly discuss some extensions and generalizations of our main extrapolation results.

SA-4.1 Conditional-on-covariates Constant Bias

Following Abadie (2005), we can relax the constant bias assumption to hold conditionally on

observable characteristics. Let the bias term conditional on a vector of observable covariates

Zi = z ∈ Z be denoted by B(x, z) = E[Yi(0)|Xi = x, Zi = z, Ci = l]−E[Yi(0)|Xi = x, Zi =

z, Ci = h]. Let p(x, z) = P(Ci = `|Xi = x, Zi = z) denote the low-cutoff propensity score

and p(x) = P(Ci = `|Xi = x).

We impose the following conditions:

Assumption SA-1 (Ignorable Constant Bias)

1. Conditional bias: B(l, z) = B(x, z) for all x ∈ (l, h) and for all z ∈ Z.

2. Common support: δ < p(x, z) < 1− δ for some δ > 0, x ∈X and for all z ∈ Z.

3. Continuity: p(x, z) is continuous in x for all z ∈ Z.

Part 1 states that the selection bias is equal across cutoffs after conditioning on a covariates,

part 2 is the usual assumption rulling out empty cells defined by the covariates Zi, and part
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3 assumes that the propensity score is continuous in the running variable. Then, letting

Si = 1(Ci = l), we have the following result, which is proven in the supplemental appendix.

Theorem SA-1 (Covariate-Adjusted Extrapolation) Under Assumption 1 and SA-1,

τl(x̄) = E

[
YiSi
p(x̄)

∣∣∣∣Xi = h

]
−E

[
Yi(1− Si)

1− p(x̄, Zi)
· p(x̄, Zi)

p(x̄)

∣∣∣∣Xi = x

]
+E

[
Yi(1− Si)p(x̄, Zi)
p(x̄)(1− p(l, Zi))

·
fX|Z(h|Zi)
fX|Z(l|Zi)

· fX(l)

fX(h)

∣∣∣∣Xi = l

]
− lim

x→l−
E

[
YiSip(x̄, Zi)

p(x̄)p(l, Zi)
·
fX|Z(h|Zi)
fX|Z(l|Zi)

· fX(l)

fX(h)

∣∣∣∣Xi = x

]
.

This result is somewhat notationally convoluted, but it is straightforward to implement.

It gives a precise formula for extrapolating RD treatment effects for values of the score above

the cutoff l, based on a conditional-on-Zi constant bias assumption. All the unknown quan-

tities in Theorem SA-1 can be replaced by consistent estimators thereof, under appropriate

regularity conditions.

SA-4.2 Non-Constant Bias

Although the constant bias restriction (Assumption 2) is intuitive and allows for a helpful

analogy with the difference-in-differences design, the RD setup leads for a natural extension

via local polynomial extrapolation. The score is a continuous random variable and, under

additional smoothness conditions of the bias function B(x), we can replace the constant bias

assumption with the assumption that B(x) can be approximated by a polynomial expansion

of B(l) around x ∈ (l, h).

For example, using a polynomial of order one, we can approximate B(x) at x̄ as

B(x̄) ≈ B(l) + Ḃ(l) · [x̄− l] (SA-1)

where Ḃ(x) = µ̇0,l(x)− µ̇0,h(x) and µ̇d,c(x) = ∂µd,c(x)/∂x. This shows that the constant bias

assumption B(x) = B(l) can be seen as a special case of the above approximation, where
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the first derivatives of µ0,l(x) and µ0,h(x) are assumed equal to each other at x = x̄. In

contrast, the approximation in (SA-1) allows these derivatives to be different, and corrects

the extrapolation at x̄ using the difference between them at the point l.

This idea allows, for instance, for different slopes of the control regression functions at x̄,

leading to B(x̄) 6= B(l). The linear adjustment in expression (SA-1) provides a way to correct

the bias term to account for the difference in slopes at the low cutoff l. This represents a

generalization of the constant assumption, which allows the intercepts of µ0,l(x) and µ0,h(x)

to differ, but does not allow their difference to be a function of x. It is straightforward to

extend this reasoning to employ higher order polynomials to approximate B(x̄), at the cost

of a stronger smoothness and extrapolation assumptions.

Assumption SA-2 (Polynomial-in-Score Bias)

1. Smoothness: µd,c(x) = E[Yi(d) | Xi = x,Ci = c] are p-times continuously differentiable

at x = c for all c ∈ C, d = 0, 1 and for some p ∈ {0, 1, 2, ...}.

2. Polynomial Approximation: there exists a p ∈ {0, 1, 2, ...} such that, for x ∈ (l, h)

B(x) =

p∑
s=0

1

s!
B(s)(l) · [x− l]s

where B(s)(x) = µ
(s)
0,l(x)− µ(s)

0,h(x) and µ
(s)
d,c(x) = ∂sµd,c(x)/∂xs.

The main extrapolation result in can be generalized as follows.

Theorem SA-2 Under Assumption SA-2, for x̄ ∈ (l, h),

τl(x̄) = µl(x̄)−
[
µh(x̄) +

p∑
s=0

1

s!
B(s)(l) · [x− l]s

]
.

This result establishes valid extrapolation of the RD treatment effect away from the

low cutoff l. This time the extrapolation is done via adjusting for not only the constant

difference between the two control regression functions but also their higher-order derivatives.
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Heuristically, this result justifies approximating the control regression functions by a higher-

order polynomial, local to the cutoff, and then using the additional information about higher-

derivatives to extrapolate the treatment effects.

SA-4.3 Many Cutoffs

All the identification results in the main paper hold for any number of cutoffs J ≥ 2. The

key issue to be assessed in this case is whether the constant bias assumption holds for all

subpopulations. When this is the case, τc(x) is overidentified (for x ≥ c), since there are

many control groups that can be used to identify this parameter. In this setting, joint

estimation can be performed using fixed effects models, as explained in the next section.

Furthermore, when more than two cutoffs are available, more control regression functions

are therefore available for extrapolation. These could be combine to extrapolate or, alter-

natively, each of them could be used to extrapolate the RD treatment effect and only after

these treatment effects could be combined. We relegate this interesting problem for future

work.

SA-4.4 Multi-Scores and Geographic RD Designs

In many applications, RD designs include multiple scores (e.g., Papay et al., 2011; Reardon

and Robinson, 2012; Keele and Titiunik, 2015). Examples include treatments assigned based

on not exceeding a given threshold on two different scores (Figure SA-1(a)) or based on being

one side of some generic boundary (Figure SA-1(b)). While these designs induce a continuum

of cutoff points, it is usually better to analyze them using a finite number of cutoffs along

the boundary determining treatment assignment.

For example, in Figure SA-1 we illustrate two settings with three chosen cutoff points

(A, B, and C). In panel (a), the three cutoffs correspond to “extremes” over the boundary,

while in panel (b) the cutoff points are chosen towards the “center”. Once these cutoffs

points are chosen, the analysis can proceed as discussed in the main paper. Usually, the
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Figure SA-1: Illustration of Multi-Score and Geographic RD Designs

Math score

La
ng

ua
ge

 s
co

re

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

T

T

T

T

T

T

T

T
TT

T

T

T

T

T

T

T

T

T

T

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C
C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C

C

C

● ●

●

Treated

Control
A

B

C

(a) Multi-Score RD Design

Score 1
S

co
re

 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

T

T
T

T

T

T

T

T

T

T
T

T T

T

T

T

T

T

T

T
T

T

T

T

T

T

T

T

T

T
T

T

T

C

C

C
C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

●

●

●

Treated

Control

A

B

C

(b) Geographic RD Design

multidimensionality of the problem is reduced by relying on some metric that maps the

multi-score feature of the design to a unidimensional problem. For instance, Xi is usually

taken to be a measure of distance relative to the desired cutoff point. Once this mapping is

constructed, all the ideas and methods discussed in the paper can be extended and applied

to extrapolate RD treatment effects across cutoff points in multi-score RD designs.

SA-5 Relationship with Fixed Effects Models

Consider a separable model for the potential outcomes and only two cutoffs l < h:

Yi(0) = g0(Xi) + γ01(Ci = h) + ε0i, E[ε0i | Xi, Ci] = 0

Yi(1) = g1(Xi) + γ11(Ci = h) + ε1i, E[ε1i | Xi, Ci] = 0

This model assumes that Xi, Ci and the error terms are separable. A key implication of

separability is the absence of interaction between the cutoff and the score. In other words,
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changing the cutoff only shifts the conditional expectation function without affecting the

slope. The above model implies:

τc(x) = E[Yi(1)− Yi(0) | Xi = x,Ci = c] = g1(x)− g0(x) + (γ1 − γ0)1(c = h)

Also, let Di = 1(Xi ≥ Ci), Si = 1(Ci = h), γ ≡ γ0 and δ ≡ γ1 − γ0, so that defining the

observed outcome in the usual way, Yi = DiYi(1) + (1−Di)Yi(0), we get:

Yi = g0(Xi) + γSi + (g1(Xi)− g0(Xi))Di + δDi × Si + εi

where εi = ε0iDi + ε1i(1−Di) and E[εi | Xi, Ci] = 0.

Although restrictive, this separable model nests several particular cases that are com-

monly used in RD estimation. For instance, if we assume:

g0(x) = α0 + β0x, g1(x) = α1 + β1x,

the model reduces to:

Yi = α0 + β0Xi + (α1 − α0)Di + (β1 − β0)Xi ×Di + γSi + δDi × Si + εi

which is the usual linear model with an interaction between the score and the treatment,

with two additional terms that account for the presence of two cutoffs.

The assumption of separability is sufficient for the selection bias to be constant across

cutoffs. More precisely,

E[Yi(0) | Xi = x,Ci = l] = g0(x)

E[Yi(0) | Xi = x,Ci = h] = g0(x) + γ0

⇒ B(x) = γ0, ∀x
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In this setting, consider the case of many cutoffs is relatively straightforward. With

Ci ∈ {c0, c1, ...cJ} := C, the potential outcomes can be defined as:

Yi(0) = g0(Xi) +
J∑
j=1

γ0j1(Ci = cj) + εi

Yi(1) = g1j(Xi) +
J∑
j=1

γ1j1(Ci = cj) + εi

with observed outcome:

Yi = g0(Xi) +
J∑
j=1

γ0jSij + (g1j(Xi)− g0(Xi))Di +
J∑
j=1

δjDi × Sij + εi

where Sij = 1(Ci = cj) and δj = γ1j − γ0j. As before, the above model implies that the

selection bias does not depend on the running variable:

B(x, cj, ck) = γ0j − γ0k

The equation for the observed outcome can be rewritten as:

Yij = γj + g(Xij) + θjDij + τj(Xij)Dij + εij

where Yij is the outcome for unit i exposed to cutoff cj and Dij is equal to one if unit i

exposed to cutoff cj is treated, Dij = 1(Xi ≥ cj) × 1(Ci = cj). This model is similar to a

one-way fixed effects model.
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SA-5.1 Example: linear case

Using the above “fixed-effects notation”, suppose g0 and g1 are linear:

Yij(0) = γ0j + β0Xij + ε0
ij

Yij(1) = γ1j + β1jXij + ε1
ij

where Yij(d) is the potential outcome of unit i facing cutoff cj under treatment d. As before,

the fact that the slopes change with the treatment status but not with the cutoff is implied

by separability between the score and the cutoff indicator. The observed outcome is:

Yij = γ0j + β0Xij + (γ1j − γ0j)Dij + (β1j − β0)Xij ×Dij + εij

with εij = ε1
ijDij + ε0

ij(1−Dij).

Reparameterizing the model gives the estimating equation:

Yij = γj + βXij + δjDij + θjXij ×Dij + εij

which is a linear model including cutoff fixed effects, the running variable, the treatment vari-

able with cutoff-varying coefficients and the interaction between the score and the treatment.

In other words, this is the standard linear RD specification, but with different intercepts and

slopes at each cutoff. Note that the coefficients for Xij do not vary with j. This captures

the restriction that the slopes of the conditional expectations under no treatment are the

same across cutoffs and also leads to a straightforward specification test.

Under the linear specification, the treatment effect evaluated at ck for units facing cutoff

cj with ck > cj is given by:

τcj(x̄) = γ1j − γ0j + (β1j − β0)x̄
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and can be estimated as:

τ̂cj(x̄) = δ̂j + θ̂jx̄

or simply as δ̂j if the running variable is appropriately re-centered.

Clearly, assuming a linear specification would in principle allow one to estimate the

effects not only at the cutoffs but also at any other point in the range of the score. The

treatment effects away from the cutoffs, however, are not identified nonparametrically and

their identification relies purely on the functional form assumption, which can make them

less credible.

The specification test mentioned above for the linear case consists on running the regres-

sion:

Yij = γj + βjXij + δjDij + θjXij ×Dij + εij

and testing:

H0 : β1 = β2 = ... = βJ .

SA-6 Local Randomization Methods

Our core extrapolation ideas can be adapted to the local randomization RD framework of

Cattaneo et al. (2015) and Cattaneo et al. (2017). In this alternative framework, only units

whose scores lay within a fixed (and small) neighborhood around the cutoff are considered,

and their potential outcomes are regarded as fixed. The key source of randomness comes

from the treatment assignment mechanism—the probability law placing units in control

and treatment groups, and consequently the analysis proceeds as if the RD design was a

randomized experiment within the neighborhood. See Rosenbaum (2010) and Imbens and

Rubin (2015) for background on classical Fisher and Neyman approaches to the analysis of

experiments.

As in the continuity-based approach, the Multi-Cutoff RD design can be analyzed using
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local randomization methods by either normalizing-and-pooling all cutoffs or by studying

each cutoff separately. However, to extrapolate away from an RD cutoff (i.e., outside the

small neighborhood where local randomization is assumed to hold), further strong identifying

assumptions are needed. To discuss these additional assumptions, we first formalize the local

randomization (LR) framework for extrapolation in a Multi-Cutoff RD design.

Recall that C = {l, h} for simplicity. Let Nx be a (non-empty) LR neighborhood around

x ∈ [l, h], that is,

Nx = [x− w, x+ w], w > 0,

where the (half) window length may be different for each center point x. The other neigh-

borhoods discussed below are defined analogously; for example, Nx̄ = [x̄−w, x̄+w] for some

w > 0, possibly different across neighborhoods. Let also yic(d, x) be a non-random potential

outcome for unit i when facing cutoff c with treatment assignment d and running variable x.

Consequently, in this Multi-Cutoff RD LR framework each unit has non-random potential

outcomes {yil(0, x), yil(1, x), yih(0, x), yih(1, x)}, for each x ∈ X. The observed outcome is

Yi = yiCi(0, Xi)1(Xi < Ci) + yiCi(1, Xi)1(Xi ≥ Ci) where Ci ∈ C. Recall that our goal is

to extrapolate the RD treatment effect to a point x̄ ∈ (l, h] on the support of the running

variable.

Assumption SA-3 (LR Extrapolation)

(i) For all i such that Xi ∈ Nl,

{yil(0, x), yil(1, x), yih(0, x)} = {yil(0, l), yil(1, l), yih(0, l)}

for all x ∈ Nl, and are non-random. Furthermore, the treatment assignment mecha-

nism is known.
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(ii) For x̄ ∈ (l, h] such that Nl ∩ Nx̄ = ∅ and for all i such that Xi ∈ Nx̄,

{yil(0, x), yil(1, x), yih(0, x)} = {yil(0, x̄), yil(1, x̄), yih(0, x̄)}

for all x ∈ Nx̄, and are non-random. Furthermore, the treatment assignment mecha-

nism is known.

(iii) There exists a constant ∆ ∈ R such that:

yil(0, l) = yih(0, l) + ∆, for all i such thatXi ∈ Nl,

and

yil(0, x̄) = yih(0, x̄) + ∆, for all i such that Xi ∈ Nx̄.

Assumption SA-3(i) is analogous to Assumption 1 in Cattaneo et al. (2015) applied to

the RD cutoff c = l, except for the presence of one additional potential outcome, yih(0),

which we will use for extrapolation in the Multi-Cutoff RD design. Likewise, Assumption

SA-3(ii) postulates the existence of a LR neighborhood for the desired point of extrapolation

x̄. Finally, Assumption SA-3(iii) imposes a relationship between (the difference of) control

potential outcomes in the LR neighborhood of c = l and (the difference of) control potential

outcomes in the LR neighborhood of c = x̄, which we will use to impute the missing control

potential outcomes for units exposed to the low cutoff c = l but with scores within Nx̄.

To conserve space and notation, we do not extend Assumption SA-3 to allow for regression

adjustments within the LR neighborhoods as in Cattaneo et al. (2017), but we do include

the corresponding results in our empirical application.

In the LR framework, extrapolation requires imputing both the assignment mechanism

and the missing control potential outcomes yil(0, x̄) within Nx̄. As a consequence, extrapola-

tion beyond the standard LR neighborhood Nl requires very strong assumptions. Assumption

SA-3 provides a set of conditions that lead to valid extrapolation. The parameter of interest
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is the average effect of the treatment for units with Xi ∈ Nx̄:

τLR =
1

Nx̄

∑
Xi∈Nx̄

(yi`(1, x̄)− yi`(0, x̄))

where Nx̄ is the number of units inside the window Nx̄ around x̄. Under Assumption SA-3,

this parameter equals: 1
Nx̄

∑
Xi∈Nx̄(yi`(1, x̄) − yih(0, x̄)) − ∆, which is identifiable from the

data. We implement this result as follows. First, we construct an estimate of ∆ as the

difference-in-means for control units facing cutoffs ` and h with Xi ∈ Nl, which we denote

by ∆̂:

∆̂ = Ȳ`(0, `)− Ȳh(0, `)

where

Ȳ`(0, `) =
1

N0
` (`)

∑
Xi∈N`

Yi1(Ci = `)(1−Di), Ȳh(0, `) =
1

Nh(`)

∑
Xi∈N`

Yi1(Ci = h)

and

N0
` (`) =

∑
Xi∈N`

1(Ci = `)(1−Di), Nh(`) =
∑
Xi∈N`

1(Ci = h).

Second, we estimate the treatment effects as:

τ̂LR = Ȳ`(1, x̄)− Ȳh(0, x̄)− ∆̂

where

Ȳ`(1, x̄) =
1

N`(x̄)

∑
Xi∈Nx̄

Yi1(Ci = `), Ȳh(0, x̄) =
1

Nh(x̄)

∑
Xi∈Nx̄

Yi1(Ci = h)

and

N`(x̄) =
∑
Xi∈Nx̄

1(Ci = `), Nh(x̄) =
∑
Xi∈Nx̄

1(Ci = h).
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Finally, for the assignment mechanism, we assume:

P[Ci = h|Xi ∈ Nc] =
Nh(c)

N`(c) +Nh(c)
, ∀ i : Xi ∈ Nc, c ∈ {`, x̄}

and

P[Di = 0|Ci = `,Xi ∈ N`] =
N0
` (`)

N`(`)
, N`(`) =

∑
Xi∈N`

1(Ci = `)

It is straightforward to show that under this assignment mechanism and Assumption

SA-3, ∆̂ and τ̂ are unbiased for their corresponding parameters. Our approach is not the

only way to develop LR methods for extrapolation, but for simplicity we focus on the above

construction which mimics closely the continuity-based proposed in the previous sections.

In this setting, inference can be conducted using Fisherian randomization inference by

permuting the cutoff indicator 1(Ci = `) on the adjusted outcomes Y A
i = Yi + ∆1(Ci = h)

among units in Nx̄. However, the inference procedure needs to account for the fact that ∆

is unknown and needs to be estimated. We propose two alternatives to deal with this issue.

The first one, suggested by Berger and Boos (1994), consists on constructing a (1− η)-level

confidence interval for ∆, Sη, and defining the p-value:

p∗(η) = sup
∆∈Sη

p(∆) + η

which can be shown to be valid in the sense that P[p∗(η) ≤ α] ≤ α.

Our second inference procedure, based on Neyman’s sampling approach, consists on using

the standard normal distribution to approximate the distribution of the studentized statistic:

T =
τ̂√

V1 + V∆̂

where V1 is the estimated variance of the difference in means Ȳ`(1, x̄) − Ȳh(0, x̄) and V∆̂ is

the estimated variance of ∆̂.
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SA-6.1 Empirical Application

We use our proposed LR methods to investigate the external validity of the ACCES program

RD effects. As mentioned in the paper, our sample has observations exposed to two cutoffs,

l = −850 and h = −571. We begin by extrapolating the effect to the point x̄ = −650; our

focus is thus the effect of eligibility for ACCES on whether the student enrolls in a higher

education program for the subpopulation exposed to cutoff 850 when their SABER 11 score

is 650.

Table SA-4 presents empirical results using the local randomization framework. We con-

struct the neighborhoods N` and Nx̄ using the 50 closest observations to the evaluation point

of interest. To calculate p∗(η), we construct a 99 percent confidence interval for ∆ based

on the normal approximation, which can be justified using large sample approximations in

either a fixed potential outcomes model (Neyman) or a standard repeated sampling model

(superpopulation). We estimate τ̂LR using a constant model and using a linear adjustment

(see Cattaneo et al., 2017, for details). Overall, the results are very similar to the ones

obtained using the continuity-based approach. We find positive effects of around 20 per-

centage points that are significant at the 5 percent level using either Fisherian-based or

Neyman-based inference.

To assess robustness of the LR methods, Figure SA-2 shows how the estimated effect and

its corresponding randomization inference p-value change when varying the number of nearest

neighbors used to construct N` and Nx̄. The magnitude of the estimated effect remains

stable when increasing the length of the window, particularly for the linear adjustment

case which can help to reduce bias when the corresponding regression functions are not

constant. In terms of inference, while the p-values we construct can be very conservative,

we find significant effects at the 5 percent level when using around 45 observations in each

neighborhood.
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Table SA-4: Empirical Results under Local Randomization

Constant Linear
Window Eff. N Estimate Fisher p Neyman p Estimate Fisher p Neyman p

Xi ∈ N`

Ȳ`(0, `) [-900 , -850) 50 0.502 0.527
Ȳh(0, `) [-881 , -817] 50 0.706 0.707
∆ 100 -0.204 0.000 0.000 -0.180 0.000 0.021

Xi ∈ Nx̄

Ȳ`(1, x̄) [-675 , -626] 50 0.760 0.759
Ȳh(0, x̄) [-675 , -625] 50 0.743 0.743
Diff 100 0.017 0.702 0.698 0.016 0.718 0.716

τ̂LR 0.220 0.042 0.001 0.196 0.037 0.029

Notes. Estimated effect under the local randomization framework. Randomization inference p-values for
τ̂LR constructed using the Berger and Boos (1994) method. Neyman-based p-values constructed using a
large-sample normal approximation. Estimates calculated using a constant model based on difference in
meansand a linear regression adjustment (see Cattaneo et al., 2017, for details). “Eff. N” indicates the
effective sample size, that is, the sample size within the local randomization neighborhood.

Figure SA-2: Sensitivity Analysis for Local Randomization
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(a) Constant Model
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(b) Linear Adjustment

Notes. The figure plots the estimated effect as a function of the number of nearest neighbors used around
the cutoff for estimation. The left panel plots the estimates under a constant model. The right panel plots
the estimates using a linear adjustment model. Hollow markers indicate p-value ≥ 0.15. Light gray markers
indicate p-value < 0.15. Dark gray markers indicate p-value < 0.1. Black markers indicate p-value < 0.05.
Randomization inference p-values constructed using the Berger and Boos (1994) method.
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SA-7 Proofs and Derivations

SA-7.1 Proof of Theorem 1

Follows immediately under the stated assumptions by the derivation provided in the paper.

SA-7.2 Proof of Theorem 2

We omit the i subscript to simplify notation. The average observed outcomes are:

E[Y |X = x,C = c] = E[Y (1)D(x, c) + Y (0)(1−D(x, c))|X = x,C = c]

= E[(Y (1)− Y (0))D(x, c)|X = x,C = c] +E[Y (0)|X = x,C = c]

The difference in outcomes for units facing cutoffs l < h at X = x ∈ (l, h) is:

∆(x) = E[Y |X = x,C = l]−E[Y |X = x,C = h]

= E[(Y (1)− Y (0))D(x, l)|X = x,C = l]−E[(Y (1)− Y (0))D(x, h)|X = x,C = h]

+E[Y (0)|X = x,C = l]−E[Y (0)|X = x,C = h]

Assuming parallel regression functions under no treatment, the double difference recovers:

∆(x)−∆(l)

= E[Y |X = x,C = l]−E[Y |X = x,C = h]− lim
x↑l
E[Y |X = x,C = l] +E[Y |X = l, C = h]

= E[(Y (1)− Y (0))D(x, l)|X = x,C = l]−E[(Y (1)− Y (0))D−(l, l)|X = l, C = l]

− {E[(Y (1)− Y (0))D(x, h)|X = x,C = h]−E[(Y (1)− Y (0))D(l, h)|X = l, C = h]}
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where D−(l, l) = limx↑lD(x, l). Note that in a sharp design, D(x, l) = 1 and D(x, h) =

D(l, h) = D−(l, l) = 0 giving our previous result. After adding and subtracting,

∆(x)−∆(l)

= E[Y |X = x,C = l]−E[Y |X = x,C = h]− lim
x↑l
E[Y |X = x,C = l] +E[Y |X = l, C = h]

= E[(Y (1)− Y (0))(D(x, l)−D−(l, l))|X = x,C = l]

+E[(Y (1)− Y (0))D−(l, l)|X = x,C = l]−E[(Y (1)− Y (0))D−(l, l)|X = l, C = l]

− {E[(Y (1)− Y (0))D(x, h)|X = x,C = h]−E[(Y (1)− Y (0))D(l, h)|X = l, C = h]}

Under one-sided non-compliance, units below the cutoff never get the treatment, soD(x, h) =

D(l, h) = D−(l, l) = 0. In this case,

∆(x)−∆(l) = E[(Y (1)− Y (0))D(x, l)|X = x,C = l]

= E[Y (1)− Y (0)|X = x,C = l, D(x, l) = 1]P[D(x, l) = 1|X = x,C = l]

It follows that

∆(x)−∆(l)

E[D|X = x,C = l]
= E[Y (1)− Y (0)|X = x,C = l, D(x, l) = 1]

which in this case equals the (local) average effect on the compliers.

SA-7.3 Proof of Theorem SA-1

Following analogous steps to the derivation for the unconditional case, we obtain that:

E[τi|Xi = x̄, Zi = z, Ci = l] = E[Yi|Xi = x̄, Zi = z, Ci = l]

−E[Yi|Xi = x̄, Zi = z, Ci = h]−B(l, z)

21



and

τl(x̄) = E {E[τi|Xi = x̄, Zi, Ci = l]|Xi = x̄, Ci = l}

Define p(x, z) = P(Ci = l|Xi = x, Zi = z) and Si = 1(Ci = l). We have that:

E[Yi|Xi = x̄, Ci = l, Zi] = E

[
YiSi

p(x̄, Zi)

∣∣∣∣Xi = x̄, Zi

]
E[Yi|Xi = l, Ci = h, Zi] = E

[
Yi(1− Si)

1− p(l, Zi)

∣∣∣∣Xi = l, Zi

]

and similarly for the remaining two terms, we obtain, assuming that p(x, z) is continuous in

x (and limits can be interchanged),

E[τi|Xi = x̄, Zi = z, Ci = l] = E

[
YiSi

p(x̄, Zi)

∣∣∣∣Xi = x̄, Zi

]
−E

[
Yi(1− Si)

1− p(x̄, Zi)

∣∣∣∣Xi = x̄, Zi

]
+E

[
Yi(1− Si)

1− p(l, Zi)

∣∣∣∣Xi = l, Zi

]
− lim

x→l−
E

[
YiSi

p(l, Zi)

∣∣∣∣Xi = x, Zi

]

To simplify the notation, let τc(x, z) = E[τi|Xi = x,Ci = c, Zi = z], τc(x) = E[τi|Xi =

x,Ci = c] and p(x) = P(Ci = l|Xi = x). By Bayes’ rule:

τl(x̄) =

∫
τl(x̄, z)dFZ|X,C(z|x̄, l)

=

∫
τl(x̄, z)

p(x̄, z)

p(x̄)
dFZ|X(z|x̄)

= E

[
τl(x̄, Zi)

p(x̄, Zi)

p(x̄)

∣∣∣∣Xi = x̄

]

Now replace τl(x̄, Zi) with its observed counterpart and split the outer expectation into the

four summands. We have that:

E

[
E

[
YiSi

p(x̄, Zi)

∣∣∣∣Xi = x̄, Zi

]
p(x̄, Zi)

p(x̄)

∣∣∣∣Xi = x̄

]
= E

[
E

[
YiSi
p(x̄)

∣∣∣∣Xi = x̄, Zi

]∣∣∣∣Xi = x̄

]
= E

[
YiSi
p(x̄)

∣∣∣∣Xi = x̄

]
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and

E

[
E

[
Yi(1− Si)

1− p(l, Zi)

∣∣∣∣Xi = l, Zi

]
p(x̄, Zi)

p(x̄)

∣∣∣∣Xi = x̄

]
= E

[
E

[
Yi(1− Si)

1− p(l, Zi)
· p(x̄, Zi)

p(x̄)

∣∣∣∣Xi = l, Zi

]∣∣∣∣Xi = x̄

]
= E

[
Yi(1− Si)
p(x̄)

· p(x̄, Zi)

1− p(l, Zi)
·
fZ|X(Zi|x̄)

fZ|X(Zi|l)

∣∣∣∣Xi = l

]
= E

[
Yi(1− Si)p(x̄, Zi)
p(x̄)(1− p(l, Zi))

·
fX|Z(x̄|Zi)
fX|Z(l|Zi)

· fX(l)

fX(x̄)

∣∣∣∣Xi = l

]

Similarly,

E

[
E

[
Yi(1− Si)

1− p(x̄, Zi)

∣∣∣∣Xi = x̄, Zi

]
p(x̄, Zi)

p(x̄)

∣∣∣∣Xi = x̄

]
= E

[
Yi(1− Si)

1− p(x̄, Zi)
· p(x̄, Zi)

p(x̄)

∣∣∣∣Xi = x

]

and finally, under regularity conditions to interchange limits and expectations,

E

[
lim
x→l−

E

[
YiSi

p(l, Zi)

∣∣∣∣Xi = x, Zi

]
p(x̄, Zi)

p(x̄)

∣∣∣∣Xi = x̄

]
= lim

x→l−
E

[
E

[
YiSi · p(x̄, Zi)
p(x̄)p(l, Zi)

∣∣∣∣Xi = x, Zi

]∣∣∣∣Xi = x̄

]
= lim

x→l−
E

[
YiSip(x̄, Zi)

p(x̄)p(l, Zi)
·
fZ|X(Zi|h)

fZ|X(Zi|l)

∣∣∣∣Xi = x

]
= lim

x→l−
E

[
YiSip(x̄, Zi)

p(x̄)p(l, Zi)
·
fX|Z(h|Zi)
fX|Z(l|Zi)

· fX(l)

fX(h)

∣∣∣∣Xi = x

]

Putting all the results together,

τl(x̄) = E

[
YiSi
p(x̄)

∣∣∣∣Xi = h

]
−E

[
Yi(1− Si)

1− p(x̄, Zi)
· p(x̄, Zi)

p(x̄)

∣∣∣∣Xi = x

]
+E

[
Yi(1− Si)p(x̄, Zi)
p(x̄)(1− p(l, Zi))

·
fX|Z(h|Zi)
fX|Z(l|Zi)

· fX(l)

fX(h)

∣∣∣∣Xi = l

]
− lim

x→l−
E

[
YiSip(x̄, Zi)

p(x̄)p(l, Zi)
·
fX|Z(h|Zi)
fX|Z(l|Zi)

· fX(l)

fX(h)

∣∣∣∣Xi = x

]
.
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SA-7.4 Proof of Theorem SA-2

Follows immediately under the stated assumptions by the derivation provided in the paper.
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