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This paper studies higher-order inference properties of nonparametric local polynomial regression methods under
random sampling. We prove Edgeworth expansions for t statistics and coverage error expansions for interval es-
timators that (i) hold uniformly in the data generating process, (ii) allow for the uniform kernel, and (iii) cover
estimation of derivatives of the regression function. The terms of the higher-order expansions, and their associ-
ated rates as a function of the sample size and bandwidth sequence, depend on the smoothness of the population
regression function, the smoothness exploited by the inference procedure, and on whether the evaluation point is
in the interior or on the boundary of the support. We prove that robust bias corrected confidence intervals have the
fastest coverage error decay rates in all cases, and we use our results to deliver novel, inference-optimal bandwidth
selectors. The main methodological results are implemented in companion R and Stata software packages.
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1. Introduction

We study local polynomial inference in the general heteroskedastic nonparametric regression model:

Y = μ(X) + ε, E[ε |X] = 0, E[ε2 |X] = v(X), (1)

where (Y,X) is a pair of random variables with distribution F. The parameter of interest is the level or
derivative of the regression function at X = x:

μ(ν) = μ(ν)(x) :=
dν

dxν
E [Y |X=x]

����
x=x

, ν ∈ Z+, (2)

where the evaluation point x may be in the interior or on the boundary of the support of X . We drop the
evaluation point from the notation when possible, and employ the usual convention μ = μ(0). Deriva-
tives at boundary points are defined as one-sided derivatives from the interior. Given a random sample
(Y1,X1), . . . ,(Yn,Xn) of size n from F, we investigate the quality of statistical inference for μ(ν) when
using kernel-based local polynomial regression methods [17,18], focusing in particular on higher-order
distributional properties of t statistics as well as on coverage error and length of Wald-type confidence
interval estimators. We also employ our results to compare and optimize inference procedures for em-
pirical practice and to shed light on the sometimes underappreciated gap between point estimation and
inference.
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Our main technical contributions are novel Edgeworth expansions for local polynomial based Wald-
type t statistics of the form

T =
θ̂ − μ(ν)

ϑ̂
, (3)

for different choices of point estimator θ̂ and standard error estimator ϑ̂ detailed in Section 2. We study
the accuracy of the Gaussian approximation to the distribution of such T and the error in coverage
probability of their dual confidence interval estimators. Our expansions capture the dependence on im-
plementation choices including the polynomial order, the kernel function, and the bandwidth sequence.

Edgeworth expansions are a long-standing tool for more detailed (higher-order) analyses of asymp-
totic distributional approximations, named after the author of a series of papers on the idea, beginning
with [14] and treated more extensively in [15]. See [20] for a textbook review. Informally, an Edge-
worth expansion characterizes the leading terms of the difference between the distribution of T and
the Gaussian distribution, denoted Φ(z), for z ∈ R. That is, an Edgeworth expansion gives the leading
terms ET ,F (z) and the rate rT ,F (which depend on the distribution generating the data, the specific t
statistic at issue, along with n, x, and other particulars) such that

lim
n→∞

r−1
T ,F sup

z∈R

���PF [T < z] −Φ(z) − ET ,F (z)
��� = 0, (4)

where PF is the probability law when F is the true data generating process.
We improve on prior work on valid Edgeworth expansions for nonparametric kernel-based regression

in three ways: (i) the expansions hold uniformly over a class of data-generating processes (instead of
only for one F), (ii) the uniform kernel is allowed (instead of only kernel functions with sufficient
variation), and (iii) the expansions hold for any derivative ν ≥ 0 (instead of only for the level ν = 0). As
discussed below, these improvements offer new theoretical and practical conclusions.

Edgeworth expansions are almost always established pointwise in the underlying distribution, that
is, for a single, fixed F, as in (4). Indeed, standard references on the subject [3,20] do not even mention
uniformity. However, F is unknown, and a researcher would like some assurances that their inference
is equally accurate regardless of the specific underlying data generating process. This motivates expan-
sions that are valid uniformly over a class of plausible distributions for the data, denoted FS , encoding
the researcher’s statistical model, accompanying assumptions, and the empirical regularities of the ap-
plication of interest. Thus, instead of (4), in Section 3, we prove

lim
n→∞

sup
F ∈FS

r−1
T ,F sup

z∈R

���PF [T < z] −Φ(z) − ET ,F (z)
��� = 0. (5)

We also characterize the worst-case rate rT = infF ∈FS
rT ,F of distributional approximation over FS .

The specific class FS we consider, defined precisely in Section 2, matches standard empirical settings
employing kernel-based nonparametric inference for μ(ν), and therefore our theoretical and method-
ological results speak directly to common practice. Uniformly valid expansions have some precedence
in the literature when studying notions of optimality, perhaps originating with [2], but these results are
rare and confined to parametric models. Our corresponding uniform results for nonparametric kernel-
smoothing do not appear to have a direct antecedent in the literature.

Second, the uniform kernel is ruled out in all prior work on Edgeworth expansions for kernel-based
nonparametrics, both for density estimation [19–21] and regression [5,10,11], due to a technical limi-
tation in the proofs that we overcome. Other work on nonparametric regression has assumed away the
issue by studying non-random designs [22,25]. In fact, [19, p. 218] conjectured that valid Edgeworth
expansions would require techniques for lattice-valued random variables if the uniform kernel was
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used. On the contrary, we show that such techniques are not needed. Allowing for the uniform kernel
is important for empirical work because it is the optimal kernel shape in terms of minimizing interval
length (as discussed in Section 4.2) and because unweighted local least squares regression is a popular
choice in some applications.

Finally, inference on derivatives of the regression function, again ignored in prior work, is a common
task in empirical work and therefore it is valuable to have valid Edgeworth expansions and implemen-
tation guidance specifically for this case, including inference-optimal bandwidth selection. Moreover,
considering derivatives yields several interesting theoretical conclusions, highlighting the difference
between point estimation and inference: we find not only that the rate of the inference-optimal band-
width does not depend on the specific derivative order ν being considered, analogous to the well-known
result for mean squared error (MSE) optimal bandwidth, but also that the rate for inference itself does
not depend on ν, in sharp contrast to the MSE of the point estimator.

The main result, a generic Edgeworth expansion encompassing all three of these contributions, is
Theorem 1 in Section 3. We then use this general result to examine the error in coverage probability of
confidence interval estimators dual to each t statistic, and the roles of smoothing bias and Studentization
in both the distributional approximation and the coverage error of the confidence intervals.

The role of bias is concretized in Section 3.1. Given a level of smoothness of the unknown function
μ and polynomial order of the local polynomial procedure θ̂, the nonparametric bias must be removed
for valid inference. The method of robust bias correction (RBC) addresses this issue by incorporating
explicit bias estimation into the centering θ̂ and then also adjusting the scale ϑ̂ to account for the ad-
ditional variability introduced by the bias estimation [5,8]. An alternative principled inference method
relies on removing the bias by shrinking the bandwidth used when conducting inference, often called
undersmoothing. Other ad-hoc inference approaches rely on either upper bounding the bias, inflating
the scale of the t statistic, or simply ignoring the bias altogether. Using our higher-order expansions,
we show that RBC leads to demonstrable higher-order superior inference for μ(ν) relative to the other
approaches in the literature.

Our results also show that the choice of Studentization ϑ̂ is crucial for good higher-order proper-
ties. This is in contrast to first order approximations, where only consistency of the standard errors is
required. An important finding here is that using asymptotic approximations to the variance of θ̂ will
increase the leading remainder terms ET ,F (z) and hence also coverage error. Using fixed-n Studen-
tization, where ϑ̂ directly estimates the variability of θ̂, completely removes these errors. This result
was first proved in [5], but only pointwise in F and excluding the uniform kernel and derivatives of μ.
Section 3.2 shows this in full generality. Failure to account for the effect of using asymptotic variance
approximations has lead to some confusion in the prior literature: for example, [11] found inflated cov-
erage error at boundary points and [21] found that undersmoothing provides more accurate coverage
than bias correction, but both conclusions are due to improper Studentization.

A key practical consequence of the foregoing is that RBC with fixed-n Studentization has leading
remainder terms ET ,F (z) and rate rT ,F , of the expansion (5), that vanish at least as fast as, and often
strictly faster than, undersmoothing-based approaches, both at interior and boundary evaluation points
and for any derivative ν. Intuitively, this holds because RBC exploits all available smoothness to remove
bias, but is not punished (in rates) if no additional smoothness is available to remove bias. Section
4 discusses novel implementation of RBC intervals, giving inference-optimal bandwidth and kernel
choices that further improve the coverage properties and length of RBC intervals.

More broadly, our results speak to the sometimes neglected gap between point estimation and infer-
ence. Implementations focused on optimizing point estimation may not deliver optimal, or even valid,
inference. In particular, they need not proceed at the same rate, and perhaps more surprisingly, the in-
ference rate can be faster: the rate rT ,F at which the distribution of θ̂ collapses to its asymptotic value
(namely Φ(·)) can be faster than the rate at which θ̂ itself collapses to its asymptotic value (μ(ν)). In-
deed, there are cases where a bandwidth choice yields the fastest possible inference rate rT ,F but yields
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invalid point estimation. This is the reverse of the better-known fact that using the estimation-optimal
bandwidth (minimizing mean squared error) yields invalid inference. Rate optimality is not as well
studied for inference as it is for estimation, but Section 5 follows [23] to develop minimax optimal rates
in the sense of achieving the fastest (minimal) rate at which the worst-case (maximal) coverage error
vanishes and finds that RBC attains this rate.

The paper closes with simulation evidence supporting our theoretical and methodological work re-
ported in Section 6, and a brief conclusion in Section 7. An appendix contains formulas omitted to
improve the exposition, while an online supplement [4] gives all proofs, detailed simulation results,
and other methodological results. Software implementing our main results is provided in R and Stata
[6]. Last but not least, some of the ideas in this paper have been applied to causal inference and treat-
ment effect estimation in the context of regression discontinuity designs in [7].

2. Model assumptions and estimators

We define the class FS of distributions for the pair (Y,X) and make precise the local polynomial
point estimator θ̂ and scale estimator ϑ̂ of the t statistic (3). The class FS is determined through the
following assumption. (Recall that derivatives at the boundary of the support of X correspond to one-
sided derivatives from the interior of the support.)

Assumption 1. Let FS be the set of distributions F for the pair (Y,X) which obey model (1) and for
which there exist constants S ≥ ν, s ∈ (0,1], 0 < c < C <∞, and a neighborhood of x on the support of
X , none of which depend on F, such that for all x, x′ in the neighborhood the following hold.

1. The Lebesgue density of (Y,X), fyx(·), the Lebesgue density of X , f (·), and v(x) :=V[Y |X = x],
are each continuous and lie inside [c,C], and E[|Y |8+c |X = x] ≤ C.

2. μ(·) is S-times continuously differentiable and |μ(S)(x) − μ(S)(x′)| ≤ C |x − x′|s.

Throughout, {(Y1,X1), . . . ,(Yn,Xn)} is a random sample from (Y,X).

These conditions are not materially stronger than usual in kernel-based nonparametric settings. The
restrictions on densities and moments are imposed to achieve uniform validity of Edgeworth expan-
sions. The smoothness condition on μ plays a key role: the assumed smoothness, captured by S and s,
and its relationship to the smoothness utilized in estimation, will be important for coverage error.

We consider several options for the elements of the t statistic T = (θ̂ − μ(ν))/ϑ̂ given in (3). The start-
ing point is the standard local polynomial regression point estimate of μ(ν). See [17] for an introduction.
We index the classical local polynomial estimate by p ∈ Z+, the order of the polynomial used, assumed
to be at least ν. Suppressing the dependence on x to simplify notation, we therefore set

μ̂
(ν)
p = ν!e′ν β̂p =

1
nhν

ν!e′νΓ
−1ΩY, β̂p = arg minb∈Rp+1

n∑
i=1

(Yi − r p(hXh,i)′b)2K
(
Xh,i

)
, (6)

where K is a kernel or weighting function, h = h(n) → 0 is a bandwidth sequence, Xh,i = (Xi − x)/h,
r p(u) = (1,u,u2, . . . ,up)′,

Γ =
1

nh

n∑
i=1

K(Xh,i)r p(Xh,i)r p(Xh,i)′, Ω =
1
h

[
K(Xh,1)r p(Xh,1), . . . ,K(Xh,n)r p(Xh,n)

]
,

eν is the (p + 1)-vector with a one in the (ν + 1)th position and zeros in the rest, and Y = (Y1, . . . ,Yn)′.
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The point estimator θ̂ in T is then finalized depending on how the smoothing bias is to be accounted
for. The traditional approach takes θ̂ = μ̂(ν)p , and then for inference to be valid undersmoothing is re-
quired. Explicit bias correction incorporates into θ̂ an estimate of the leading bias term of μ̂(ν)p . Both
approaches are motivated by the fact that the conditional bias of μ̂(ν)p is of order hp+1−ν and given by

E

[
μ̂
(ν)
p

��X1, . . . ,Xn

]
− μ(ν) = hp+1−νν!e′νΓ

−1Λ
μ(p+1)

(p + 1)! + oP(hp+1−ν), (7)

with Λ = Ω[Xp+1
h,1 , · · · ,X

p+1
h,n

]′/n, provided p − ν is odd and p ≤ S − 1, the standard setting in the
literature. Section 3.1 details other cases for p and S. Throughout, asymptotic orders and their in-
probability versions always hold uniformly in FS , as required by our framework: for example, An =

oP(an) means supF ∈FS
PF [|An/an | > ε] → 0 for every ε > 0. Limits are taken as n →∞ unless stated

otherwise.
Undersmoothing leaves the center of the interval at θ̂ = μ̂(ν)p unchanged and assumes that the band-

width h vanishes rapidly enough to render the leading term of (7) negligible relative to the standard
error of the point estimator. The term undersmoothing refers to using less nonparametric smoothing
than would be optimal from a mean squared error (MSE) point estimation point of view [17, Section
4]. The MSE-optimal bandwidth choice is the most common by far, and indeed, the default in most
software. With p ≤ S − 1, the MSE-optimal bandwidth for μ̂(ν)p is well-defined whenever μ(p+1)(x) � 0.
However, the MSE-optimal bandwidth is too “large” for standard Gaussian inference: the bias remains
first-order important when scaled by the standard deviation of the point estimator, and so valid inference
requires a bandwidth that vanishes faster.

Explicit bias correction, on the other hand, subtracts an estimate of the leading term of (7), of which
only μ(p+1) is unknown. Thus we have:

θ̂rbc := μ̂(ν)p − hp+1−νν!e′νΓ
−1Λe′p+1 β̂p+1 =

1
nhν

ν!e′νΓ
−1ΩrbcY, (8)

where Ωrbc =Ω − ρp+1Λe′
p+1Γ̄

−1
Ω̄ and β̂p+1, Γ̄, and Ω̄ are defined akin to β̂p , Γ, and Ω of (6), but

with p + 1 in place of p and a bandwidth b := ρ−1h instead of h. The parameter ρ will play a key role
in the Edgeworth and coverage error expansions and we will derive optimal choices below.

With the point estimator θ̂ defined, we now define the choice of standard errors ϑ̂. We will focus
primarily on “fixed-n” Studentization, also called “preasymptotic” by [18], which means choosing the
Studentization to directly estimate V[θ̂ |X1, . . . ,Xn], a population quantity but not an asymptotic one.
Such choices have superior coverage, as shown below, particularly compared to employing an estimator
of an asymptotic representation of V[θ̂ |X1, . . . ,Xn]. Importantly, when θ̂ = θ̂rbc, a fixed-n approach
makes bias correction robust, because the Studentization accounts for the variability of bias estimation.

These fixed-n variances are easy to compute based on standard least squares logic. Referring to (6),
for θ̂ = μ̂(ν)p ,

nh1+2ν
V[μ̂(ν)p |X1, . . . ,Xn] = ν!2e′νΓ

−1(hΩΣΩ′/n)Γ−1eν, (9)

where Σ is the n-diagonal matrix of conditional variances v(Xi). This formula applies to θ̂rbc as well,
upon replacing Ω with Ωrbc, because the two estimators share the same structure, as shown by com-
paring the second form in (8) to (6). The fixed-n Studentization is obtained by replacing Σ with an
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appropriate plug-in estimator, and we then obtain the final ϑ̂ as follows:

ϑ̂2 =
σ̂2
p

nh1+2ν , σ̂2
p := ν!2e′νΓ

−1(hΩΣ̂pΩ′/n)Γ−1eν, and

ϑ̂2 = ϑ̂2
rbc :=

σ̂2
rbc

nh1+2ν
, σ̂2

rbc := ν!2e′νΓ
−1(hΩrbcΣ̂rbcΩ′

rbc/n)Γ−1eν,

(10)

where Σ̂p and Σ̂rbc are the n-diagonal matrices of the squared residuals v̂(Xi) = (Yi − r p(Xi)′β̂p)2 and
v̂(Xi) = (Yi − r p+1(Xi)′β̂p+1)2, respectively. The above variance estimators separate explicitly the “con-
stant” portions, denoted σ̂2

p and σ̂2
rbc, which will be used in Section 4.2 for interval length optimization.

More precisely, σ̂2
p and σ̂2

rbc will both be bounded and bounded away from zero in probability under
our assumptions.

To complete the set of t statistics under consideration, we impose the following standard conditions
on the kernel function. This assumption allows for standard choices such as not only the triangular and
Epanechnikov kernels, but also the uniform kernel.

Assumption 2. The kernel K is supported on [−1,1], positive, bounded, and even. Further, K(u) is
either constant (the uniform kernel) or (1,K(u)r3(k+1)(u))′ is linearly independent on [−1,0] and [0,1],
where k = p if T is based on μ̂(ν)p and σ̂p , and k = p + 1 if T uses θ̂rbc or σ̂rbc. The order p is at least
ν.

3. Uniformly valid Edgeworth and coverage error expansions

We now give the main technical result of this paper: a uniformly valid, generic Edgeworth expansion
as in (5), for the t-statistic T in (3) when using local polynomial regression methods as described in
the previous section. To state the result we need some notation. Here we give only what is needed
conceptually, leaving cumbersome formulas to the appendix. The terms of the Edgeworth expansion
are defined as

ET ,F (z) =
1

√
nh
ω1,T ,F (z) +ΨT ,Fω2,T ,F (z) + λT ,Fω3,T ,F (z)

+
1

nh
ω4,T ,F (z) +Ψ2

T ,Fω5,T ,F (z) +
1

√
nh
ΨT ,Fω6,T ,F (z),

(11)

where z is the point of evaluation of the distribution, ΨT ,F denotes the generic non-random (fixed-n)
bias of the

√
nh1+2ν-scaled numerator of T , λT ,F denotes the mismatch between the variance of the

numerator of the t-statistic and the population standardization used, and the six terms ωk ,T ,F (z),
k = 1,2, . . . ,6, are non-random functions bounded uniformly in FS , and bounded away from zero for
at least one F ∈ FS . Section 3.1 provides further details on ΨT ,F and Section 3.2 discusses λT ,F .
The quantities ωk ,T ,F (z), k = 1,2, . . . ,6 are relatively less important, beyond their parity, because they
cannot be altered by implementation choices.

We then have the following result (Theorem 1), establishing (5). This result is general, covering
interior and boundary points, p − ν even and odd, any derivative ν ≥ 0, and any combination of p
and S. Different cases for each of these primarily affect the expansion, and the final rates, through the
bias ΨT ,F , as explored in the next section. The conditions imposed are strengthened relative to typical
pointwise first-order analyses only by log(nh) factors on the bandwidth(s) and the other uniformity
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requirements of Assumption 1. (Recall that asymptotic orders and their in-probability versions are
always required to hold uniformly in FS throughout.)

Theorem 1. Let Assumptions 1 and 2 hold, and assume that

log(nh)2+γ/nh = o(1), ΨT ,F log(nh)1+γ = o(1), λT ,F = o(1), ρ =O(1),

for any γ bounded away from zero uniformly in FS . Then,

lim
n→∞

sup
F ∈FS

r−1
T ,F sup

z∈R

���PF [T < z] −Φ(z) − ET ,F (z)
��� = 0

holds with ET ,F (z) of (11) and rT ,F =max{(nh)−1,Ψ2
T ,F ,(nh)−1/2ΨT ,F ,λT ,F }.

A crucial piece in the proof of Theorem 1 is establishing that the appropriate Cramér’s condition
holds under Assumption 2, and in particular the linear independence condition. Such linear indepen-
dence fails when K is uniform and u runs over the support of K(u), and this failure has prevented
the uniform kernel from being covered by past work. Our key insight is that previous approaches ig-
nored the region outside the support of K(·) but inside the neighborhood of Assumption 1. Loosely
speaking, (1,K(u),uK(u), . . .)′ may be linearly dependent on u ∈ [−1,1] (when K is uniform), but
(1,K( x−x

h ),( x−x
h )K( x−x

h ), . . .)′ is linearly independent on x in a fixed neighborhood of x. This allows
us to verify Cramér’s condition. See the supplement for details [4].

In practice, the error in coverage probability of two-sided interval estimators may be more directly
relevant than the distributional approximation of the Edgeworth expansion. We therefore turn to interval
estimators dual to each t statistic, given by

I =
[
θ̂ − zu ϑ̂ , θ̂ − zl ϑ̂

]
, (12)

where zl and zu denote chosen quantiles. Our starting point is a generic coverage error expansion for
confidence intervals I, dual to a given T , which follows immediately from Theorem 1 by evaluating the
Edgeworth expansion at the interval quantiles (see [4]).

Corollary 1. Let the conditions of Theorem 1 hold, assume that Φ(zu) − Φ(zl) = 1 − α, and define
CI ,F (zl, zu) = ET ,F (zu) − ET ,F (zl) =O(rI ) for some sequence rI . Then,

lim
n→∞

r−1
I sup

F ∈FS

���PF [
μ(ν)(x) ∈ I

]
− (1 − α) −CI ,F (zl, zu)

��� = 0.

This result is as general as Theorem 1. The uniform-in-FS rate rI is the slowest vanishing of the
rates of each term in the Edgeworth expansion (11), which without specifying any elements further, can
only be known to vanish at least as fast as rT = supF ∈FS

rT ,F from Theorem 1. However, even at this
level of generality, several conclusions are already evident due to the parity of the functions ωk making
up ET ,F (z) and hence CI ,F (zl, zu). First, regarding the choice of quantiles, we recover the classical
finding that symmetric intervals, where zl = −zu , have superior coverage properties, because ω1 and
ω2 are even functions of z. Asymmetric choices that still have Φ(zu) −Φ(zl) = 1 − α can yield correct
coverage, but the error will vanish more slowly, whereas other choices will not yield uniformly correct
coverage. Bootstrap-based quantiles will, in general, not improve coverage error rates in nonparametric
contexts beyond the symmetric case [21], and can in fact be detrimental for coverage error [24]. Second,
the remaining wk functions are odd, and therefore to obtain better coverage properties we should focus
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on intervals with small (rapidly vanishing) ΨT ,F and λT ,F . The upcoming subsections discuss each of
these pieces in turn.

Our expansions highlight the conceptual gap between point estimation and inference. The rate at
which the distribution of θ̂ collapses to its asymptotic value (Φ(·)) can be faster than the rate at which
the point estimator θ̂ itself collapses to its asymptotic value (μ(ν)). Moreover, it is possible that coverage
error may vanish even if mean squared error does not, and vice versa. One direction of this phenomenon
captures the well-known result that the coverage error of a confidence interval centered at the MSE-
optimal point estimator does not vanish. That is, μ̂(ν)p in (6) using the MSE-optimal bandwidth hmse =
Hmsen−1/(2p+3), for some constant Hmse, is optimal for point estimation given a fixed p, but

sup
F ∈FS

���PF [
μ(ν) ∈

{
μ̂
(ν)
p ± zα/2σ̂pH−1/2

mse n−1/2+(1+2ν)/(4p+6)
} ]

− (1 − α)
��� 	 1,

where a 	 b denotes that a ≤ C1b and b ≤ C1a for some constants C1 and C2.
The other direction may be more surprising and novel: we find that the variance of θ̂ can be too

large for mean-square consistency, but nonetheless be captured well enough by ϑ̂ for valid inference.
For example, consider inference on μ(1)(x) using Ip with local linear regression (p = 1). Choosing
h 	 n−1/3 yields rIp 	 n−2/3, which is the fastest attainable rate for Ip in this case, but also gives

V[μ̂(ν)p |X1, . . . ,Xn] 	P (nh1+2v)−1 	 1, and thus μ̂(1)p is not consistent in mean square. Therefore, we
found a confidence interval that is optimal for coverage of μ(1), but implicitly relies on a point estimator
that is not even consistent in mean square.

3.1. Bias details

We now give details for the bias term, ΨT ,F , highlighting three main points. First, the rate at which
ΨT ,F vanishes does not depend on the derivative ν. Second, we establish that performing bias correc-
tion never slows the rate at which ΨT ,F vanishes. The third goal is then practical: we spell out several
cases of the rates and constants for the bias of θ̂rbc so that we may use these for bandwidth and kernel
selection later.

To describe ΨTp ,F , the bias term for Tp , let βp be the p + 1 vector with ( j + 1) element equal to
μ(j)(x)/ j! for j = 0,1, . . . ,p as long as j ≤ S, and zero otherwise, and Bp as the n-vector with ith entry
[μ(Xi) − r p(Xi − x)′βp]. Then,

ΨTp ,F =
√

nh ν!e′νE[Γ]−1
E[ΩBp]. (13)

Turning to bias correction, define βp+1 and Bp+1 as above, but with p + 1 in place of p in all cases.
Then, using the definition of Ωrbc in (8),

ΨTrbc ,F =
√

nh ν!e′νE[Γ]−1
(
E[ΩBp+1] − ρp+1

E[Λ]e′p+1E[Γ̄]
−1
E[Ω̄Bp+1]

)
. (14)

These bias terms are non-random but otherwise non-asymptotic: all expectations are fixed-n and we
have not done the typical Taylor expansion. The derivative ν only appears in the constant term ν!eν ,
and therefore the rate at which ΨTp ,F vanishes does not depend on the derivative being estimated.

Intuitively, this can be seen from the second form for μ̂(ν)p in (6), n−1h−νν!e′νΓ
−1ΩY , coupled with rate√

nh1+2ν of the Studentizations of (10): together, these account for the derivative, and distributional
properties of Γ−1ΩY are left independent of ν; the first conclusion of this subsection.
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The rate of convergence (to zero) of ΨTp ,F or ΨTrbc ,F can be deduced by first expanding μ(Xi)
entering Bp and Bp+1 around x, and then specializing to a given p and S. For any p, we have

μ(Xi) − r p(Xi − x)′βp =

S∑
k=S∧p+1

1
k!
(Xi − x)k μ(k)(x) + 1

S!
(Xi − x)S

(
μ(S)(x̄) − μ(S)(x)

)
,

where the summation is taken to be zero if p ≥ S. To obtain the final rate, this expansion is substituted
into Bp and the leading terms are identified by stabilizing the expectation of the terms involving (Xi −
x)k by writing hk(Xh,i)k , thus isolating the rate. The rate will depend on the smoothness, location of x,
parity of p − ν, and the bandwidth h. For Bp+1, replace p with p + 1 everywhere and use b in place of
h in the second term. For details see [4].

Our second point is that ΨTrbc ,F = O(ΨTp ,F ), which follows from the expansion above and taking
ρ bounded and bounded away from zero. First, observe from the Taylor expansion applied to (14)
that ΨTrbc ,F depends on higher order derivatives than ΨTp ,F , which follows from applying the Taylor

expansion to (13), and therefore stabilizing leads to higher powers of h. Intuitively, the bias of μ̂(ν)p is
the product of the rate hp+1 and the constant targeted by bias correction. Therefore, the bias of θ̂rbc is
at most hp+1 times the bias of the bias correction plus the higher order term of (7). For a fixed sequence
h, neither of these can be greater than hp+1. Second, the rate for ΨTrbc ,F cannot be improved by letting
ρ = h/b vanish or diverge: ρ vanishing decreases the second term, but the first term is unchanged,
while letting ρ diverge can only inflate the second term. Further, diverging ρ renders the effective
sample size nb, which is smaller than nh, which would only inflate the Edgeworth expansion terms
without reducing bias (hence the restriction in Theorem 1 to bounded ρ).

Therefore, in optimizing inference later on, we will focus on θ̂rbc and take ρ bounded and bounded
away from zero. We need the leading bias constants for this case, which follow from carrying on the
Taylor expansion completely in (14). The bias is always of the form

ΨTrbc ,F =O(
√

nhhζ )

for an exponent ζ that depends on the location of x, the parity of p − ν, and the smoothness S. A
complete list of ζ is shown in Table 1. From there, we see that if p is large enough relative to S (how
large depends on the specific case), then ζ = S + s, implying ΨTrbc ,F =O(

√
nhhS+s).

The more empirically relevant case is to treat p as fixed and smaller than S, specifically p ≤ S − 3 for
interior x with p − ν odd and p ≤ S − 2 otherwise (i.e. for boundary points or if x is an interior point
with p − ν even). In these cases, we can use the Taylor expansion above to characterize the leading
term, and write

ΨTrbc ,F =
√

nhhζψTrbc ,F [1 + o(1)],

where ζ = p + 3 for interior x with p − ν odd and p + 2 otherwise. The term ψTrbc ,F will be referred to
as the constant term for simplicity, though technically it is a non-random sequence with known form,
uniformly bounded in FS , and nonzero for some F ∈ FS . Referring to Table 1 for the different cases,
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Location of x Parity of p−ν Smoothness ζ ψTrbc ,F

Boundary Odd or Even
p + 2 ≤ S p + 2 Equation (15a)
p + 2 > S S + s N/A

Interior
Even

p + 2 ≤ S p + 2 Equation (15b)
p + 2 > S S + s N/A

Odd
p + 3 ≤ S p + 3 Equation (15c)
p + 2 ≥ S S + s N/A

Table 1. Bias Terms For Bias-Corrected Centering θ̂rbc. With ρ bounded and bounded away from zero,
ΨTrbc ,F =O(

√
nhhζ ) and further, if p is small relative to S, ΨTrbc ,F =

√
nhhζψTrbc ,F [1 + o(1)].

ψTrbc ,F can be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(p+2)

(p + 2)! ν!e′νE[Γ]−1
{
E[Λ2] − ρ−1

E[Λ1]e′p+1E[Γ̄]
−1
E[Λ̄1]

}
, (15a)

μ(p+2)

(p + 2)! ν!e′νE[Γ]−1
E[Λ2], or (15b)

ν!e′νE[Γ]−1
{
μ(p+2)

(p + 2)!

[
h−1
E[Λ2] − ρ−2b−1

E[Λ1]e′p+1E[Γ̄]
−1
E[Λ̄1]

]
+

μ(p+3)

(p + 3)!

[
E[Λ3] − ρ−2

E[Λ1]e′p+1E[Γ̄]
−1
E[Λ̄2]

] }
,

(15c)

where Λk =Ω[Xp+k
h,1 , · · · ,Xp+k

h,n
]′/n and Λ̄k = Ω̄[Xp+1+k

b,1 , . . . ,Xp+1+k
b,n

]′/n, and hence in particular Λ1 ≡
Λ as defined in Section 2.

3.2. Variance details

In contrast to first order distributional analysis, where only consistency is required, the choice of scal-
ing, or Studentization, is crucial for higher order properties. Our detailed expansions show that, in
general, there are two types of higher-order terms that arise due to Studentization. One is the unavoid-
able estimation error incurred when replacing any population quantity with a feasible counterpart. The
second error arises from the difference between the population variability of the centering θ̂ and the
population standardization chosen as the target. This second type of error is what is captured by λT ,F ,
and the most important conclusion is that the fixed-n standard errors in (10) achieve λT ,F ≡ 0, and
are therefore demonstrably superior choices for inference. That is, there should not be a “mismatch”
between the population variability of the t statistic numerator and the population standardization.

Using an asymptotic approximation to V[θ̂ |X1, . . . ,Xn] may yield nonzero λT ,F , and thus the distri-
butional approximation (and coverage) will suffer. There are too many options to treat comprehensively,
but several points warrant discussion. In general, if the chosen standard errors are consistent, λT ,F has
the form λT ,F = lnL, for a rate ln → 0 and a sequence L that is bounded and bounded away from zero,
a “constant”, capturing the difference between the variance of the numerator of the t-statistic and the
population standardization chosen.

At boundary points the use of asymptotic approximations can be particularly deleterious for cov-
erage, and this has lead to some confusion in the literature. A headline finding of [10] is that an
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empirical likelihood confidence interval estimator has coverage error of the same order at interior
and boundary points, which is claimed (in the abstract) to be a “significant improvement over con-
fidence intervals based directly on the asymptotic normal distribution”. This claim is based on work
by the same authors [11] who study, in our notation, the interval with centering θ̂ = μ̂(0)1 and scaling
ϑ̂ = (nh)−1/2v̂(x) f̂ (x)−1V, for v̂(x), f̂ (x), and V given therein, where v(x) f (x)−1V is the probability
limit of V[(nh)1/2 μ̂

(0)
1 | X1, . . . ,Xn]. They find that λT ,F = lnL holds with ln = h at boundary points,

meaning greatly increased coverage error. Concerned that this result is due to estimation error, they
confirm that ln = h holds with the infeasible standardization ϑ = (nh)−1/2v(x) f (x)−1V. However, this
neglects the fact that λT ,F captures the “mismatch” error, not estimation error, and their conclusion
is entirely due to using an asymptotic standardization as opposed to a fixed-n one, and thus empirical
likelihood, in particular, does not offer higher-order improvements over normality-based intervals.

Explicit bias correction was claimed by [21] to be inferior to undersmoothing for inference; a find-
ing also based entirely on using an asymptotic standardization. In this case, nonrobust bias correc-
tion was studied, which pairs θ̂rbc with σ̂p . This is valid to first order if ρ = o(1), because then
V[θ̂rbc |X1, . . . ,Xn] = V[μ̂(ν)p | X1, . . . ,Xn] = oP(n−1h−1−2ν). However, higher order expansions find
λT ,F = ρ

p+2(L1 + ρ
p+2L2), where L1 captures the (scaled) covariance between μ̂(ν) and μ̂(p+1) and

L2 the variance of μ̂(p+1). These terms lead [21] to conclude that bias correction is inferior to un-
dersmoothing, which [5] later showed is not true for robust bias correction. Our results extend this
conclusion to hold for derivatives, boundary points, all smoothness cases, and uniformly in FS , while
also allowing for the uniform kernel.

4. Optimizing interval estimation in practice

We turn to optimizing inference in practice, using the conclusions from the previous sections. Collec-
tively, the previous sections imply that the best coverage will be from using symmetric RBC intervals,
i.e. those with zl = −zu = zα/2 =Φ

−1(α/2), θ̂rbc as in (8), ϑ̂rbc as in (10), and ρ bounded and bounded
away from zero (implying h = ρb). With an eye toward empirical work, we assume in this section that p
is fixed and small compared to S. The other cases detailed in Section 3.1 are of relatively little practical
value. In practice researchers first choose p and then conduct inference based on that choice (witness
the ubiquity of local linear regression and cubic splines).

Letting

Irbc(h) =
[
θ̂rbc + zα/2 ϑ̂rbc , θ̂rbc − zα/2 ϑ̂rbc

]
denote the recommended RBC confidence interval, now with its dependence on the bandwidth h ex-
plicit to enhance the exposition, we readily deduce from Corollary 1 that

CIrbc(h),F (zα/2,−zα/2) =
1

nh
2ω4,rbc,F + 2nh1+2ζψTrbc ,Fω5,rbc,F + hζ2ψTrbc ,Fω6,rbc,F , (16)

where the coverage error rate is rrbc =max{(nh)−1,nh1+2ζ ,hζ }, with ζ = p + 3 if p − ν is odd and x is
a boundary point, or ζ = p + 2 otherwise. Furthermore, its interval length is

| Irbc(h)| = 2zα/2ϑ̂rbc = 2zα/2
σ̂rbc√
nh1+2ν

. (17)

Notice that the rate of contraction of length does depend on ν, while the coverage error rate does not.
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In the next two subsection we use the above two displays, (16) and (17), to choose the bandwidth
parameters h and ρ = h/b, and the kernel shape. Before any choices can be made, the researcher must
decide on the usual size versus power trade off. In our context, this translates to the relative value they
place on coverage error, the discrepancy from nominal level, versus interval length. Because we give
the first characterizations of coverage error in many cases, and the first uniformly valid ones, this issue
can now be studied in detail: our theoretical ideas can inform this trade off, providing new insights to
consider, as well as guiding implementation given a preference for coverage error and length.

At one extreme is the approach that requires only that the interval is not anti-conservative, and then
minimizes (expected) length. In this case, a shorter interval that uniformly over-covers is preferred to
an interval that is longer but has correct coverage asymptotically. Our results lead one to consider the
other extreme: minimize the coverage error directly, and only after optimize length. That is, seek for
the confidence interval I such that, in the notation of Corollary 1, rI vanishes as fast as possible. In
applications, an interval with a faster decaying coverage error may approximate its nominal level more
closely in finite samples. Such approach focuses on the accuracy of the Gaussian approximation for
coverage error, and thus for inference. However, both of these extremes may be unappealing in practice
because neither may be optimal from a coverage-length (or, perhaps, size-power for the dual hypothesis
test) perspective. Therefore, we will also consider compromises, trading off between coverage error
and interval length. One option is to minimize length among consistent interval estimators: seek the
shortest interval such that rI = o(1). In the context of kernel-based nonparametrics, interval estimators
with good control of worst-case coverage are able to use larger bandwidths in general, and are thus
shorter in large samples; an analogue to the adage that “similar tests have higher power”. In general, we
will let the user determine a trade off between the two and thus find a bandwidth choice to implement
their preference.

4.1. Optimizing interval estimation: Bandwidth selection

We now focus on choosing the bandwidth h optimally, leaving ρ and K to the next section. With
pragmatism in mind, we restrict attention to bandwidth sequences that are polynomial in n, that is, of
the form h = Hn−η for some constants H > 0 and η > 0. For implementation purposes, we optimize
CIrbc(h),F (zα/2,−zα/2) pointwise in F. The optimal bandwidths will be functions of F and their imple-
mentations are functions of the data, which are draws from F; neither depend explicitly upon FS . The
resulting coverage error rates still hold uniformly, because the bandwidths are of the form h = Hn−η ,
where η does not depend on F and H is well-behaved uniformly in FS . We will focus on cases where
coverage is consistent, leveraging our new higher-order results in this paper.

An obvious candidate for h in applications is the classical MSE-optimal choice, denoted hmse, for the
point estimator μ̂(v)p (x) used as part of the centering of the confidence interval Irbc(h). This bandwidth
choice is popular and readily available in most statistical software. Although designed to optimize
point estimation, our theoretical results show that it yields valid robust bias corrected inference, that
is, supF ∈FS

|PF [μ(ν)(x) ∈ Irbc(hmse)] − (1 − α)| → 0, in contrast to the traditional interval Ip(hmse),
which undercovers. This gives a principled endorsement for using hmse coupled with robust bias cor-
rection in applications, if a researcher wishes to optimize point estimation instead of inference when
choosing the bandwidth h. To be more precise, our results give formal justification (and demonstrate
higher-order coverage improvements) for reporting μ̂

(ν)
p (x) along with Irbc(hmse), both implemented

using the same bandwidth hmse, that is, pairing an MSE-optimal point estimator with a valid measure
of uncertainty that uses the same samples. In fact, an interesting consequence of our results is that for
interior points and local linear regression (p = 1), Irbc(hmse) has coverage error that vanishes as fast
as possible: for this special case, both the mean squared error and coverage error are optimal in rates
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upon setting h = Hn−1/(2p+3) for a constant H > 0. In other cases, coverage of confidence intervals
implemented using hmse remains consistent but the coverage rate is suboptimal.

To see this, we now turn to inference-optimal bandwidths. We start with the point of view that
minimizing coverage error alone is the goal and therefore we choose h by minimizing the terms of (16).
This means setting hrbc = Hn−ηrbc for ηrbc = 1/(p+4) for interior x with p− ν odd and ηrbc = 1/(p+
3) otherwise: Corollary 1 holds for Irbc(hrbc) with rates rrbc = n−(p+3)/(p+4) and rrbc = n−(p+2)/(p+3),
respectively. In terms of rates, hrbc balances the variance and bias of the point estimator, instead of the
squared bias as in MSE optimality.

A natural way of choosing the constant H in practice is to minimize the constant portion of the
coverage error of (16). Plugging in hrbc = Hn−ηrbc and factoring out the rate we get

Hrbc = arg minH>0

���H−1{2ω4,rbc,F
}
+ H1+2ζ {2ψ2

Trbc ,F
ω5,rbc,F

}
+ Hζ

{
2ψTrbc ,Fω6,rbc,F

} ��� .
It is straightforward to give a data-driven version of Hrbc, and therefore of hrbc, because all quantities
involved can be estimated. We defer the details to [4] to conserve space. In a nutshell, plug-in estimators
can be constructed, denoted by ω̂4,rbc,F , ω̂5,rbc,F , and ω̂6,rbc,F , as well as an estimate of the bias
constant, ψ̂rbc,F . We then numerically solve

Ĥrbc = arg minH>0

���H−1{2ω̂4,rbc,F
}
+ H1+2ζ {2ψ̂2

rbc,F ω̂5,rbc,F
}
+ Hζ

{
2ψ̂rbc,F ω̂6,rbc,F

} ��� .
Because this bandwidth depends on the specific data-generating process F, we view it as a rule-of-
thumb implementation.

As discussed above, we can also seek for a shorter interval (more power) by sacrificing coverage
error (size control). Interval length (17) is reduced for larger bandwidths, meaning smaller exponents
η. Corollary 1, or Equation (16) specifically, shows that the smallest η (i.e., the slowest vanishing
bandwidth) such that the coverage of Irbc(n−η) to be (uniformly) asymptotically correct is η > (1/(1+
2ζ), where recall that ζ = p + 3 for interior points with p − ν odd and ζ = p + 2 otherwise. Therefore,
taking h = Hn−η for any η > (1/(1+ 2ζ) and H > 0 results in the ideal interval given these preferences
over coverage error and length.

This same idea can be extended to accomplish a trade-off between coverage error and length. Re-
searchers may want to have an interval that is closer to nominal level, and therefore may be concerned
that in finite samples an interval with coverage error only known to obey rrbc = o(1) will not be satis-
factory. We can therefore take hto = Hton−ηto for some ηto ∈ (1/(1+ 2ζ),ηrbc]. Note that if η > ηrbc
(i.e. h = o(hrbc)), both the rate of coverage error decay and interval length contraction can be improved.
There is no well-defined optimal choice in this range of asymptotically valid options, as the choice must
reflect each researcher’s preference for length vs. coverage error. This range does not depend on ν, even
though the resulting length will, see (17). This may affect how the researcher wishes to trade off the
two quantities. The endpoints of the range for ηto represent preferences for only optimizing coverage
error or only length.

To select the constant for this trade off, Hto, note first that for η < ηrbc the middle term of the
coverage error (16) is dominant. This term, n1−ηto(1+2ζ ){2ψ2

T ,Fω5,T ,F

}
, shares the rate of the scaled,

squared bias. Therefore, it is natural to balance this against the square of interval length, to match the
trade off that hto represents. The feasible choice of this constant, Ĥto, will also be a direct plug-in
rule that uses the estimators above and a pilot version of σ̂2

rbc, as well a researcher’s choice of weight
H ∈ (0,1) capturing their trade off between the two. Put altogether, we can then set

Ĥto = arg minH>0

{
H · H1+2ζ (

2ψ̂2
rbc,F ω̂5,rbc,F

)
+ (1 −H) · 4z2

α/2
σ̂2
rbc

H1+2ν

}
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=

(
(1 −H)(1 + 2ν)4z2

α/2σ̂
2
rbc

H(1 + 2ζ)2ψ̂2
rbc,F ω̂5,rbc,F

)
.

The resulting data-driven bandwidth choice is ĥto = Ĥton−ηto , for a choice ηto ∈ (1/(1 + 2ζ),ηrbc],
and weight H ∈ (0,1). The supplement [4] contains details and some additional results.

4.2. Interval length optimality: Choosing ρ and K(·)

To complete the implementation of Irbc(h) we need to select the bias-correction bandwidth b, which
we do in the form of ρ = h/b, and the kernel function K(·). We choose these to optimize the length
(17). With ρ bounded and bounded away from zero, this choice affects only the constant portions of the
coverage error expansion of Irbc(hrbc), in particular changing the shape of the equivalent kernel of
θ̂rbc. For more details on equivalent kernels, see [17, Sect. 3.2.2]. To find this equivalent kernel, begin
by writing θ̂rbc = ν!e′νΓ

−1ΩrbcY/nhν as a weighted average of the Yi . Recall that Xh,i = (Xi − x)/h
and similarly for Xb,i . Then,

θ̂rbc =
1

nhν
ν!e′νΓ

−1
(
Ω − ρp+1Λe′p+1Γ̄

−1
Ω̄

)
Y

=
1

nh1+ν

n∑
i=1

{
ν!e′νΓ

−1
(
K(Xh,i)r p(Xh,i) − ρp+1 h

b
Λe′p+1Γ̄

−1K(Xb,i)r p+1(Xb,i)
) }

Yi .

The weights here depend on the sample, as Γ, Λ, and Γ̄ are sample quantities. The equiva-
lent kernel replaces these with their limiting versions (not, as elsewhere, their fixed-n expecta-
tions), which we shall denote G = f (x)

∫
K(u)r p(u)r p(u)′du, L = f (x)

∫
K(u)r p(u)up+1du, and Ḡ =

f (x)
∫

K(u)r p+1(u)r p+1(u)′du, respectively. The integrals are over [−1,1] if x is an interior point and
appropriately truncated when x is a boundary point. Under our assumptions, convergence to these limits
is fast enough that, for the equivalent kernel Krbc(u; K, ρ, ν) defined as

Krbc(u; K, ρ, ν) = ν!e′νG−1
(
K(u)r p(u) − ρp+2Le′p+1Ḡ

−1K(uρ)r p+1(uρ)
)
,

and we have the representation

θ̂rbc =
1

nh1+ν

n∑
i=1

Krbc
(
Xh,i; K, ρ, ν

)
Yi {1 + oP(1)}.

It follows that the (constant portion of the) asymptotic length of Irbc(h) depends on K(·) and ρ only
through the specific functional

∫ (
Krbc(u; K, ρ, ν)

) 2du, which corresponds to the asymptotic variance.
The asymptotic variance of a local polynomial point estimator at a boundary or interior point is

minimized by employing the uniform kernel [13]. Therefore, to minimize the constant term of interval
length we choose ρ, depending on K , to make Krbc(u; K, ρ, ν) as close as possible to the optimal
equivalent kernel, i.e. the K∗

p(u) induced by the uniform kernel for a given p. If the uniform kernel
is used initially, then ρ∗ = 1 is optimal: that is, Krbc(·;1{|u| < 1}/2,1, ν) ≡ K∗

p+1(·). This highlights
the importance of being able to accommodate the uniform kernel in our higher-order expansions. If a
kernel other than uniform is used, we look for the optimal choice of ρ by minimizing the L2 distance
between the induced equivalent kernel and the optimal variance-minimizing equivalent kernel, solving

ρ∗ = arg minρ>0

∫ ���Krbc
(
u; K, ρ, ν

)
−K∗

p+1(u)
���2 du.
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Table 2. L2-Optimal Variance-Minimizing ρ

p Kernel
Triangular Epanechnikov Uniform

0 0.778 0.846 1.000
1 0.850 0.898 1.000
2 0.887 0.924 1.000
3 0.909 0.940 1.000
4 0.924 0.950 1.000

(a) Boundary point

p Kernel
Triangular Epanechnikov Uniform

1 0.798 0.865 1.000
3 0.867 0.915 1.000
5 0.900 0.938 1.000
7 0.919 0.951 1.000

(b) Interior point

Note: Optimal ρ computed by minimizing the L2 distance between the RBC induced equivalent kernel and the variance-
minimizing equivalent kernel (Uniform Kernel).

This is not a sample-dependent problem, only computational. For p − ν odd, the standard case in
practice, Table 2 shows the optimal ρ∗, for boundary and interior points, respectively, the triangular
kernel (K(u) = (1− |u|)1(|u| ≤ 1)) and the Epanechnikov kernel (K(u) = 0.75(1− u2)1(|u| ≤ 1)). These
two are popular choices and are MSE-optimal at boundary and interior points, respectively. The shapes
of the resulting equivalent kernel, Krbc(u; K, ρ∗, ν), are shown in Figure 1 for ν = {0,1}. Note that
although ρ∗ itself does not vary with ν, the equivalent kernel shape does. Additional choices of p are
illustrated in the supplement[4].

5. Minimax coverage error decay rates

In this section we build on [23] and look for a minimax result: characterizing the fastest (minimal)
rate at which the worst-case (maximal) coverage error vanishes. The “optimal” interval estimator is
one for which this maximal error is minimized. At an intuitive level, this corresponds to the desire for
similarity in testing: the confidence interval should have “similar” coverage over the set of plausible
distributions. [23] proposed this inference-specific notion of minimax optimality and studied it in the
case of one-sided confidence intervals in the i.i.d. parametric location model. This problem is different
from the more typical minimaxity considered for point estimation, though the latter is established for
robust bias correction by [26] and is discussed more broadly for local polynomials by [13] and [16].

To state the problem more formally, let Ip denote a class of confidence interval estimators. We then
define the minimax coverage error as

MCEn := inf
I ∈Ip

sup
F ∈FS

���PF [
μ(ν)(x) ∈ I

]
− (1 − α)

���,
where the dependence on the fixed quantities, such as the classes Ip and FS or the level α, are
suppressed. Our goal is to characterize the minimax optimal coverage error decay rate bound, which is
the fastest vanishing sequence r� = r�(n), n ∈ N, such that for constants c1 and c2,

0 < c1 ≤ lim inf
n→∞

r−1
� MCEn ≤ lim sup

n→∞
r−1
� MCEn ≤ c2 <∞. (18)

We have already characterized the worst-case coverage error in Corollary 1 for the class of distribu-
tions defined in Section 2. The key point here is that if we take Ip to be the class of intervals for which
we studied worst-case coverage error in Corollary 1, then we can characterize the minimax rate r� as
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Figure 1: K∗
p+1(u) vs. Krbc(u; K, ρ∗, ν)

well as intervals which attain it. Specifically, we take Ip to be the Wald-type intervals of the form (12),
based on a local polynomial of degree p, with any choice of centering, scaling, bandwidth(s), kernel
shape, and quantiles, discussed in Section 2. This includes all those intervals dual to t statistics cov-
ered by Theorem 1, but also includes other choices which are not asymptotically level 1− α. Examples
include trivial cases such improper choices of quantiles or inconsistent variance estimators, but also
choices such as Ip(hmse), i.e., using the MSE-optimal bandwidth sequence for with centering μ̂(ν)p and
scaling σ̂2

p/(nh1+2ν). We could also include other procedures, such as bootstrap based quantiles, empir-
ically chosen bandwidths, or empirical likelihood methods, as these will not improve on the worst-case
coverage error [10,21,24].

Crucial to proving that such an interval is minimax optimal is that the bias vanishes at the best possi-
ble rate, given the smoothness assumed (S) and utilized (p), and this in turn depends on whether x is an
interior or boundary point. Collecting all the smoothness cases studied in Section 3.1, we immediately
obtain the following result (see [4] for omitted details).
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Corollary 2. Let Assumptions 1 and 2 hold and let Ip be the class of Wald-type confidence intervals
described in the foregoing paragraph.

(i) Let x be an interior point in the support of X. If p−ν is odd, then (18) holds with r� = n−(p+3)/(p+4)

if p ≤ S − 3 and r� = n−(S+s)/(S+s+1) if p ≥ S − 2. If p − ν is even, then r� = n−(p+2)/(p+3) if p ≤ S − 2
and r� = n−(S+s)/(S+s+1) if p ≥ S − 1.

(ii) Let x be a boundary point of the support of X. Then, (18) holds with r� = n−(p+2)/(p+3) if p ≤ S−2
and r� = n−(S+s)/(S+s+1) if p ≥ S − 1.

For the classes FS and Ip considered herein, this result establishes the minimax rate bounds. The
interplay between the two classes is crucial: they should be neither too “large” nor too “small” in
order to obtain useful and interesting results. The larger is FS , the more plausible a given data set
is generated by some F ∈ FS , but well known results dating back at least to [1] show that if FS is
too large it is impossible to construct an “effective confidence interval” that controls the worst-case
coverage. Our particular FS captures common restrictions in the setting of nonparametric regression,
and therefore matches empirical practice. The class Ip is restricted to contain Wald-type interval
estimators commonly employed in practice using nonparametric kernel-based regression methods (but
can be trivially extended to cover alternatives mentioned above). Recall that our goal is to identify if
RBC confidence intervals improve over other options in a uniform sense, and this result is tailored to
that goal.

The main message of Corollary 2 is that Irbc(hrbc) is minimax optimal in all cases. This strengthens
the pointwise improvement offered by robust bias correction to optimality within the class Ip consid-
ered here. Intuitively, this is because robust bias correction successfully exploits additional smoothness
if it exists, but is not punished (in rates) if there is no such smoothness due to the change in Studenti-
zation. This can be compared to Ip , the classical interval that requires undersmoothing. This interval
is optimal only in the case when S is known so that p can be chosen large enough; for a fixed p that is
small relative to S this interval is dominated in the minimax sense.

6. Simulation study

This section presents results from a simulation study to examine the finite-sample performance of
our methods. Additional results and implementation details can be found in the supplement [4]. We
focus on the performance of confidence intervals for μ(x) and μ(1)(x) based on robust bias correction
and traditional undersmoothing. Data is generated from model (1), with Xi uniformly distributed on
[−1,1], ε standard normal, and

μ(x) = sin(3πx/2)
1 + 18x2(sgn(x) + 1)

,

where sgn(x) = −1, 0, or −1 according to x > 0, x = 0 or x < 0, respectively. This function, which was
also analyzed in [5], is displayed in Figure 2 together with μ(1)(x). By looking at different evaluation
points, we will be able to capture the performance of the methods under different levels of complexity.

We show results for sample sizes n ∈ {100,250,500,750,1000,2000}, always with 5,000 replications.
We study inference at three evaluation points: x = −1 (boundary point), x = −0.6 (low curvature), and
x = −0.2 (high curvature). The supplement [4] shows results for x ∈ {0.2,0.6,1}. For implementation,
we use p = 1 (for ν = 0) and p = 2 (for ν = 1) with the Epanechnikov kernel ([4] gives results for the
uniform kernel). Finally, we evaluate the performance of the confidence intervals using several band-
width choices. First, following the results from Section 4, we use ĥrbc, a data-driven version of the
inference-optimal bandwidth hrbc. We also consider the analogous version for undersmoothed confi-
dence intervals, denoted ĥus (detailed in [4]), and the standard choice in practice, ĥmse. Robust bias
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Figure 2: Conditional mean function and first derivative, μ(ν)(x)

correction is implemented using ρ = ρ∗ according to Table 2. All implementation details are available
for R and Stata [6].

Figures 3 and 4 present empirical coverage probabilities for ν = 0 and ν = 1, respectively, for each
evaluation point and choice of bandwidth, as a function of the sample size. Overall, we can see that
robust bias correction yields close to accurate coverage, improving over undersmoothing in almost
every case. Performance is highly superior at points where the functions present high curvature and
also at the boundary. Performance is never worse even when the function is quite linear and optimal
bandwidths are (close to) ill-defined.

We also compare confidence interval performance in terms of length in Figure 5. We take coverage
into account by looking at RBC and US confidence intervals implemented using their corresponding
coverage error optimal bandwidth choices (ĥrbc and ĥus, respectively), which is when they perform
best in terms of coverage. We also include other valid, but non optimal choices Irbc(ĥmse), Irbc(ĥus).
We find that RBC confidence intervals are, on average, not larger than US, and sometimes even shorter.
Lastly, Figure 6 shows the average estimated bandwidths at each point for each sample size, which
behave as expected following our theory.

7. Conclusion

This paper derived higher order expansions for inference in nonparametric local polynomial regression.
We provided new Edgeworth expansions and associated error in coverage probability expansions for
standard and robust bias corrected methods, showing that the latter have superior coverage properties.
Our results hold uniformly in the data generating process, cover derivative estimation, and allow for
the uniform kernel. Using our results we developed novel bandwidth selections that target inference
directly, achieving lower coverage error and/or shorter length.

Our main results measured coverage error symmetrically, but it is worth mentioning that the absolute
loss function may be replaced by the “check” loss function, and thus studying the maximal coverage
error supF ∈FS

L(PF [θF ∈ I] − (1 − α)), with L(e) = Lτ(e) = e(τ − 1{e < 0}), and where τ ∈ (0,1)
encodes the researcher’s weight for over- and under-coverage. Setting τ = 1/2 recovers the above, sym-
metric measure of coverage error. Guarding more against undercoverage (a preference for conservative
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Figure 3: Empirical Coverage for 95% Confidence Intervals, ν = 0
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Figure 4: Empirical Coverage for 95% Confidence Intervals, ν = 1



3018 S. Calonico, M.D. Cattaneo and M.H. Farrell

Figure 5: Average Interval Length for 95% Confidence Intervals

intervals) requires choosing a τ < 1/2. For example, setting τ = 1/3 encodes the belief that undercov-
erage is twice as bad as the same amount of overcoverage. All our results can be established for this
loss function.

Finally, this paper studied the properties of confidence intervals at a fixed evaluation point x, but
it would be of theoretical and practical interest to extent our results to the case of confidence band
construction. Robust bias correction has recently been used to construct valid confidence bands for
local polynomial estimation [12] and linear sieve estimation [9]. Because the underlying distributional
approximations for confidence band constructions are substantially more complex, obtaining results
similar to those presented herein will require substantial extension of our technical work.

Appendix: Terms of the Edgeworth expansion

We give the definition ofωk , k = 1,2, . . . ,6. First, define the following objects, all calculated in a fixed-n
sense, bounded uniformly in FS , and nonzero for some F ∈ FS . As shorthand, let a tilde accent denote
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Figure 6: Average Estimated Bandwidth

a fixed-n expectation, so that Γ̃ = E[Γ], Λ̃1 = E[Λ1], and so forth. Let

�0
Tp
(Xi) = ν!e′ν Γ̃

−1(K r p)(Xh,i);

�0
Trbc

(Xi) = �0
Tp
(Xi) − ρp+1ν!e′ν Γ̃

−1
Λ̃1e

′
p+1

˜̄Γ
−1
(K r p+1)(Xb,i);

�1
Tp
(Xi,Xj ) = ν!e′ν Γ̃

−1
(
E[(K r p r

′
p)(Xh, j )] − (K r p r

′
p)(Xh, j )

)
Γ̃
−1(K r p)(Xh,i);

�1
Trbc

(Xi,Xj ) = �1
Tp
(Xi,Xj ) − ρp+1ν!e′ν Γ̃

−1
{ (
E[(K r p r

′
p)(Xh, j )] − (K r p r

′
p)(Xh, j )

)
Γ̃
−1
Λ̃1e

′
p+1

+
(
(K r p)(Xh, j )Xp+1

h,i
− E[(K r p)(Xh, j )Xp+1

h,i
]
)
e′p+1

+ Λ̃1e
′
p+1

˜̄Γ
−1 (
E[(K r p+1r

′
p+1)(Xb, j )] − (K r p+1r

′
p+1)(Xb, j )

) }
˜̄Γ
−1
(K r p+1)(Xb,i).
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Then define σ̃2
T = E[h

−1�0
T
(X)2v(X)] and denote the standard Normal density as φ(z). Then we define

ω1,T ,F (z) = φ(z)σ̃−3
T E

[
h−1�0

T (Xi)3ε3
i

] {
(2z2 − 1)/6

}
,

ω2,T ,F (z) = −φ(z)σ̃−1
T ,

ω3,T ,F (z) = −φ(z) {z/2} ,

ω5,T ,F (z) = −φ(z)σ̃−2
T {z/2} ,

ω6,T ,F (z) = φ(z)σ̃−4
T E[h

−1�0
T (Xi)3ε3

i ]
{
z3/3

}
.

For ω4, it is not quite as simple to state a generic version. Let G̃ stand in for Γ̃ or ˜̄Γ, p̃ stand in for p or
p+ 1, and dn stand in for h or b, all depending on if T = Tp or Trbc. Note however, that h is still used in
many places, in particular for stabilizing fixed-n expectations, for Trbc. Indexes i, j, and k are always
distinct (i.e. Xh,i � Xh, j � Xh,k).

ω4,T ,F (z) = φ(z)σ̃−6
T E

[
h−1�0

T (Xi)3ε3
i

] 2 {
z3/3 + 7z/4 + σ̃2

T z(z2 − 3)/4
}

+ φ(z)σ̃−2
T E

[
h−1�0

T (Xi)�1
T (Xi,Xi)ε2

i

] {
−z(z2 − 3)/2

}
+ φ(z)σ̃−4

T E

[
h−1�0

T (Xi)4(ε4
i − v(Xi)2)

] {
z(z2 − 3)/8

}
− φ(z)σ̃−2

T E

[
h−1�0

T (Xi)2r p̃(Xdn ,i)
′G̃

−1(K r p̃)(Xdn ,i)ε
2
i

] {
z(z2 − 1)/2

}
− φ(z)σ̃−4

T E

[
h−1�0

T (Xi)3r p̃(Xdn ,i)
′G̃

−1
ε2
i

]
E

[
h−1(K r p̃)(Xdn ,i)�

0
T (Xi)ε2

i

] {
z(z2 − 1)

}
+ φ(z)σ̃−2

T E

[
h−2�0

T (Xi)2(r p̃(Xdn ,i)
′G̃
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2ε2

j

] {
z(z2 − 1)/4

}
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T E

[
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