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ABSTRACT
This article introduces an intuitive and easy-to-implement nonparametric density estimator based on local
polynomial techniques. The estimator is fully boundary adaptive and automatic, but does not require pre-
binning or any other transformation of the data. We study the main asymptotic properties of the estimator,
and use these results to provide principled estimation, inference, and bandwidth selection methods. As
a substantive application of our results, we develop a novel discontinuity in density testing procedure,
an important problem in regression discontinuity designs and other program evaluation settings. An
illustrative empirical application is given. Two companion Stata and R software packages are provided.
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1. Introduction

Flexible (nonparametric) estimation of a probability density
function features prominently in empirical work in statistics,
economics, and many other disciplines. Sometimes the density
function is the main object of interest, while in other cases it
is a useful ingredient in forming two-step nonparametric or
semiparametric procedures. In program evaluation and causal
inference settings, for example, nonparametric density estima-
tors are used for manipulation testing, distributional treatment
effect and counterfactual analysis, instrumental variables treat-
ment effect specification and heterogeneity analysis, and com-
mon support/overlap testing. See Imbens and Rubin (2015) and
Abadie and Cattaneo (2018) for reviews and further references.

A common problem faced when implementing density esti-
mators in empirical work is the presence of evaluation points
that lie on the boundary of the support of the variable of inter-
est: whenever the density estimator is constructed at or near
boundary points, which may or may not be known by the
researcher, the finite- and large-sample properties of the estima-
tor are affected. Standard kernel density estimators are invalid
at or near boundary points, while other methods may remain
valid but usually require choosing additional tuning parameters,
transforming the data, a priori knowledge of the boundary point
location, or some other boundary-related specific information
or modification. Furthermore, it is usually the case that one type
of density estimator is used for evaluation points at or near the
boundary, while a different type is used for interior points.

We introduce a novel nonparametric estimator of a den-
sity function constructed using local polynomial techniques
(Fan and Gijbels 1996). The estimator is intuitive, easy
to implement, does not require prebinning of the data,
and enjoys all the desirable features associated with local
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polynomial regression estimation. In particular, the estimator
automatically adapts to the boundaries of the support of
the density without requiring specific data modification
or additional tuning parameter choices, a feature that is
unavailable for most other density estimators in the litera-
ture: see Karunamuni and Alberts (2005) for a review on
this topic. The most closely related approaches currently
available in the literature are the local polynomial density
estimators of Cheng, Fan, and Marron (1997) and Zhang
and Karunamuni (1998), which require knowledge of the
boundary location and prebinning of the data (or, more
generally, preestimation of the density near the boundary), and
hence introduce additional tuning parameters that need to be
chosen.

The heuristic idea underlying our estimator, and differ-
entiating it from other existing ones, is simple to explain:
whereas other nonparametric density estimators are con-
structed by smoothing out a histogram-type estimator of
the density, our estimator is constructed by smoothing out
the empirical distribution function using local polynomial
techniques. Accordingly, our density estimator is constructed
using a preliminary tuning-parameter-free and

√
n-consistent

distribution function estimator (where n denotes the sample
size), implying in particular that the only tuning parame-
ter required by our approach is the bandwidth associated
with the local polynomial fit at each evaluation point. For
the resulting density estimator, we provide (i) asymptotic
expansions of the leading bias and variance, (ii) asymptotic
Gaussian distributional approximation and valid statistical
inference, (iii) consistent standard error estimators, and (iv)
consistent data-driven bandwidth selection based on an
asymptotic mean squared error (MSE) expansion. All these
results apply to both interior and boundary points in a fully
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automatic and data-driven way, without requiring boundary-
specific transformations of the estimator or of the data, and
without employing additional tuning parameters (beyond the
main bandwidth present in any kernel-based nonparametric
method).

As a substantive methodological application of our proposed
density estimator, we develop a novel discontinuity in density
testing procedure. In a seminal paper, McCrary (2008) proposed
the idea of manipulation testing via discontinuity in density
testing for regression discontinuity (RD) designs, and developed
an implementation thereof using the density estimator of
Cheng, Fan, and Marron (1997), which requires prebinning
of the data and choosing two tuning parameters. On the
other hand, the new proposed discontinuity in density test
employing our density estimator only requires the choice
of one tuning parameter, and enjoys other features associ-
ated with local polynomial methods. We also illustrate its
performance with an empirical application employing the
canonical Head Start data in the context of RD designs
(Ludwig and Miller 2007). For introductions to RD designs,
and further references, see Imbens and Lemieux (2008), Lee
and Lemieux (2010), and Cattaneo, Titiunik, and Vazquez-
Bare (2017). For recent papers on modern RD methodology
see, for example, Arai and Ichimura (2018), Ganong and
Jäger (2018), Hyytinen, Meriläinen, Saarimaa, Toivanen, and
Tukiainen (2018), Dong, Lee, and Gou (2019), and references
therein.

Finally, we provide two general purpose software packages,
for Stata and R, implementing the main results discussed in
the article. Cattaneo, Jansson, and Ma (2018) discuss the pack-
age rddensity, which is specifically tailored to manipula-
tion testing (i.e., two-sample discontinuity in density testing),
while Cattaneo, Jansson, and Ma (2019) discuss the package
lpdensity, which provides generic density estimation over
the support of the data.

The rest of the article is organized as follows. Section 2
introduces the density estimator and Section 3 gives the main
technical results. Section 4 applies these results to nonparamet-
ric discontinuity in density testing (i.e., manipulation testing),
while Section 5 illustrates the new method with an empirical
application. Section 6 concludes. The supplemental appendix
(SA hereafter) contains additional methodological and technical
results and reports all theoretical proofs. In addition, to con-
serve space, we relegate to the SA and to our two companion
software articles the presentation of simulation evidence high-
lighting the finite sample properties of our proposed density
estimator.

2. Boundary Adaptive Density Estimation

Suppose x1, x2, . . . , xn is a random sample, where xi is a con-
tinuous random variable with a smooth cumulative distribution
function over its support X ⊆ R. The probability density
function is f (x) = ∂

∂xP[xi ≤ x], where the derivative is inter-
preted as a one-sided derivative at a boundary point of X . Our
results apply to bounded or unbounded support X , which is an
important feature in empirical applications employing density
estimators.

Letting F̂(x) = 1
n

∑n
i=1 1(xi ≤ x) denote the classical

empirical distribution function, our proposed local polynomial
density estimator is

f̂ (x) = e′
1β̂(x),

β̂(x) = argmin
b∈Rp+1

n∑
i=1

[
F̂(xi) − rp(xi − x)′b

]2
K

(
xi − x

h

)
,

where e1 = (0, 1, 0, . . . , 0)′ is the second (p + 1)-dimensional
unit vector, rp(u) = (1, u, u2, . . . , up)′ is a pth-order polyno-
mial expansion, K(·) denotes a kernel function, h is a positive
bandwidth, and p ≥ 1. In other words, we take the empirical
distribution function F̂ as the starting point, then construct a
smooth local approximation to F̂ using a polynomial expansion,
and finally obtain the density estimator f̂ as the slope coefficient
in the local polynomial regression.

The idea behind the density estimator f̂ (x) is explained
graphically in Figure 1. In this figure, we consider three distinct
evaluation points on X = [−1, 1]: a is near the lower boundary,
b is an interior point, and c = 1 is the upper boundary. The con-
ventional kernel density estimator, f̂KD(x) = 1

nh
∑n

i=1 K
( xi−x

h
)
,

is valid for interior points, but otherwise inconsistent. See,
for example, Wand and Jones (1995) for a classical reference.
On the other hand, our density estimator f̂ (x) is valid for all
evaluation points x ∈ X and can be used directly, without any
modifications to approximate the unknown density. Figure 1 is
constructed using n = 500 observations. The top panel plots
one realization of the empirical distribution function F̂(x) in
dark gray, and the local polynomial fits for the three evaluation
points x ∈ {a, b, c} in red, the latter implemented with p = 2
(quadratic approximation) and bandwidth h (different value for
each evaluation point considered). The vertical light gray areas
highlight the localization region controlled by the bandwidth
choice, that is, only observations falling in these regions are
used to smooth out the empirical distribution function via local
polynomial approximation, depending on the evaluation point.
The estimator f̂ (x) is the slope coefficient accompanying the
first-order term in the local polynomial approximation, which
is depicted in the bottom panel of Figure 1 as the solid line in red.
The bottom panel also plots three other curves: dashed blue line
corresponding to the population density function, dash-dotted
green line corresponding to the average of our density estimate
over simulations, and dashed black line corresponding to the
average of the standard kernel density estimates f̂KD(x).

Figure 1 illustrates how our proposed density estimator
adapts to (near) boundary points automatically, showing graph-
ically its good performance in repeated samples. Evaluation
point b is an interior point and, consequently, a symmetric
smoothing around that point is employed, just like the standard
estimator f̂KD(x) does. On the other hand, evaluation points a
and c both exhibit boundary bias if the standard kernel density
estimator is used: point a is near the boundary and hence
employs asymmetric smoothing, while point c is at the upper
boundary and hence employs one-sided smoothing. In contrast,
our proposed density estimator f̂ (x) automatically adapts to the
boundary point, as the bottom panel in Figure 1 illustrates.
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Figure 1. Graphical illustration of density estimator. Constructed using companion R (and Stata) package described in Cattaneo, Jansson, and Ma (2019) with simulated
data.

3. Main Technical Results

We summarize two main large sample results concerning the
proposed density estimator: (i) an asymptotic distributional
approximation with precise leading bias and variance char-
acterizations, and (ii) a consistent standard error estimator,
which is also data-driven and fully automatic. Both results are
boundary adaptive and do not require prior knowledge of the
shape ofX . We report preliminary technical lemmas, additional
theoretical results, and detailed proofs in the SA to conserve
space.

Assumption 1 (DGP). {x1, x2, . . . , xn} is a random sample with
distribution function F that is p + 1 times continuously differ-
entiable for some p ≥ 1 in a neighborhood of the evaluation
point x, and the probability density function of xi, denoted by f ,
is positive at x.

This assumption imposes basic regularity conditions on the
data-generating process, ensuring that f (x) is well-defined and
possesses enough smoothness.

Assumption 2 (Kernel). The kernel function K(·) is nonnegative,
symmetric, and continuous on its support [−1, 1].

This assumption is standard in nonparametric estimation,
and is satisfied for common kernel functions. We exclude ker-
nels with unbounded support (e.g., Gaussian kernel) for sim-
plicity, since such kernels will always hit boundaries. Our results,
however, can be extended to accommodate kernel functions
with unbounded support, albeit more cumbersome notation
would be needed.

The following theorem gives a characterization of the asymp-
totic bias and variance of f̂ (x), as well as a valid distributional
approximation. All limits are taken as n → ∞ (and h → 0)
unless explicitly stated otherwise,� denotes weak convergence,
and F(s)(x) = ∂ sF(x)/∂xs denotes the derivative, or one-sided
derivative if at a boundary point, of F(x).

Theorem 1 (Distributional Approximation). Suppose Assump-
tion 1 and 2 hold. If nh2 → ∞ and nh2p+1 = O(1), then

f̂ (x) − f (x) − hpB(x)√
1

nhV(x)

� N (0, 1),

where, defining

A(x) = f (x)

∫
h−1(X−x)

rp(u)rp(u)′K(u)du,
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a(x) = f (x)
F(p+1)(x)

(p + 1)!
∫

h−1(X−x)

up+1rp(u)K(u)du,

B(x) = f (x)3
∫∫

h−1(X−x)

min{u, v}rp(u)rp(v)′K(u)K(v)dudv,

the asymptotic bias and variance are B(x) = e′
1A(x)−1a(x) and

V(x) = e′
1A(x)−1B(x)A(x)−1e1, respectively.

In this theorem, the integration region reflects the effect of
boundaries. Because K(·) is compactly supported, if x is an
interior point, we have h−1(X−x) ⊃ [−1, 1] for h small enough,
thus ensuring the kernel function is not truncated and the local
approximation is symmetric around x. On the other hand, for x
near or at a boundary of X (i.e., for h not small enough relative
to the distance of x to the boundary), we have h−1(X − x) �⊃
[−1, 1], and the local approximation is asymmetric (or one-
sided). It follows that the density estimator f̂ (x) is boundary
adaptive and design adaptive, as in the case of local polynomial
regression (Fan and Gijbels 1996).

A simple and automatic variance estimator is V̂(x) =
e′

1Â(x)−1B̂(x)Â(x)−1e1, where

Â(x) = 1
nh

n∑
i=1

rp
(
x̌i

)
rp

(
x̌i

)′ K
(
x̌i

)

B̂(x) = 1
n3h3

n∑
i,j,k=1

rp
(
x̌j

)
rp

(
x̌k

)′ K
(
x̌j

)
K

(
x̌k

)
[

1(xi ≤ xj) − F̂(xj)
] [

1(xi ≤ xk) − F̂(xk)
]

,

with x̌i = h−1(xi − x) denoting the normalized observations to
save notation. Let →P denote convergence in probability.

Theorem 2 (Variance Estimation). If the conditions in Theo-
rem 1 hold, then V̂(x) →P V(x).

As shown in this theorem, the variance estimator V̂(x) does
not require knowledge of the relative positioning of the evalu-
ation point to boundaries of X , that is, V̂(x) is also boundary
adaptive. A boundary adaptive bias estimator B̂(x) can also be
constructed easily, as shown in the SA.

Using the results above, and under mild regularity condi-
tions, it follows that a pointwise approximate MSE-optimal
bandwidth choice for our proposed density estimator f̂ (x) is

hMSE(x) =
( V(x)

2pB(x)2

)1/(1+2p)

n−1/(1+2p),

which can be easily implemented by replacing B(x) and V(x)

with preliminary consistent estimators B̂(x) and V̂(x). The SA
offers details on implementation and consistency of this MSE-
optimal bandwidth selector, which can be used to establish
its optimality in the sense of Li (1987), and also bandwidth
selection for estimating higher-order density derivatives. We
omit these results here due to space limitations.

Finally, we recommend implementing the density estimator
f̂ (x) with p = 2, which corresponds to the minimal odd
polynomial order choice (i.e., analogous to local linear regres-
sion). Higher order local polynomials could be used, but they

typically exhibit erratic behavior near boundary points, and lead
to counter-intuitive weighting schemes. See Fan and Gijbels
(1996, chap. 3.3) for an automatic polynomial order selection
methods that can be applied to our estimator as well.

4. Application to Manipulation Testing

Testing for manipulation is useful when units are assigned to two
(or more) distinct groups using a hard-thresholding rule based
on an observable variable, as it provides an intuitive and simple
method to check empirically whether units are able to alter (i.e.,
manipulate) their assignment. Manipulation tests are used in
empirical work both as falsification tests of regression disconti-
nuity (RD) designs and as empirical tests with substantive impli-
cations in other program evaluation settings. Available methods
from the RD literature include the original implementation of
McCrary (2008) based on Cheng, Fan, and Marron (1997),
the empirical likelihood testing procedure of Otsu, Xu, and
Matsushita (2014) based on boundary-corrected kernels, and
the finite sample binomial test presented in Cattaneo, Titiunik,
and Vazquez-Bare (2017) based on local randomization ideas.

In this section, we introduce a new manipulation testing pro-
cedure based on our proposed local polynomial density estima-
tor. Our method requires choosing only one tuning parameter,
avoids prebinning the data, and permits the use of simple well-
known weighting schemes (e.g., uniform or triangular kernel),
thereby avoiding the need of choosing the length and posi-
tions of bins for prebinning or employing more complicated
boundary kernels. In addition, our method is intuitive, easy-to-
implement, and fully data-driven: bandwidth selection methods
are formally developed and implemented, along with valid infer-
ence methods based on robust bias correction.

To describe the manipulation testing setup, suppose units are
assigned to one group (“control”) if xi < x̄ and to another group
(“treatment”) if xi ≥ x̄. For example, in the application discussed
below, we employ the Head Start data, where xi is a poverty index
at the county level, x̄ = 59.1984 is a fixed cutoff determining
eligibility to the program. The goal is to test formally whether
the density f (x) is continuous at x̄, using the two subsamples
{xi : xi < x̄} and {xi : xi ≥ x̄}, and thus the null and alternative
hypotheses are:

H0 : lim
x↑x̄

f (x) = lim
x↓x̄

f (x) vs H1 : lim
x↑x̄

f (x) �= lim
x↓x̄

f (x).

This hypothesis testing problem induces a nonparametric
boundary point at x = x̄ because two distinct densities need to
be estimated, one from the left and the other from the right. Our
proposed density estimator f̂ (x) is readily applicable because it is
boundary adaptive and fully automatic, and it can also be used to
plot the density near the cutoff in an automatic way: see Figure 2
below for an example using the Head Start data.

Let F̂− and F̂+ be the empirical distribution functions con-
structed using only units with xi < x̄ and with xi ≥ x̄,
respectively. Then, f̂ can be applied twice, to the data below and
above the cutoff, to obtain two estimators of the density at the
boundary point x̄, which we denote by f̂−(x̄) and f̂+(x̄), respec-
tively. Thus, our proposed manipulation test statistic takes the
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Figure 2. Manipulation testing, Head Start data. Notes: (i) Histogram estimate (light gray in background) of the running variable (poverty index) computed with default
values in R; (ii) local polynomial density estimate (solid blue and red) and robust bias corrected confidence intervals (shaded blue and red) computed using companion R
(and Stata) package described in Cattaneo, Jansson, and Ma (2018); and (ii) n− = 2, 504, n+ = 300, and x̄ = 59.1984.

form:

Tp(h) =
n+
n f̂+(x̄) − n−

n f̂−(x̄)√
n+
n

1
nh+ V̂+(x̄) + n−

n
1

nh− V̂−(x̄)

,

where n− = ∑n
i=1 1(xi < x) and n = n− + n+, V̂−(x)

and V̂+(x) denote the variance estimators mentioned previously
but now computed for the two subsamples xi < x̄ and xi ≥
x̄, respectively, and h− and h+ denote the bandwidths used
below and above x̄. Employing our main theoretical results, we
provide precise conditions so that the finite sample distribution
of Tp(h) can be approximated by the standard normal distri-
bution, which leads to the following result: under the regular-
ity conditions given above, and if n min{h2−, h2+} → ∞ and
n max{h1+2p

− , h1+2p
+ } → 0, then

Under H0 : lim
n→∞P[|Tp(h)| ≥ �1−α/2] = α,

Under H1 : lim
n→∞P[|Tp(h)| ≥ �1−α/2] = 1,

where �α denotes the α-quantile of the standard Gaussian
distribution, α ∈ (0, 1). This establishes asymptotic validity and
consistency of the α-level testing procedure that rejects H0 iff
|T(h)| ≥ �1−α/2. The SA includes detailed proofs, and related
implementation details.

A key implementation issue of our manipulation test is the
choice of bandwidth h, a problem common to all nonparametric
manipulation tests available in the literature. To select h in an
automatic and data-driven way, we obtain an approximate MSE-
optimal bandwidth choice for the point estimator f̂+(x̄)− f̂−(x̄),
and then propose a consistent implementation thereof, which
is denoted by ĥp. We give the details in the SA, where we
also present alternative MSE-optimal bandwidth selectors
for each-side density estimator separately. Given the data-
driven bandwidth choice ĥp, or its theoretical (infeasible)
counterpart hp, we propose a simple robust bias-corrected
test statistic implementation following ideas in Calonico,
Cattaneo, and Titiunik (2014) and Calonico, Cattaneo, and
Farrell (2018); see the latter reference for theoretical results
on higher order refinements and the important role of
preasymptotic variance estimation in the context of local
polynomial regression estimation. Specifically, our proposed
data-driven robust bias-corrected test statistic is Tp+1(ĥp),
which rejects H0 iff |Tp+1(ĥp)| ≥ �1−α/2 for a nominal
α-level test. This approach corresponds to a special case
of manual bias-correction together with the corresponding
adjustment of Studentization. A natural choice is p = 2, and
this is the default in our companion Stata and R software
implementations.
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Table 1. Manipulation testing, Head Start data.

Prebinning Bandwidths Eff. n Test

Left Right Left Right Left Right T p-value

h− �= h+
T2(ĥ1) 15.771 2.326 581 65 0.024 0.981
T3(ĥ2) 19.776 8.296 762 210 −1.146 0.252
T4(ĥ3) 32.487 10.808 1598 232 −1.083 0.279

h− = h+
T2(ĥ1) 3.274 3.274 99 95 −1.355 0.175
T3(ĥ2) 9.213 9.213 316 221 −0.515 0.607
T4(ĥ3) 12.270 12.270 419 243 −0.712 0.477

McCrary 76 60 13.950 13.950 24 24 0.142 0.887

Notes: (i) Tp(h) denotes the manipulation test statistic using pth-order density estimators with bandwidth choice h (which could be common on both sides or different
on either side of the cutoff), and ĥp denotes the estimated MSE-optimal bandwidths for pth-order density estimator or difference of estimators (depending on the case
considered); (ii) Columns under “Bandwidths” report estimated MSE-optimal bandwidths, Columns under “Eff. n” report effective sample size on either side of the cutoff,
and Columns under “Test” report value of test statistic (T) and two-sided p-value (p-val); (iii) first three rows allow for different bandwidths on each side of the cutoff,
while the next three rows employ a common bandwidth on both sides of the cutoff (chosen to be MSE-optimal for the difference of density estimates). All estimates are
obtained using companion R (and Stata) package described in Cattaneo, Jansson, and Ma (2018); and (iv) the last row, labeled “McCrary,” corresponds to the original
implementation of McCrary (2008), and therefore columns under “Prebinning” report the total number of bins used for prebining of the data and columns under “Eff. n”
report the number of bins used for local linear density estimation.

5. Empirical Illustration

We apply our manipulation test to the data of Ludwig and Miller
(2007) on the original Head Start implementation in the U.S. In
this empirical application, a discontinuity on access to program
funds at the county level occurred in 1965 when the program
was first implemented: the federal government provided grant
writing assistance to the 300 poorest counties as measured by a
poverty index, which was computed in 1965 using 1960 Census
variables, thus creating a discontinuity in program eligibility.
Using our notation, xi denotes the poverty index for county i,
and x̄ = 59.1984 is the cutoff point (i.e., the poverty index of
the 300th poorest municipality).

A manipulation test in this context amounts to testing
whether there is a disproportional number of counties are
situated above x̄ relative to those present below the cutoff.
Figure 2 presents the histogram of counties below and above the
cutoff together with our local polynomial density estimate and
associated pointwise robust bias-corrected confidence intervals
over a grid of points near the cutoff x̄, implemented using p = 2
and the MSE-optimal data-driven bandwidth estimate. Table 1
presents the empirical results from our manipulation test. We
consider two main approaches, both covered by our theoretical
work and available in our software implementation: (i) using
two distinct bandwidths on each side of the cutoff (h− �= h+),
and (ii) using a common bandwidth for each side of the cutoff
(h− = h+), with h− and h+ denoting the bandwidth on the
left and on the right, respectively. For each case, we consider
three distinct implementations of our manipulation test, which
varies the degree of polynomial approximation used to smooth
out the empirical distribution function: Tq(hp) denotes the
test statistic constructed using a q-th order local polynomial
density estimator, with bandwidth choice that is MSE-optimal
for p-th order local polynomial density estimator. For example,
our recommended choice is T3(h2), with either common
bandwidth or two different bandwidths, which amounts to first
choosing MSE-optimal bandwidth(s) for a local quadratic fit,

and then conducting inference using a cubic approximation.
This approach is the simplest implementation of the robust bias
correction inference: Tp(hp) does not lead to a valid inference
approach because a first-order bias will make the test over-reject
the null hypothesis. We also report the original implementation
of the McCrary test for comparison.

Our empirical results show no evidence of manipulation. In
fact, this finding is consistent with the underlying institutional
knowledge of the program: the poverty index was constructed
in 1965 at the federal level using county-level information from
the 1960 Census, which implies it is indeed highly implausible
that individual counties could have manipulated their assigned
poverty index. Our findings are robust to different bandwidth
and local polynomial order specifications. Finally, we note two
theory-based empirical findings: (i) our proposed manipulation
test employs robust bias-corrected methods, and hence leads
to asymmetric confidence intervals (not necessarily centered
around the density point estimator); and (ii) the effective sample
size of the original McCrary test is much smaller than our
proposed manipulation test because of the prebinning of the
data, and hence can lead to important reduction in power of the
test.

6. Conclusion

We introduced a boundary adaptive kernel-based density
estimator employing local polynomial methods, which requires
choosing only one tuning parameter and does not require
boundary-specific data transformations (such as prebinning).
We studied the main asymptotic properties of the estimator,
and used these results to developed a new manipulation test
via discontinuity in density testing. Several extensions and
generalizations of our results are underway in ongoing work,
and two distinct general purpose software packages in Stata
and R are readily available Cattaneo, Jansson, and Ma (2018,
2019).
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