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We consider a regression discontinuity (RD) design where the treatment is received if a score is above a cutoff, but the

cutoff may vary for each unit in the sample instead of being equal for all units. This multi-cutoff regression discon-

tinuity design is very common in empirical work, and researchers often normalize the score variable and use the zero

cutoff on the normalized score for all observations to estimate a pooled RD treatment effect. We formally derive the

form that this pooled parameter takes and discuss its interpretation under different assumptions. We show that this

normalizing-and-pooling strategy so commonly employed in practice may not fully exploit all the information available

in a multi-cutoff RD setup. We illustrate our methodological results with three empirical examples based on vote

shares, population, and test scores.

The regression discontinuity (RD) design has become
one of the preferred quasi-experimental research designs
in the social sciences, mostly as a result of the relatively

weak assumptions that it requires to recover causal effects. In
the “sharp” version of the RD design, every subject is assigned
a score and a treatment is given to all units whose score is
above the cutoff and withheld from all units whose score is
below it. Under the assumption that all possible confounders
vary smoothly at the cutoff as a function of the score (also
known as “running variable”), a comparison of units barely
above and barely below the cutoff can be used to recover the
causal effect of the treatment (for a review, see Skovron and
Titiunik [2016] and references therein).

The RD design is widely used in political science. RD de-
signs based on elections are particularly common, since the
discontinuous assignment of victory in close races often
provides a credible research design to make causal inferences
about mass or elite behavior. Although the RD design has
been found to fail in US House elections (Caughey and

Sekhon 2011), RD designs based on elections seem to be gen-
erally valid as an identification strategy to recover causal effects
in other electoral contexts (Eggers et al. 2015; see de la Cuesta
and Imai [2016] for further discussion). In addition to elec-
tions, RD designs in political science, as well as in other social
and behavioral sciences, are based on other running variables
such as population, test scores, poverty indexes, birth weight,
geolocation, and income. For a list of examples of recent RD
applications see section S2 in the appendix, available online.

In a standard RD design, the cutoff in the score that de-
termines treatment assignment is known and equal for all
units. For example, in the classic education example where
a scholarship is awarded to students who score above a
threshold on a standardized test, the cutoff for the schol-
arship is known and the same for every student. However, in
many applications of the RD design, the value of the cutoff
may vary by unit. One of the most common examples of
variable cutoffs occurs in political science applications where
the score is a vote share, the unit is an electoral constituency,
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and the treatment is winning an election under plurality
rules. We refer to this kind of RD design with multiple
cutoffs as theMulti-Cutoff Regression Discontinuity Design.

When there are only two options or candidates in an
election, the victory cutoff is always 50% of the vote, and it
suffices to know the vote share of one candidate to deter-
mine the winner of the election and the margin by which
the election was won. This occurs most naturally either in
political systems dominated by exactly two parties or in elec-
tions such as ballot initiatives where the vote is restricted to
only two yes/no options (e.g., DiNardo and Lee 2004). How-
ever, when there are three or more candidates, two races de-
cided by the same margin might result in winners with very
different vote shares. For example, in one district a party may
barely win an election by 1 percentage point with 34% of
the vote against two rivals that get 33% and 33%, while in
another district a partymay win by the samemargin with 26%
of the vote in a four-way race where the other parties obtain,
respectively, 25%, 25%, and 24% of the vote.

The standard practice for dealing with this heterogeneity
in the value of the cutoff has been to normalize the score so
that the cutoff is zero for all units. For example, researchers
often use the margin of victory for the party of interest as
the running variable, defined as the vote share obtained by
the party minus the vote share obtained by its strongest
opponent. Using margin of victory as the score allows re-
searchers to pool all observations together, regardless of the
number of candidates in each particular district, and make
inferences as in a standard RD design with a single cutoff.
This normalizing-and-pooling approach is ubiquitous in
political science and also in other disciplines. In section S2
of the appendix, we list several multi-cutoff RD examples in
political science as well as in other fields, including edu-
cation, economics, and criminology, where this approach
has been applied.

Despite the widespread use of the normalizing-and-
pooling strategy in RD applications, the exact form and inter-
pretation of the treatment effect recovered by this approach
has not been formally explored. Moreover, by normalizing
and pooling the running variable, researchers may miss the
opportunity to uncover key observable heterogeneity in RD
designs, which can have useful policy implications. This is
the motivation for our article. We generalize the conventional
RD setup with a single fixed cutoff to an RD design where
the cutoff is a random variable and use this framework to
characterize the treatment effect parameter estimated by the
normalizing-and-pooling approach. We show that the pooled
parameter can be interpreted as a double average: the weighted
average across cutoffs of the local average treatment effects
for all units facing each particular cutoff value. This weighted

average gives higher weights to those values of the cutoff that
are most likely to occur and include more observations. Our
derivations thus show that the pooled estimand is not equal to
the overall average of the average treatment effects at every
cutoff value, except under specific assumptions.

We also use our framework to characterize the hetero-
geneity that is aggregated in the pooled parameter, and the
assumptions under which this heterogeneity can be used to
learn about the causal effect of the treatment at different
values of the score. Learning about RD treatment effects
along the score dimension is useful for policy prescriptions.
As we show, the probability of facing a particular value of
the cutoff may vary with characteristics of the units. If these
characteristics also affect the outcome of interest, then
differences between treatment effects at different values of
the cutoff variable may be due to inherent differences in the
types of units that happen to concentrate around every cut-
off value. However, if the cutoff value does not directly affect
the outcomes and units are placed as if randomly at each
cutoff value, then a treatment effect curve can be obtained.

We illustrate our results with three different RD exam-
ples based on vote shares, population, and test scores. The
first example analyzes Brazilian mayoral elections in 1996–
2012, following Klašnja and Titiunik (2016), and studies the
effect of the Party of Brazilian Social Democracy (PSDB,
Partido da Social Democracia Brasileira) winning an election
on the probability that the party wins the mayor’s office in
the following election. The running variable is vote share,
and the multiple cutoffs arise because there are many races
with more than two effective parties. The second example
is based on Brollo et al. (2013) and focuses on the effect of
federal transfers on political corruption in Brazil, where trans-
fers are assigned based on whether a municipality’s popula-
tion exceeds a series of cutoffs. The third example is based
on Chay, McEwan, and Urquiola (2005), where school im-
provements are assigned based on past test scores, and the
cutoffs differ by geographic region. Our examples illustrate
the different situations that researchers may encounter in
practice, including the important difference between cumu-
lative and noncumulative multiple cutoffs, which we discuss
in detail below.

After illustrating the main methodological results in the
sharp multi-cutoff RD framework, we show how the main
ideas and results for sharp RD designs extend to fuzzy RD
designs, where treatment compliance is imperfect. Further-
more, in section S4 of the appendix, we discuss other ex-
tensions and results, covering a nonseparable RD model
with unobserved unit-specific heterogeneity (Lee 2008),
kink RD designs (Card et al. 2015), and the connections to
multi-scores and geographic RD designs (Keele and Titiunik
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2015; Papay,Willett, andMurnane 2011;Wong, Steiner, and
Cook 2013). Finally, before concluding, we offer recom-
mendations for practice to guide researchers in the inter-
pretation and analysis of RD designs with multiple cutoffs.

MOTIVATION: RD DESIGNS BASED
ON MULTIPARTY ELECTIONS
To motivate our multi-cutoff RD framework, we explore an
RD design based on elections that studies whether a party
improves its future electoral outcomes by gaining access to
office (i.e., by becoming the incumbent party), a canonical
example in political science. The treatment of interest is whether
the party wins the election in year t, and the outcome of in-
terest is the electoral victory or defeat of the party in the fol-
lowing election (for the same office), which we refer to as
election at t 1 1.

We apply this design to two different settings. First, we
analyze US Senate elections between 1914 and 2010, pool-
ing all election years and focusing on the effect of the Dem-
ocratic Party’s winning a Senate seat on the party’s prob-
ability of victory in the following election for that same
seat. Second, we analyze Brazilian mayoral elections for the
PSDB between 1996 and 2012. We also pool all election
years and focus on the effect of the party’s winning office at
t on the party’s probability of victory in the following
election at t 1 1, which occurs four years later. For details
on the data sources for the US and the Brazil examples see,
respectively, Cattaneo, Frandsen, and Titiunik (2015) and
Klašnja and Titiunik (2016).

Figure 1 presents RD plots of the effect of the party
barely winning an election on the probability of victory in
the following election in both settings, using the methods in
Calonico, Cattaneo, and Titiunik (2015a). These figures
plot the probability that the party wins election t 1 1 (y-
axis) against the party’s margin of the victory in the pre-
vious election (x-axis), where the dots are binned means of
binary victory variables, and the solid lines are fourth order
polynomial fits. All observations to the right of the cutoff
correspond to states/municipalities where the party won
election t, and all observations to the left correspond to
locations where the party lost election t. Figure 1A shows
that, in Brazilian mayoral elections, the PSDB’s bare victory
at t does not translate into a higher probability of victory
at t 1 1. In contrast, as shown in figure 1B, a Democratic
Party’s victory in the Senate election at t considerably in-
creases the party’s probability of winning the following
election at the cutoff for the same Senate seat.

For the statistical analysis of these two RD applications,
we followed standard practice and used margin of victory as
the score, thus normalizing the cutoff to zero for all elec-

tions. This score normalization is a practical strategy that
allows researchers to analyze all elections simultaneously
regardless of the number of parties contesting each electoral
district or even across years. However, as we now illustrate,
this approach pools together elections that are potentially
heterogeneous.

If there were exactly two parties contesting the election
in each state or municipality, the running variable or score
that determines treatment would be the vote share obtained
by the party at t, as this vote share alone would determine
whether the party wins or loses election t. However, this is
rarely the case in applications. For example, roughly 68% of
US Senate elections and 50% of Brazilian mayoral elections
are contested by three or more candidates in the periods for
which we have data.1

While these two cases differ little in terms of the number
of parties, the number of effective parties is quite different.
In a race with three or more parties, in order to know
whether a party’s vote share led the party to win the elec-
tion, and by how much, we need to know the vote share
obtained by the party’s strongest opponent—the runner-up
when the party wins and the winner when the party loses.
In the above example, if the Democratic candidate obtains
33.4% of the vote against two candidates that obtain 33.3%
and 33.3%, its margin of victory is 33:42 33:3 p 0:1 per-
centage points, and it barely wins the election. In contrast,
when the other two parties obtain 60% and 6.6%, its margin
of victory is 33:42 60 p 226:6 points, and it loses the
election by a large margin.

Figure 2 summarizes the strongest opponent’s vote share
for close elections in our two examples. Figure 2A shows
the histogram of the vote share obtained by the PSDB’s
strongest opponent at election t only for races where the
PSDB won or lost by three percentage points—that is, for
races where the absolute value of the PSDB’s margin of
victory at t is 3 percentage points or less. Figure 2B shows
the analogous figure for the Democratic Party in US Senate
elections.

Figure 2 reveals that the degree of heterogeneity differs
greatly between the two examples. In a perfect two-party
system, the vote share of the party’s strongest opponent in
races decided by 3 percentage points or less would range
from 51.5% to 48.5%. That is, 48.5% is the minimum vote
percentage that a party could get in a two-party race if it lost
to another party by a margin no larger than 3 percentage
points; similarly, 51.5% is the maximum possible value. As

1. We use the terms “parties” and “candidates” interchangeably through-
out, but we note that in US Senate elections some third candidates are unaf-
filiated with a political party.
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illustrated in figure 2B, in Senate elections where the Dem-
ocratic Party wins or loses by less than 3 percentage points,
only 23% of the observations are below 48.5%. Moreover, in
94% of the elections in the figure, the Democratic Party’s
strongest opponent gets 46% or more of the vote. Thus,
despite most Senate elections having a third candidate, the

vote share obtained by such candidate is negligible in most
cases, and there is little heterogeneity in the location of close
races along the values of the strongest opponent’s vote share.

In contrast, figure 2A shows that the PSDB exhibits much
higher heterogeneity, with strongest opponent vote shares
that fall below 48.5% for 46% of the observations. Moreover,

Figure 2. Histogram of vote share of strongest opponent in elections where the PSDB and the Democratic Party won or lost by less than 3 percentage points.

A, Brazilian mayoral elections, 1996–2012. B, US Senate elections, 1914–2010.

Figure 1. RD effect of party winning on party’s future victory: Brazil and the United States. A, Brazilian mayoral elections, 1996–2012. B, US Senate elections,

1914–2010.

1232 / Interpreting Regression Discontinuity Designs Matias D. Cattaneo et al.



more than a third of the elections (36%) have strongest
opponent vote shares below 46%. In other words, a non-
negligible proportion of the elections where the PSDB wins
or loses by 3 points are elections in which third parties obtain
a significant proportion of the vote. In particular, the his-
togram shows that in most races where the strongest op-
ponent’s vote share is less than 46%, smaller parties con-
centrate at least 17% to 20% of the vote.

The differences illustrated in figure 2 suggest that we
ought to interpret the RD results in figure 1 differently. In
the case of US Senate elections, the average effect in fig-
ure 1B can be interpreted as roughly the average effect of
the Democratic Party barely reaching the 50% cutoff and
thus winning a two-way race. Although the existence of third
parties means that the real cutoff is not exactly 50%, in
practice most close races are decided very close to this cut-
off, so that the average RD effect can be roughly interpreted
as the effect of winning at 50%. In contrast, the average ef-
fect in Brazil includes a significant proportion of elections
where the cutoff is very far from 50%. As a consequence, this
overall effect cannot be interpreted simply as the effect of
barely winning at the 50% cutoff. Rather, it is the average
effect of barely winning at different cutoffs that range
roughly from 20% to 50% of the vote. For example, the PSDB
may win an election by a 2-percentage-point margin, ob-
taining 51% of the vote against a single challenger who
obtains 49%, or obtaining 36% of the vote against two chal-
lengers who get 34% and 30%. This heterogeneity is “hid-
den” or averaged in the normalizing-and-pooling strategy.

Importantly, the heterogeneity in the Brazil example is
not unique or unusual. Many political systems around the
world have third candidates who obtain a sizable propor-
tion of the vote. Figure 3 shows the distribution of the vote
share obtained by a reference party’s strongest opponent in
six different countries across different time periods and
types of elections, using the data compiled by Eggers et al.
(2015). These histograms show only the subset of races
decided by less than 3 percentage points for legislative elec-
tions in Canada, the United Kingdom, Germany, India,
New Zealand, and mayoral elections in Mexico—the ref-
erence party is indicated in each case. In all the elections
illustrated in figure 3, there is a nonnegligible proportion of
cases where the vote share of the party’s strongest opponent
falls below the range that would be observed in a perfect
two-party system with 50% cutoff.

MULTI-CUTOFF REGRESSION
DISCONTINUITY DESIGNS
We now we formally describe the heterogeneity in the treat-
ment effect parameter that arises when the normalizing-and-

pooling approach is used in RD designs with multiple cut-
offs. Our setup is general and applies to any running variable,
not only vote shares. In this section, we discuss the inter-
pretation of the pooled parameter, while the next section
explores how to recover different quantities of potential in-
terest under additional assumptions.

We study the sharp RD design first, and assume that the
cutoff has finite support—that is, that it can only take a
finite number of different values. We adopt these simpli-
fications to ease the exposition, but we extend the frame-
work to fuzzy multi-cutoff RD designs in the section Fuzzy
Multi-Cutoff RD Designs below, and to kink RD designs
and RD designs with multiple scores in section S4 of the
appendix. Our assumptions and identification results re-
duce to those in Card et al. (2015), Hahn, Todd, and van
der Klaauw (2001), an Lee (2008) for the special case of
single-cutoff RD designs.

In the standard single-cutoff RD design framework,
there are three key random variables for each unit, (Yi(0),
Yi(1), Xi) for i p 1, 2, ⋅ ⋅ ⋅ , n, where Yi(0) and Yi(1) denote
the potential outcomes for each unit when they are not
exposed and exposed to treatment, respectively, and Xi de-
notes the running variable or score assigned to each unit. In
a sharp RD setting, the treatment indicator for each unit is
Di p I(Xi ≥ c), where c is a common known cutoff for all
units and 1(⋅) denotes the indicator function. The treatment
effect of interest in this setting is the average treatment effect
at the cutoff: t p E½Yi(1)2 Yi(0)jXi p c�. In this context,
one can always assume c p 0, without loss of generality, by
replacing Xi by eXi p Xi 2 c and taking c p 0 as the cutoff
for all units.

In our multi-cutoff RD design framework, Xi continues
to denote the running variable or score for unit i, but now
there is another random variable, Ci, that denotes the cutoff
that each unit i faces, which we assume has support C p

fc1, c2, : : : , cJg with ℙ½Ci p c� p pc∈ ½0, 1� for c ∈ C. We
assume Xi is continuous with a continuous (Lebesgue) den-
sity fX(x), and let f XjC(xjc) denote a (regular) conditional
density of XijCi p c.2 In the standard single-cutoff RD
design, Ci would be a fixed value (i.e., ℙ½Ci p c� p 1), but
in our framework it is a random variable taking possibly
different values. As a result, it is possible for different units
to face different cutoff values. In the motivating example
based on Brazilian elections discussed above, the units in-
dexed by i are municipalities, Xi is the vote share obtained
by the PSDB, and Ci is the vote share of the PSDB’s

2. Throughout the paper, we assume that all densities exist (with re-
spect to the appropriate dominating measure) and are positive and that
the Lebesgue densities are continuous at the evaluation points of interest.
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strongest opponent.3 In the empirical illustrations we pre-
sent below, Xi will be a vote share, a population measure,
or a test score. The variable Di ∈ {0, 1} continues to be the
treatment indicator, but now assignment to treatment de-
pends on both the running variable and the cutoffCi. The unit
receives treatment if the value of Xi exceeds the value of the
cutoff and receives the control condition otherwise, leading to
Di p Di(Xi, Ci) p I(Xi ≥ Ci). In the motivating examples
discussed above, Di p 1 when the party wins the t election in
location i, and Di p 0 if it loses. This setting captures perfect
compliance or intention to treat; see Fuzzy Multi-Cutoff RD
Designs for the more general fuzzy RD case.

A common practice in the context of RD designs with
multiple cutoffs is to define the normalized running vari-
able or score eXi :p Xi 2 Ci, pool all the observations as if
there was only one cutoff at c p 0, and use standard RD
techniques. In the motivating examples, eXi is the party’s
margin of victory at election t—that is, the party’s vote share
(Xi) minus the vote share of its strongest opponent (Ci)—
and the party wins the election when this margin is above
zero. That is, we can write Di p I(eXi ≥ 0). It follows that
the limit of Di as Xi approaches Ci p c from the left (i.e.,
from the region where Xi ≤ Ci) is equal to zero, and it is
equal to one when Xi approaches Ci p c from the right. We
formalize this in the assumption below, extended to the multi-
cutoff RD setting.

Assumption 1 (Sharp RD). For all c ∈ C:
lim
ε→01

E½DijXi p c1 ε,Ci p c� p 1

 and

  lim
ε→01

E½DijXi p c2 ε,Ci p c� p 0:

To complete the multi-cutoff RD model, we assume
the observed outcome is Yi p Y1i(Ci)Di 1 Y0i(Ci)(12 Di),
where Y1i(c) and Y0i(c) are, respectively, the potential out-
comes under treatment and control at each level c∈ C for
each unit i p 1, 2, : : : , n. We employ the standard notation
from the causal inference literature: Ydi(Ci) poc ∈ CI(Ci p

cÞYdi(c), for dp 0,1. Unlike the single-cutoff RD design, this
model involves 2J potential outcomes, a pair for each cutoff
level c∈ C. In our motivating examples, Y1i(c) is the party’s
victory or defeat that would be observed at election t 1 1 if

the party won the previous election at t, and Y0i(c) is the
party’s victory or defeat that would be observed at the election
if the party lost the previous election. Note that, for each state
or municipality, we only observe Y0i(c) or Y1i(c), but not both,
since the party cannot simultaneously lose and win election t.
Instead, we observe Yi a (binary) variable equal to one if the
party wins election t 1 1.

Our notation allows the cutoff for winning an election to
affect the potential outcomes directly. More generally, the
potential outcomes may be related to several variables: the
running variable Xi, the cutoff Ci, and other unit-specific
(unobserved) characteristics. The latter variables are usually
referred to as the unit’s “type”—see the supplemental ap-
pendix for further discussion. Thus, in our examples, we
not only let the party’s potential electoral success in election
t 1 1 be related to its vote share and the vote share of its
strongest opponent at t, but also to other (potentially un-
observable) characteristics of the state or municipality
where the elections occur, such as its geographic location,
the underlying partisan preferences of the electorate and its
demographic makeup.

Finally, as is common in the RD literature, we assume
that we observe a random sample, indexed by ip 1, 2, . . . , n,
from a well-defined population. As our notation also makes
clear, we are explicitly ruling out interference between units;
see, for example, Bowers, Fredrickson, and Panagopoulos
(2013) and Sinclair, McConnell, and Green (2012), and ref-
erences therein, for more discussion of SUTVA (Stable Unit
Treatment Value Assumption) implications and violations in
political science.

THE NORMALIZING-AND-POOLING APPROACH
The RD pooled estimand, t P, is defined as follows:

t P p lim
ε→01

E½YijeXi p ε�2 lim
ε→01

E½YijeXi p 2ε�: ð1Þ

Equation (1) is the general form of the estimand in a multi-
cutoff RD where the score has been normalized, all obser-
vations have been pooled, and the common cutoff is zero.
Estimation of this pooled estimand is straightforward and,
as discussed above, is done routinely by applied researchers.
After normalization of the running variable, estimation just
proceeds as in a standard RD design with a single cutoff—
for example, using local nonparametric regression methods,
as is now standard practice. We provide further details in
the section Estimation and Inference in Multi-Cutoff RD
Designs below. Although estimation of tP is straightforward,
the interpretation of this estimand differs in important ways
from the interpretation of the causal estimand in a standard
single-cutoff RD design.

3. In multi-cutoff RD designs based on elections, Ci is a continuous
random variable. As we illustrate in the section Empirical Examples, in
order to analyze such examples within our framework, we discretize Ci by
dividing its support into intervals.
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We consider first the most general form of treatment
effect heterogeneity where the treatment effect varies both
across and within cutoffs. In this general case, individuals
may respond to treatment differently if they face different
cutoffs but also if they face the same one. Formally, this
individual-level treatment effect is ti(c) p Y1i(c)2 Y0i(c).
In our motivational empirical example, this implies that the
incumbency effect may vary in districts with different vote
shares of the party’s strongest opponent but it may also vary
across districts with the same value of this variable. In order
to derive the expression for tP we invoke the following two
assumptions.

Assumption 2 (Continuity of Regression Func-
tions). For all c ∈ C: E½Y0i(c)jXi p x, Ci p c� and
E½Y1i(c)jXi p x, Ci p c� are continuous in x at xp c.

Assumption 3 (Continuity of Density). For all c ∈ C:
f XjC(xjc) is positive and continuous in x at x p c.

Assumption 2 says that expected outcomes under treat-
ment and control are continuous functions of the running
variable at all possible cutoff values, implying that units
barely below a cutoff are valid counterfactuals for units barely
above it. This is the fundamental identifying assumption in
all RD designs. Assumption 3 rules out discontinuous changes
in the density of the running variable. Lemma 1 characterizes
the pooled estimand under complete heterogeneity.

Lemma 1 (Pooled Sharp Multi-cutoff RD). If assump-
tions 1, 2, and 3 hold, the pooled sharp RD causal
estimand is

t P p o
c ∈ C

E½Y1i(c)2 Y0i(c)jXi p c,Ci p c� q(c) ,  

q(c) p
f XjC(cjc)ℙ½Ci p c�

oc∈C f XjC(cjc)ℙ½Ci p c�
:

All proofs and related results are given in section S3 of
the appendix. Lemma 1 says that whenever heterogeneity
within and across cutoffs is allowed, the pooled RD es-
timand recovers a double average: the weighted average
across cutoffs of the average treatment effects E½Y1i(c)2
Y0i(c)jXi p c,Ci p c� across all units facing each particular
cutoff value. Importantly, this derivation shows that the
pooled estimand is not equal to the overall average of the
(average) treatment effects at every cutoff value. In sec-
tion S4.1 of the appendix, we discuss this point further and
show the differences between the average of the cutoff-
specific effects and tP and also discuss how the pooled

estimand can be written as an average across individuals of
different types as in Lee (2008).

Two things should be noted in order to interpret the
estimand in lemma 1. First, the weight q(c) determines the
effects that are included in the pooled parameter tP and
how much each effect contributes to this parameter. The
term ℙ[Ci p c] is simply the probability of observing the
particular realization of each cutoff and implies that q(c)
will be higher for those values of c that are more likely to
occur. The term f XjC(cjc) increases the weight of effects that
occur at values of c where the density of the running vari-
able is high.

Second, each of the conditional effects being averaged,
E½Y1i(c)2 Y0i(c)jXi p c, Ci p c�, is the average effect of
treatment given that both the running variable X and the
cutoff C are equal to a particular value c. In the standard
single-cutoff RD design, the effect recovered is the average
effect of treatment at the point Xi p c, an effect that is
typically characterized as local because it reflects the average
effect of a treatment at a particular value of the running
variable and is not necessarily generalizable to other values
of Xi. Therefore, the conditional effects in the pooled RD
case intensify the local nature of the effect, because they rep-
resent the average effect of treatment when both the running
variable and the cutoff take the same particular value.

For example, in a perfect two-party system, the RD effect
of a party winning election t on the party’s future victory at
t 1 1 recovers a single effect—the effect of this party win-
ning with a vote share just above 50%, not the effect of
winning in general. In contrast, in the pooled RD design,
this is just one of the effects that are included in tP. The
pooled RD estimand t P includes other effects, such as the
average of the party winning with 40% of the vote against a
strongest opponent that gets just below 40%, the average
effect of the party winning with 30% of the vote against a
strongest opponent that gets just below 30%, and so forth.
This heterogeneity in tP makes it a richer estimand, but it
also makes each of its component effects more local or
specific, because each reflects only one of the multiple ways
in which “barely winning” can occur.

Moreover, tP is subtle in other ways. In the pooled multi-
cutoff RD design, just like in the standard single-cutoff RD
design, units whose score Xi is close to a cutoff may be sys-
tematically different from the units whose score is far from
it. In the pooled RD design, however, units can also differ
systematically in their probabilities of facing a particular
value of the cutoff. For example, in the Brazilian mayoral
context, municipalities where the PSDB gets 50% of the vote
might be different in relevant ways from municipalities
where the PSDB gets 35% of the vote. In addition, even
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within those municipalities where the PSDB gets 35% of the
vote, municipalities where the strongest opponent also gets
roughly 35% may be very different from those where the
strongest opponent gets 10% or 15% and the election is
uncompetitive. In terms of our example, this means that, at
every value c, the effects that contribute to tP are the average
effect of the party barely defeating an opponent that obtained
a vote share equal to c. While this effect is uninformative
about the effects at other values of c, it does imply that when
there are many values of c the pooled RD estimand contains
information about the causal effect of barely winning in a
number of different contexts. This aspect of the pooled RD
estimand, by which many different local effects are com-
bined when many different values of Ci may occur, shows
that multi-cutoff RD designs contain a richer set of infor-
mation relative to single-cutoff settings.

This means that the pooled estimand in a multi-cutoff
RD design is something of a paradox. On the one hand,
each of the cutoff-specific effects in tP is a very local pa-
rameter in the sense that it is the effect of the treatment for
those units for which Xi barely exceeds Ci in only one of the
multiple ways in which Xi could barely exceed Ci. On the
other hand, when Ci takes a wide range of values, the av-
erage effect of treatment is recovered for the many different
ways in which Xi can barely exceed Ci, potentially leading to
a more global interpretation of the RD effect. We will use
the two motivating examples, as well as two other distinct
empirical illustrations, to illustrate how researchers may ex-
plore the richness in tP.

IDENTIFICATION IN MULTI-CUTOFF RD DESIGNS
A usual concern with single-cutoff RD designs is that they
only offer estimates of the treatment effect at the cutoff and
are thus uninformative about the magnitude of the treat-
ment effect at other values of the running variable. In our
motivating examples, the multi-cutoff RD gives us the effect
of barely defeating the opponent party with a range of
different values—in Brazil mayoral elections this range is
roughly 20%–50%. Can we use this wider range of values to
learn about a more global effect? We now consider assump-
tions under which the information contained in the pooled
estimand tP can be disaggregated to learn about treatment
effects of a more global nature.

Constant treatment effects
We first consider a simplification of the general case, where
the treatment effect is different across cutoffs but constant
for all individuals who face the same cutoff, that is, ti(c) :p
Y1i(c)2 Y0i(c) p t(c) with t(c) a fixed constant for all i
facing the same c. Note that t(c) varies by unit only insofar

as c varies by unit, but there is no i subindex in t(c), indi-
cating that two units facing the same given cutoff c will have
the same treatment effect t(c). In terms of our motivating
examples, this assumption implies that the effect of the party
winning an election on its future electoral success is the same
in all municipalities/states where its strongest opponent ob-
tains the same proportion of the vote. This is undoubtedly a
very strong assumption. We include it here to illustrate one
possible way in which the treatment effects recovered by the
multi-cutoff RD design can be given a more global inter-
pretation, but we discuss weaker assumptions in the subse-
quent sections.

The proposition below shows that when there is no
heterogeneity within cutoffs, the relationship between the
pooled RD estimand and the cutoff-specific effects simpli-
fies considerably.

Proposition 1 (Constant Treatment Effects). Sup-
pose the assumptions of lemma 1 hold. If ti(c)p t (c)
for all i and t(c) fixed for each c, then the pooled RD
estimand is tPpoc∈Ct(c)q(c), where the weights q(c)
are the same as in lemma 1.

Thus, when effects are constant within cutoffs, t(c)
captures the effect of treatment for all individuals facing
cutoff c. Naturally, proposition 1 simplifies considerably
when the treatment effect is the same for all individuals at all
cutoffs, that is, ti(c) p Y1i(c)2 Y0i(c) p t for all i and all c,
and thus t(c) p t for all c. In this case, the pooled estimand
becomes tP poc∈Ct(c)q(c) p toc∈Cq(c) p t, recover-
ing the single (and therefore global) constant treatment ef-
fect. This global interpretation of the multi-cutoff RD es-
timand under constant treatment effects is analogous to the
interpretation in a single-cutoff RD design, where the as-
sumption of homogeneous treatment effects leads to the
identification of the overall constant effect of treatment.

Ignorable running variable
The case introduced above is very restrictive, as it is natural
to expect some heterogeneity in treatment effects among
units facing the same value of the cutoff. We now consider
the less restrictive case of unit-heterogeneity within cutoffs,
but with an average treatment effect at every value of the
cutoff that does not depend on the particular value taken by
the score. We summarize this in the following assumption.

Assumption 4 (Score Ignorability). For all c∈C:
E½Y1i(c)2 Y0i(c)jXi,Ci p c�
p E½Y1i(c)2 Y0i(c)jCi p c�.
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Under assumption 4, the running variable is ignorable
once we condition on the value of the cutoff—that is, once
the value of the cutoff is fixed, we assume that the average
effect of treatment is the same regardless of the value taken
by the score. The proposition below shows the form of the
pooled RD estimand in this case.

Proposition 2 (Score-Ignorable Treatment Effects).
Suppose the assumptions of lemma 1 hold. If as-
sumption 4 holds, then the pooled RD estimand is

tP p o
c ∈ C

E½Y1i(c)2 Y0i(c)jCi p c�q(c),

where the weights q(c) are the same as in lemma 1.

Thus, when the average effect of treatment does not vary
with the running variable Xi, E½Y1i(c)2 Y0i(c)jCi p c� cap-
tures the effect of treatment for all values ofXi, not necessarily
those that are close to the cutoff c. For example, E½Y1i(c)2
Y0i(c)jCi p c� may reflect the average effect of the Demo-
cratic Party winning election t on its future electoral success
for a given value of its strongest opponent’s vote share, re-
gardless of whether the party defeated its opponent barely or
by a largemargin. In this sense, the effects in proposition 2 are
global in nature. Note, however, that the treatment effects are
allowed to vary with the value of Ci, and therefore the ex-
pression for tP in proposition 2, although not necessarily
local, is only averaging over the set of values that Ci can
take, and the values of Ci that will be given positive weight are
only those values where the density of Xi given Ci at Xi p

Ci p c, f XjC(cjc), is positive. As such, tP still retains a local
aspect.

Ignorable cutoffs
We now consider the case where the running variable is not
ignorable but where the heterogeneity brought about by the
multiple cutoffs can be restricted in ways that allow extrap-
olation. It is useful to introduce the analogy between the
RD design with multiple cutoffs and an experiment that is
performed in different sites or locations. In the latter case,
internally valid treatment effect estimates from experiments
in multiple sites are not necessarily informative about the
effect that the treatment would have in a different site where
the experiment has not been run. This means that the results
from multi-site experiments may not allow researchers to
extrapolate to the overall population, a concern that is not
necessarily eliminated if the number of sites is large (Allcott
2015). The problem arises because the sites that are selected
to run an experimental trial may differ from the overall
population of sites in ways that are correlated with the

treatment effect. For example, sites where the treatment is
expected to have large effects may be more likely to run
experimental trials, leading to a positive “site selection bias”
that would overestimate the effects that the treatment would
have if it were implemented in the overall population. Al-
ternatively, the population may differ across sites in a
characteristic that is associated with treatment effectiveness
(Hotz, Imbens, and Mortimer 2005). Of course, generalizing
the treatment effect from one particular site to other loca-
tions can be done under additional assumptions.

Like in a multi-site experiment, in the multi-cutoff RD
we have a series of internally valid estimates that we would
like to interpret more generally. In the multi-site experi-
ments literature, the strongest and simplest assumption un-
der which the generalization of effects is possible is inde-
pendence of locations with respect to potential outcomes.
This condition is guaranteed by design when the units in the
population are randomly assigned to different sites. In our
context, we can make the analogous assumption that, con-
ditional on the value of the running variable, the cutoff faced
by a unit is unrelated to the potential outcomes. Formally,
we can write this assumption as follows.

Assumption 5 (Cutoff Ignorability). For all c∈C:

(a)

E½Y1i(c)jXi,Ci p c� p E½Y1i(c)jXi� and  

E½Y0i(c)jXi,Ci p c� p E½Y0i(c)jXi�:
(b)

Y1i(c) p Y1i  and  Y0i(c) p Y0i:

Assumption 5a says that, conditional on the running
variable, the potential outcomes are mean independent of
the cutoff variable Ci. In addition, we need to ensure that
the value of the cutoff does not affect the potential out-
comes. This is equivalent to the “no macro-level variables”
assumption in Hotz et al. (2005), and to the “local policy in-
variance” condition in Dong and Lewbel (2015). Assump-
tion 5b formalizes the idea of an exclusion restriction, re-
quiring that the cutoff level does not affect the potential
outcomes directly.

To build intuition, note that if c0 ≤ Xi ! c1, then as-
sumption 5 leads to E½YijXi, Ci p c0�2 E½YijXi, Ci p

c1� p E½Y1i 2 Y0ijXi� for observed random variables, which
captures the average treatment effect conditional on Xi for
c0 ≤ Xi ! c1. This shows that under these assumptions we
can estimate the average treatment effect away from the
cutoff and thus obtain a more global effect. However, the
following lemma shows that, as before, the ability to recover

1238 / Interpreting Regression Discontinuity Designs Matias D. Cattaneo et al.



a global effect from the pooled multi-cutoff RD design, even
under assumption 5, is limited by the fact that tP weighs
these average effects by the probability of observing a real-
ization of the cutoff variable Ci at the particular value c.

Proposition 3 (Cutoff-Ignorable Treatment Effects).
Suppose the assumptions of lemma 1 hold. If assump-
tions 5 holds, then the pooled RD estimand becomes

tP p o
c ∈ C

E½Y1i 2 Y0ijXi p c�q(c),

where the weights q(c) are the same as in lemma 1.

Thus, under these assumptions, tP averages the average
treatment effects E½Y1i 2 Y0ijXi p c�, each of which is the
average effect of receiving treatment conditional on the run-
ning variable Xi being at the value c, regardless of the value
taken by Ci. In our motivating examples, this represents the
average effect of a party winning the t election given that the
party’s vote share is c and regardless of the vote share ob-
tained by its strongest opponent, that is, regardless of whether
it won barely or by a large margin. However, these averages
are still evaluated only at values of c that are in the support of
the random cutoff variable Ci. So, although they are more
global effects, they can only be recovered at feasible values
of Ci. Moreover, the weights q(c) entering tP still depend on
ℙ[Ci p c].

If, in addition to the assumptions imposed in proposi-
tion 3, we impose the assumption that the conditional den-
sity of the score Xi given Ci is constant, the pooled RD pa-
rameter tP simplifies to:

t p p o
c ∈ C

E½Y1i 2 Y0ijXi p c�ℙ½Ci p c�

and now, if the support of Ci is equal to the support of Xi

(which will only be possible if both are discrete or both are
continuous), we can recover the average of the average
treatment effect at all values of Xi determined by the cutoff
values faced by the units in the sample. All these assumptions
combined would thus make tP a truly global averaged esti-
mand, without the need of imposing an assumption of con-
stant RD treatment effects.

Assumption 5 also has another important application.
Under the conditions imposed in that assumption,E½Y1i(c)2
Y0i(c)jXi p c,Ci p c� p E½Y1i 2 Y0ijXi p c�. This shows
that when these assumptions hold, estimating the RD effects
separately for each value cwill provide a treatment-effect curve
that will summarize the effects of the treatment at different
values of the running variable (independently of the value
taken by the cutoff ). In other words, under these assumptions,

we can estimate multiple RD treatment effects for different
values of the running variable.

Of course, assumption 5 is generally strong and may be
too restrictive in some empirical applications. In research
under way, we are investigating different approaches in a
multi-cutoff RD design to achieve identification of E½Y1i 2

Y0ijXi p x, Ci p c� for values x ≠ c under substantially
weaker conditions than assumption 5. These alternative con-
ditions would allow for “endogenous cutoffs” or “sorting into
cutoffs” for the units of analysis and would give an oppor-
tunity for extrapolation of RD treatment effects in applications
where there is variation in cutoff values.

Difference between noncumulative
and cumulative cutoffs
The plausibility of the assumptions just discussed will be
directly affected by the way in which the multiple cutoffs
are related to the running variable. Multi-cutoff RD designs
are typically of two main types. In the first type, the value of
the running variable Xi and the cutoff variable Ci are un-
related, in the sense that a unit i with running variable
equal to a particular value, say Xi p x0, can be exposed to
any cutoff value c∈C p fc1, c2, : : : , cJg. This scenario,
which we call the Multi-cutoff RD Design with noncumu-
lative cutoffs, is illustrated in figure 4A. As shown in panels I,
II, and III, a unit with Xi p x0 can be exposed to any one
of the possible cutoff values—c0, c1, or c2. In this scenario, the
rule that governs whether a unit faces c0, c1, or c2 may be re-
lated to Xi, but this rule is not a deterministic function of Xi.

RD designs based on multiparty elections have noncu-
mulative cutoffs. For example, when the PSDB contests an
election against two other parties, if it obtains 40% of the
vote, its strongest opponent’s vote share—the cutoff the
PSDB faces to win the election—can be anything between
60% (if the third party gets zero votes) and just above 30%
(if the second and third parties are tied). Thus, except for
the restriction that the total sum of vote percentages must
be 100%, the cutoff faced by the PSDB is unrelated to the
vote share it obtains.

In contrast, some multi-cutoff RD applications have what
we call cumulative cutoffs. In these applications, different
versions of the treatment are given for different ranges of the
running variable, and as a result the cutoff faced by a unit is a
deterministic function of the unit’s score value. In the hy-
pothetical example illustrated in figure 4B, units with Xi ! c0
receive treatmentA, units with c0≤Xi! c1 receive treatment B,
units with c1 ≤ Xi ! c2 receive treatment C, and units with
c2 ≤ Xi receive treatment D. Thus, knowing a unit’s score
value is sufficient to know which cutoff (or pair of cutoffs)
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the unit faces. For example, an education intervention that
gave a financial award to teachers based on evaluation scores
could grant no awards to teachers with score below c0, a small
award to teachers with scores between c0 and c1, a medium
award to teachers with scores between and c2, and the largest
awards to those whose evaluation scores are above c2.

The difference between noncumulative and cumulative
cutoffs is important for two main reasons. First, in designs
with noncumulative cutoffs, all units tend to receive the
same treatment, while in designs with cumulative cutoffs
the treatments given are typically different in some respect.
For example, a party whose vote share barely exceeds its
strongest opponent’s vote share always wins the election
regardless of how low or high the strongest opponent’s vote
share is, while a teacher’s award can be smaller or larger
depending on which cutoff the teacher’s score exceeds. This
distinction may not be important if, in cumulative cutoff
applications, researchers are willing to redefine the treat-
ment appropriately. For example, all teachers see an in-
crease in the award amount when they barely exceed any
cutoff, and thus the treatment can be understood as in-
creasing the award amount, regardless of by how much.

Second, while all of our results apply to both scenarios,
the interpretation and plausibility of the underlying as-
sumptions will change depending on whether a cumulative
or noncumulative setting is considered. For example, our
main lemma 1 applies to both cases, which means that re-
gardless of whether cutoffs are cumulative or noncumula-
tive, the normalizing-and-pooling approach leads to a weighted

average of cutoff-specific effects. However, the assumption of
Cutoffs Ignorability (assumption 5) is less plausible under
cumulative cutoffs because the cumulative rule implies a
complete lack of common support in the value of the running
variable for units facing different cutoffs. For example, in
figure 4B, a unit with score Xi p x0 can only be exposed to
cutoff c1 or c0 but will never be exposed to c2, and the units
exposed to c2 have score Xi ≥ c1, meaning that there are no
units with low values of Xi exposed to c2. In general, with
cumulative cutoffs, the subpopulations of units exposed to
every cutoff will have systematically different values of the
running variable. Thus, if the running variable is related to
the potential outcomes, the assumption that the potential
outcomes are mean independent of the cutoff variable con-
ditional on the running variable will always be false. The
conditions required to obtain more general estimands based
on multiple cutoffs are therefore much stricter in cases where
the cutoffs are cumulative.We return to this distinction when
we discuss our three empirical examples below.

ESTIMATION AND INFERENCE IN
MULTI-CUTOFF RD DESIGNS
Estimation and inference in multi-cutoff RD designs can be
based on the same methods and techniques that are com-
monly used for the analysis of single-cutoff RD designs, by
either pooling all observations via a normalized score (as
commonly done in current practice) or by conducting in-
ference procedures for each cutoff separately. For a review
of the most recent single-cutoff RD approaches to estima-

Figure 4. Cumulative versus noncumulative cutoffs in multi-cutoff RD designs: under noncumulative cutoffs, all units may be exposed to all cutoffs regardless

of their score value; under cumulative cutoffs, units with a given score may be exposed to only a subset of cutoffs.
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tion and inference, see Skovron and Titiunik (2016) and
references therein.

The standard practice in single-cutoff RD analysis is to
employ either local polynomial methods (Calonico, Catta-
neo, and Farrell 2016; Calonico, Cattaneo, and Titiunik
2014a, 2014b, 2015b; Hahn et al. 2001) or local randomi-
zation methods (Cattaneo et al. 2015; Cattaneo, Titiunik,
and Vazquez-Bare 2016a, 2016b; Lee 2008). Either approach
can be used directly in multi-cutoff RD designs, both when a
single normalized cutoff is considered (eXi p Xi 2 Ci and
cutoff c p 0) or when the different cutoffs are analyzed
separately (Xi and cutoffs c∈ C). We illustrate both ap-
proaches below with our three empirical illustrations, which
cover both noncumulative and cumulative cutoff settings.

We briefly outline the main steps for estimation and in-
ference using nonparametric local polynomial methods,
which are usually the preferred option in empirical work. In
this setting, point estimation amounts to fitting a weighted
least squares regression of the outcome (Yi) on a polynomial
basis of the running variable (eXi or Xi) for observations
within a small region around the cutoff (c p 0 when eXi is
used or for each c∈ CwhenXi is used). The region around the
desired cutoff is determined by a choice of bandwidth, and it
is necessarily different depending on whether normalizing
and pooling is used or not. The weights are determined by a
kernel function, and the polynomial is fitted separately for
observations above and below the cutoff. The RD treatment
effect is obtained as the difference in the intercepts of the
two polynomial fits at the cutoff(s), which implies that either
one single estimate is computed (t̂P when normalizing and
pooling) or a collection of estimates is computed (t̂P(c) for
c∈ C when Xi is used). The implementation of this procedure
requires a bandwidth, which is typically chosen to minimize
an approximation to the asymptotic mean-squared-error
(MSE) of the point estimator(s). Confidence intervals for
each parameters t̂P or (c), c ∈ C, can be constructed using the
asymptotically valid procedures developed by Calonico et al.
2014b), which have better finite-sample properties and faster
vanishing coverage error rates.

Thus, implementing local polynomial estimation and
inference in multi-cutoff RD designs is straightforward. By
construction, the normalizing and pooling treats the multi-
cutoff RD design as a single-cutoff RD design for all prac-
tical purposes, and all results in the literature are directly
applicable. Likewise, a cutoff-by-cutoff analysis of multi-
cutoff RD designs can also be done with estimation and
inference methods already available in the literature with
minor modifications and extra care. If the cutoffs are non-
cumulative and the cutoff is a discrete random variable, for
every cutoff c∈ C p fc1, c2, : : : , cJg, researchers can con-

struct point estimators, confidence intervals, and other
inference procedures by first keeping only the observa-
tions exposed to cutoff c and then employing directly local
polynomial methods treating the cutoff c as the single cutoff
in this subsample. When the cutoffs are noncumulative but
continuous, as in the case of multiparty elections, we have
Ci ∈ ½cmin, cmax�. In this case, the researcher can first define
a grid of J values C p fc1, c2, : : : , cJg, in the interior of the
support of the continuous cutoff, [cmin, cmax], keep obser-
vations in a region around each grid value cj, j p 1, 2, . . . , J,
and perform estimation and inference in each subsample
treating each grid point cj as the single cutoff. We illustrate
this approach in our first empirical illustration below.

A similar procedure can be applied when the cutoffs are
cumulative, either discrete or continuous, except that in this
case the observations used for estimation and inference at
each cutoff or grid point cj ∈ C should only include obser-
vations whose running variable is not smaller than the cutoff
immediately before and no larger than the cutoff immediately
after cj. For example, a reasonable empirical practice to an-
alyze cutoff cj would be to consider only observations with
score variable satisfying cj21 1 kj21 ! Xi ! cj11 2 kj11, as-
suming the cutoffs are ordered, where kj21 and kj11 could be
chosen to the middle point or the median point (based on Xi)
between cj21 and cj, and between cj and cj11, respectively.

In all cases, the individual point estimates and confi-
dence intervals can then be plotted against each cutoff or
grid value in C p fc1, c2, : : : , cJg to capture the heteroge-
neity underlying the pooled RD treatment effect tP. Joint
inference across different cutoffs is also possible by either
relying on the bootstrap or by deriving the joint asymptotic
distribution of the cutoff-specific estimates.

EMPIRICAL EXAMPLES
We now illustrate how the formal results derived above can
inform the empirical analysis of RD designs with multiple
cutoffs. We analyze three different examples: the incumbency
advantage example in Brazil presented above, the effect of
federal transfers on political corruption in Brazil analyzed by
Brollo et al. (2013), and the effect of school infrastructure
improvements on educational outcomes analyzed by Chay
et al. (2005).We do not analyze the US Senate example further
because the number of the effective parties is very close to
two—see section S5 in the appendix for more details.

Example 1: The effect of incumbency
for the PSDB in Brazilian elections
The first example we analyze is the PSDB’s incumbency
advantage in Brazilian mayoral elections introduced above.
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In this electoral context, about a third of races occurs in
municipalities where the two top-getters combined obtain
less than 70% of the vote. Table 1 presents the frequency of
races in our sample by different levels of the PSDB’s
strongest opponent vote shares at t. Since this variable is
continuous, we divide its support in four nonoverlapping
intervals: [0, 35), [35, 40), [40, 45), and [45, 50). Within each
of these intervals, table 1 reports the number of elections that
the party won and lost at t. In a perfect two-party system,
knowing the value of a party’s strongest opponent’s vote
share is equivalent to knowing whether the party won or lost
the election, but this equivalency is broken in a multiparty
RD design. For example, the PSDB wins less than 64% of the
races where the vote share of its strongest opponent is 35% or
higher.

We begin by estimating tP, which is the pooled RD es-
timand that uses margin of victory as the score and nor-
malizes all cutoffs to zero, by local linear regression with
MSE-optimal bandwidth. The pooled RD point estimate
is20.036, an effect that cannot be statistically distinguished
from zero at conventional levels (robust p-value p .144).
The robust 95% confidence interval is [2 0.110, 0.016].

Next, we explore the heterogeneity by separately estimating
the RD effects at different levels of strongest opponent’s vote
share. We choose a grid of values in the support of the vote
share of the PSDB’s strongest opponent and, for each value in
this grid, we separately estimate the RD effect of the PSDB’s
winning at t on the PSDB’s future success using only the 600
treated observations closest to the grid value and the 600
control observations closest to the grid value.

Figure 5 summarizes the results, showing the treatment
effects at six different, equidistant values of strongest op-
ponent vote shares between 34% and 49%. The dots are the
treatment effects and the bars are the robust 95% confi-
dence intervals described in the section Estimation and

Inference in Multi-Cutoff RD Designs. Note that for every
value of the PSDB’s strongest opponent vote share that is
displayed in the figure, we are estimating the effect of the
PSDB’s barely defeating its strongest opponent, so that all
the effects in this figure are local RD effects. The blue dotted
line indicates the normalizing-and-pooling point estimate,
t̂P p 20:036.

The effects shown in this figure reveal some heteroge-
neity. For values of strongest opponent vote shares that fall
near 46% or below, the effect of barely winning is relatively
small and cannot be distinguished from zero. This estimate
is also consistent with the results from the pooled analysis.
However, for those elections where the PSDB’s strongest
opponent obtains a vote share near 49%, the effect is neg-
ative and significantly different from zero at the 5% level.

The heterogeneity illustrated in figure 5 must be inter-
preted with care for two reasons. The first reason is practical.
As shown in table 1, the number of observations at every
cutoff is moderate, which may lead to noisy estimates of
the conditional expectations. The length of the confidence
intervals in figure 5 varies significantly across the range of
the running variable, often increasing where the density of
observations is lower.

Second, following our discussion in the section Estima-
tion and Inference in Multi-Cutoff RD Designs, the inter-
pretation of the treatment-effect curve in figure 5 depends
crucially on the assumptions surrounding the factors that
affect the strongest opponent’s vote shares. If we were willing
to assume that, at every level of vote share obtained by the
PSDB at t, the vote share obtained by its strongest opponent

Table 1. Frequency of Observations for Different Levels
of the PSDB’s Strongest Opponent Vote Shares at t

PSDB in Brazil Mayoral Elections

Strongest Opponent Vote (%)
(Cutoff Value)

Sample
Size

Victories
(%)

Defeats
(%)

[0, 35) 1,346 84.9 15.1
[35, 40) 986 63.9 36.1
[40, 45) 1,251 62.3 37.7
[45, 50) 1,490 61.5 38.5

Note. Counts based on mayoral elections in Brazil in 1996–2012. Source is
Klašnja and Titiunik (2016) replication data.

Figure 5. RD effects of PSDB’s victory on future vote share at different

levels of strongest opponent’s vote share.
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is mean independent of the PSDB’s potential victory at t1 1
(assumption 5a) and the strongest opponent’s vote shares
affect the potential future performance of the PSDB only
through the PSDB’s winning or losing the election but not
directly (assumption 5b), then each of these effects would be
the effect of the PSDB winning election t with a vote share in
each interval, regardless of whether it won barely or by a
large margin.

If however, we believe that the more plausible scenario is
one in which elections that differ in the strongest opponent’s
vote share also differ systematically in observed and unob-
served factors that affect the PSDB future vote shares (e.g.,
municipalities with strong third parties may be systemati-
cally different from municipalities where only two parties
contest the election), then the interpretation of figure 5 changes
considerably. Under this scenario, the potential differences be-
tween the effects also reflect the different electoral environ-
ments that occur at different levels of strongest opponent’s vote
shares, and cannot be simply interpreted as the effect of treat-
ment at those levels of the PSDB’s t vote share (the running
variable).

Example 2: The effect of federal transfers
on political corruption in Brazil
Our second empirical illustration is based on a study by
Brollo et al. (2013), who examine whether increasing fed-
eral transfers results in increased political corruption in
Brazilian municipalities. Brazilian municipal governments
provide goods and services related to education, health, and
infrastructure. For municipalities with a population of less
than 50,000 people, the largest source of total revenues is
the Fundo de Participação dos Municípios (FPM) which are
automatic transfers from the central government. FPM trans-
fers are based on the population of the municipality within
each state, increasing at preset population thresholds.

In the original study, the authors focused on the first
seven thresholds: 10,189, 13,585, 16,981, 23,773, 30,565,
37,357, and 44,149. At each of these thresholds, the amount
of FPM transfers increased by a linear multiplier. The ques-
tion of interest is whether these increases in revenues con-
tributed to political corruption, measured in various ways. In
our reanalysis, we focus on a single corruption measure—a
binary outcome equal to one if authorities found evidence of
severe irregularities in municipal finances, including diversion
of funds, over-invoicing of goods and services, and fraud.

The original study treated the design as a fuzzy RD, since
the theoretical transfers that a municipality should receive
based on official population counts are not always equal to
the actual amount of FPM transfers received. This non-
compliance arises from several sources, including the fact

that FPM transfer amounts were frozen for several years,
while population counts shifted. We only focus on the
intention-to-treat effects of population on corruption and
thus analyze the data as a sharp RD design where population
is the running variable and the treatment is having a popu-
lation count that exceeds the cutoff for an increase in FPM
transfers.

This application is an example of a multi-cutoff RD
design with cumulative cutoffs: municipalities of a certain
population are only exposed to one or at most two cutoffs,
and the treatment assigned differs at different cutoffs, as
being above each of the cutoffs results in a different amount
of FPM transfers. For example, a municipality above the
30,565 cutoff receives more federal transfers than a mu-
nicipality above the 16,981 cutoff. The treatment received at
every cutoff is therefore changing, which is typical of cu-
mulative cutoff settings.

The pooled RD point estimate in this application is
0.149 (robust p-value p .073), and the robust 95% confi-
dence interval is [20.017, 0.375]. We also estimate cutoff-
by-cutoff effects. Figure 6, which is analogous to figure 5,
shows the RD treatment effects at each of the seven dif-
ferent cutoffs. For every cutoff-specific effect, we only use
observations with score greater than or equal to the pre-
vious cutoff, and smaller than the following cutoff. That is,
at each cutoff cj, we only include in the estimation obser-
vations with cj21 ≤ Xi ! cj11, and at the extreme cutoffs, c1
and cJ, we keep, respectively, observations with Xi ! c2 and
Xi ≤ cJ21. The sample size at each cutoff is shown in table 2.

As shown in figure 6, most point estimates are positive
and near the pooled effect, although the effect at the last

Figure 6. RD effects of municipal transfers on corruption
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population cutoff is considerably larger (but also highly
variable due to the small number observations). The robust
95% and 90% confidence intervals for each cutoff-specific
effect include zero. Since the 90% confidence intervals for
the pooled effect do exclude zero, this suggests that the
normalizing-and-pooling approach leverages the increased
statistical power obtained by aggregating the sample sizes
across all cutoffs.

Example 3: The effect of school infrastructure
improvements in Chile
Our third and final empirical illustration is based on the
study by Chay et al. (2005) on the effect of school im-
provements on test scores, with cutoffs that differ by geo-
graphic region. In 1990, the Chilean government intro-
duced P-900, an intervention targeted at low-performing,
publicly funded schools. Schools selected for participation
in the P-900 intervention received improvements in their
infrastructure, updated instructional materials, additional
teacher training, and new after-school tutoring sessions.
Assignment to P-900 participation was done using a single
score based on a combination of school-level test scores in
language and mathematics in 1988.4 However, officials from
the Chilean Ministry of Education used different cutoffs
across each of Chile’s 13 administrative regions, the highest
subnational level of government.

Table 3 contains the cutoff, number of observations, and
range of the running variable in each region for the sample
of urban, larger schools originally analyzed by the authors.5

The outcome variables are school-level test score gains
between 1988 and 1992 in language and mathematics. To
keep our analysis brief, we focus only on language test score
gains.

As in the other empirical examples, we first estimate the
single pooled estimate of the effect of the P-900 interven-
tion on language test scores. This estimate is 2.83 (robust
p-value p .003), with 95% robust confidence interval [1.14,
5.44]. Thus, the normalizing-and-pooling strategy indicates
that the program increased language test scores by nearly
3 points, an effect that is significantly different from zero at
conventional levels.

We also explore whether the effect of the program varied
by region. As in our previous application, the size of the
subpopulations exposed to each cutoff value is very vari-
able. For example, regions 11 and 12, which have the same
threshold, include only 44 schools combined, while three
other regions have roughly 500 or more schools. Because of
the small number of observations, we exclude regions 11
and 12. The effects at all other cutoffs are presented in fig-
ure 7. The RD effects at four of the cutoff values are positive,
and two of those are significantly different from zero at the
5% level. Two effects have negative point estimates, but the
small number of observations prevents us from distinguishing
these effects from zero and leads to large confidence intervals,
particularly at the smallest cutoff. All in all, the effects of the P-
900 program on language score gains seem to be moderately
heterogeneous, although we must interpret this heterogeneity
cautiously due to the variability of the cutoff-specific effects.

FUZZY MULTI-CUTOFF RD DESIGNS
All the results presented above can be extended in multiple
ways. In this section we briefly discuss the fuzzy multi-
cutoff RD design, where treatment compliance is imperfect.
In section S4 of the appendix we further extend our work to
the case of kink multi-cutoff RD designs and discuss con-
nections with RD designs with multiple running variables.

In the fuzzy RD case, some units below the cutoff may
receive the treatment and some units above it may refuse it,
leading to a jump in the probability of receiving treatment
at the cutoff that is less than one. Despite the necessary
technical modifications, all the conceptual issues discussed
above apply directly to this case. Therefore, for brevity, we
only discuss here the interpretation of the pooled estimand.

Table 2. Frequency of Observations Exposed
to Each Cutoff Value

Brazilian Municipalities

Population (Cutoff Value) Sample Size

10,189 489
13,585 432
16,981 407
23,773 342
30,565 225
37,356 153
44,148 81

Note. For each cutoff, the sample size is municipalities
with score greater than or equal to previous cutoff (if there
is one) and smaller than the following cutoff (if there is
one). Source is Brollo et al. (2013) replication data.

4. While the indicator for participation in P-900 and the test scores
that make up the running variable are fully observed, the exact cutoffs in
the score are not observed. Chay et al. (2005) use two different methods to
estimate the cutoffs. We use the second set of estimated cutoffs in our
analysis.

5. The schools included are urban schools with 15 or more students in
the fourth grade in 1988.
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First, we formalize the idea of imperfect treatment com-
pliance in the multi-cutoff RD design.

Assumption 6 (Fuzzy RD). For all c ∈ C:
lim
ε→01

E½DijXi p c1 ε,Ci p c�
≠ lim
ε→01

E½DijXi p c2 ε,Ci p c�:

This assumption is a direct generalization of assump-
tion 1 and covers as a special case the sharp RD design.
Observe that Di continues to denote whether unit i received
treatment or not, but it is no longer required that this bi-
nary indicator take the form Di p I(Xi ≥ Ci) as in the
sharp RD case.

The pooled estimand in the fuzzy RD design is gener-
alized to

tPFRDp
limε→01E½YijeXip ε�2 limε→01E½YijeXip2ε�
limε→01E½DijeXip ε�2 limε→01E½DijeXip2ε� :

The extension to fuzzy designs can be studied using a
causal inference framework (Angrist, Imbens, and Rubin
1996), with a few simple modifications. Let the function
D0i(x; c) : (2∞, c)# C→ f0, 1g denote the potential treat-
ment status when unit i faces cutoff c and has a score of
x ! c. Similarly, define the function D1i(x; c) : ½c, ∞)#
C→ f0, 1g as the potential treatment status for a unit
facing cutoff c and with score x ≥ c. In this case, we assume
that the functions Ddi(x; c) are allowed to depend on x only
through their first argument, and our notation emphasizes
this fact. The observed treatment status in the fuzzy multi-

cutoff RD design is

Di p Di(Xi,Ci) p D0i(Xi,Ci)I(Xi ! Ci)

1 D1i(Xi,Ci)1(Xi ≥ Ci):

Define D0i(c) :p limx→c2D0i(x, c) and D1i(c) :p limx→c1

D1i(x, c). Then, for each cutoff c ∈ C, we can define four
subpopulations: local always takers (D1i(c) p D0i(c) p 1),
local never takers (D1i(c) p D0i(c) p 0), local compliers
(D1i(c) 1 D0i(c)), and local defiers (D1i(c) ! D0i(c)).

Within this framework, the smoothness condition (as-
sumption 2 in the sharp multi-cutoff RD setting) can be
adapted as follows.

Assumption 7 (Continuity of Regression Functions).
For all c∈ C : E½(Y1i(c)2 Y0i(c))D1i(x, c)jXi p x,
Ci p c� and E½D1i(x, c)jXi p x, Ci p c� are right
continuous in x at x p c. E½(Y1i(c)2Y0i(c))D0i(x, c)j
Xi p x, Ci p c� andE½D0i(x, c)jXi p x, Ci p c� are
left continuous in x and x p c.

Finally, as it is common in the (causal) instrumental
variables literature, we rule out local defiers.

Assumption 8 (Monotonicity). For all c ∈ C:

ℙ½D1i(c) ≥ D0i(c)� p 1:

The main identification result for the normalizing-and-
pooling approach in the fuzzy multi-cutoff RD design is
summarized in the following lemma.

Figure 7. RD effects of P-900 assignment on language test scores

Table 3. Cutoffs and Sample Sizes with Regions with Same
Cutoff Values Combined

Geographic
Region

Past Test
Scores Index
(Cutoff Value)

Sample
Size Min Xi Max Xi

Region 7 42.4 157 33.62 81.55
Regions 6, 8 43.4 497 28.87 80.87
Region 13 46.4 959 31.00 83.35
Region 9 47.4 197 31.96 81.25
Regions 2, 5, 10 49.4 560 35.49 83.53
Regions 1, 3, 4 51.4 190 33.55 82.23
Regions 11, 12 52.4 44 40.75 82.65

Note. For each cutoff, the sample size is the number of schools in each
region facing a unique cutoff. Source is Chay, McEwan, and Urquiola
(2005) replication data.
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Lemma 2 (Pooled Fuzzy Multi-cutoff RD). If assump-
tions 2, 3, 6, 7, and 8 hold, the pooled fuzzy RD causal
estimand is

tPFRD p o
c ∈ C

E½Y1i(c)2 Y0i(c)jD1i(c) 1 D0i(c),

Xi p c, Ci p c� qFRD(c),

where

qFRD(c) p
ℙ½D1i(c) 1 D0i(c)jXi p c,Ci p c� f XjC(cjc)ℙ½Ci p c�

oc ∈ Cℙ½D1i(c) 1 D0i(c)jXi p c,Ci p c� f XjC(cjc)ℙ½Ci p c�
:

This lemma gives an analogue of lemma 1, and can be
interpreted in exactly the same way. Furthermore, the same
ideas and discussion given in Identification in Multi-Cutoff
RD Designs section of the paper, for sharp multi-cutoff RD
designs, apply to the fuzzy setting. We do not work through
the different assumptions to avoid unnecessary repetition.

RECOMMENDATIONS FOR PRACTICE
We now outline a few simple recommendations for applied
researchers. As a starting point, we suggest some visual and
descriptive diagnostics to explore the density of observa-
tions around each cutoff. If most of the mass in the dis-
tribution is near the same cutoff value, then the analyst can
treat the design as equivalent to a single-cutoff RD design,
since the heterogeneity is minimal. If, in contrast, there are
many units exposed to different cutoffs, this simple analysis
will reveal that the normalizing-and-pooling approach is
combining effects that are heterogeneous in the cutoff value.
For multi-cutoff RD designs based on multiparty elections,
the analyst should create a histogram of the strongest op-
ponent’s vote shares, as we did in figure 2. If the density of
this variable is relatively dispersed as in figure 2A then the
pooled estimand is potentially heterogeneous. For other
types of multi-cutoff RD designs with discrete cutoff var-
iables, researchers can again explore the number of units
exposed to each of the cutoff values. When potential het-
erogeneity is present, the analyst has several options.

First, one could simply pool the estimates and either ignore
(i.e., average) the heterogeneity or, alternatively, assume con-
stant treatment effects. Second, one could acknowledge the
presence of heterogeneity but leave it unexplored and make
the pooled estimand the main object of interest. Third, one
could explore whether the pooled estimate is robust to ex-
cluding some of the observations. For example, in a case that
looks like our Brazil incumbency advantage example, one could
split the sample into two subsets: races where the strongest
opponent gets 45% or more of the vote, and the rest. If most

of the mass is in the first subset, an interesting question is
whether the pooled estimate is actually close to the estimate that
uses only this subset. Since the pooled estimand is a weighted
average, a low mass of observations below the 45% cut point
would receive little weight, but an aberrant treatment effect in
this range could lead to an “nonrepresentative” pooled effect.

Next, one could test substantive hypotheses about how
the heterogeneity is expected to change from one cutoff to
the next and explore these hypotheses and heterogeneity
fully, estimating several treatment effects along the cutoff
variable. For example, one could formally investigate the
presence of monotonic treatment effects along the running
variable.

Finally, an important lesson of our framework is that RD
designs with multiple cumulative cutoffs are very different
from settings in which the cutoffs are noncumulative. In par-
ticular, as we discussed, some ignorability assumptions are
harder to defend in cumulative multi-cutoff settings. Thus, an
important step in the analysis and interpretation of the multi-
cutoff RD design is to establish whether the cutoff values are
cumulative or noncumulative and evaluate the plausibility of
assumptions accordingly.

CONCLUDING REMARKS
The standard RD design assumes that a treatment is assigned
on the basis of whether a score exceeds a single cutoff. How-
ever, in many empirical RD applications the cutoff varies by
unit, and researchers normalize the running variable so that all
units face the same cutoff value and a single estimate can be
obtained by pooling all observations. This is a useful approach
to summarize the average effect across cutoffs, but in some
cases it is possible to disaggregate the information contained in
the pooled effect and provide a richer description of the un-
derlying heterogeneity in the treatment effect. This heteroge-
neity can be important from a policy perspective, as it may
capture differential RD treatment effects for different values of
the running variable.

When there are multiple cutoffs, the pooled RD estimand
is a weighted average of the average effects of treatment at
every cutoff value, with higher weight given to a particular
cutoff value c when there are many units whose scores are
close to c. Our formalization of the pooled estimand as a
weighted average thus shows that the degree of heterogeneity
captured by this estimand will vary on a case-by-case basis
depending on the density of the data used in each applica-
tion. This result continues to be true for both the fuzzy and
kink RD designs with multiple cutoffs. We also discussed
different assumptions that allow for a causal interpretation
of the disaggregated RD treatment effects obtained at dif-
ferent cutoff levels. Importantly, we showed that the plau-

1246 / Interpreting Regression Discontinuity Designs Matias D. Cattaneo et al.



sibility of some of these assumptions depends on whether the
cutoffs are cumulative or noncumulative. When cutoffs are
cumulative, the cutoff(s) faced by a unit are a deterministic
function of the unit’s score value; this means that there is a
lack of common support of the running variable for units
exposed to different cutoffs, making cutoff ignorability as-
sumptions particularly implausible if the running variable is
related to the potential outcomes. Thus, a crucial step in the
analysis of multi-cutoff RD designs is to determine whether
the cutoffs are cumulative.

We also briefly summarized how estimation and infer-
ence can be conducted in the multi-cutoff setting and illus-
trated these steps in the discussion of three empirical exam-
ples. Moreover, in the appendix we discuss the connections
between our multi-cutoff RD framework and RD designs
with multiple scores or running variables. In particular, we
show how an RD design with two running variables can be
recast as an RD design with one score and multiple cutoffs, a
result that highlights the connections between geographic
RD designs and the multi-cutoff framework we developed.

Our motivational and empirical examples illustrated the
main methodological points of our paper. In the case of
Brazilian municipal elections, a multi-cutoff RD design
arises because a substantial proportion of Brazil mayoral
elections are decided far from the 50% cutoff: in this setting,
it is common for the two top parties combined to obtain less
than 80% or 70% of the vote. In this scenario, the hetero-
geneity underlying the pooled estimand can be substantial.
As we show for the effect of the PSDB winning on its future
electoral victory, the pooled estimate is statistically indis-
tinguishable from zero, but when we use only observations
where the vote share obtained by the PSDB’s strongest op-
ponent is near 49%, this effect becomes negative and statisti-
cally different from zero. In our other two empirical examples,
the heterogeneity in the cutoff-by-cutoff RD treatment effects
was less clear-cut. For example, our replication of the effects of
federal transfers on municipal corruption in Brazil showed
that the cutoff-specific effects are broadly consistent with the
conclusions from the pooled analysis. Our empirical examples
also illustrated in practice the differences between cumulative
and noncumulative multi-cutoff RD designs.

In showing that the weights in the pooled approach com-
bine the effects at different cutoffs in a particular way, our
framework also suggests that researchers may want to choose
different weights relevant to their application. However, as
discussed above, the interpretation of this heterogeneity de-
pends on whether the probability that a unit faces a particular
cutoff is related to characteristics that correlate with the
potential effects of the treatment. Indeed, while identifying
the estimands t(c) p E½Y1i(c)2 Y0i(c)jXi p c, Ci p c� for

c ∈ C is straightforward, these estimands do not necessarily
correspond to the more interesting and policy-relevant
estimands E½Y1i(c)2 Y0i(c)jXi p c� for c∈ C (or, even more
difficult, E½Y1i(c)2 Y0i(c)jXi p x� for x ≠ c∈ C). In con-
current work, we are investigating different ways to identify
this type of estimands in the context of the multi-cutoff RD
design, under conditions that allow units to “sort into” the
cutoff they face. This is perhaps themost important extension
of our work, as our current assumptions effectively treat the
variable Ci as exogenous, while in many applications differ-
ences in the RD average treatment effect at different values of
the cutoff Ci may arise due to “selection” of different unit
types into cutoffs.
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