
Supplement to “Coverage Error Optimal Confidence Intervals for

Local Polynomial Regression”

Sebastian Calonico∗ Matias D. Cattaneo† Max H. Farrell‡

July 23, 2021

This supplement contains proofs of all results, other technical details, and complete simulation results.
Notation is kept mostly consistent with the main text, but this document is self-contained as all notation
is redefined and all necessary constructions, assumptions, and so forth, are restated. Throughout, clarity is
prized over brevity, and repetition is not avoided. The outline is as follows. Section S.1 gives a complete
formalization of the set up, inference procedures, and assumptions, exactly as in exactly as given in Section
2 of the main paper. Section S.2 gives the proofs for Theorem 1 and Corollaries 1 and 2 of the main
paper. Theorem 1 of the paper is restated identically as Theorem S.1 here, for referencing. The proof of
Theorem S.1 (Theorem 1 in the paper) is long and occupies several subsections. Section S.3 gives all details
and derivations relating to bias, including formulas omitted from the main text, for all estimators, points
of evaluation, and smoothness cases. Section S.4 discusses standard errors. Section S.5 gives notes on the
check function loss for asymmetric measurement of coverage error. Section S.6 presents complete simulations
results and computations. For reference a complete list of notation is given in Section S.7.

Complete Contents

S.1 Setup 2
S.1.1 Centering Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
S.1.2 Scale Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
S.1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

S.2 Main Theoretical Results 7
S.2.1 Main Result (Theorem 1 in the Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . 7
S.2.2 Proofs for Corollaries 1 and 2 in the Main Paper . . . . . . . . . . . . . . . . . . . . . 8
S.2.3 Proof of Theorem S.1 (Theorem 1 in the paper) without Bias Correction . . . . . . . 9
S.2.4 Proof of Theorem S.1 (Theorem 1 in the paper) with Bias Correction . . . . . . . . . 29
S.2.5 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
S.2.6 Terms of the Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

S.3 Bias and the Role of Smoothness 49
S.3.1 Generic Bias Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
S.3.2 No Bias Correction: Specific Cases and Leading Terms . . . . . . . . . . . . . . . . . 54
S.3.3 Post Bias Correction: Specific Cases and Leading Terms . . . . . . . . . . . . . . . . 57

S.4 Notes on Alternative Standard Errors 62

S.5 Check Function Loss 63

S.6 Simulation Results and Numerical Details 64
S.6.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
S.6.2 Numerical Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

S.7 List of Notation 97

S.8 Supplement References 100

∗Department of Health Policy and Management, Columbia University.
†Department of Operations Research and Financial Engineering, Princeton University.
‡Booth School of Business, University of Chicago.

1



S.1 Setup

We observe a random sample {(Y1, X1), . . . , (Yn, Xn)} from the pair (Y,X), which are distributed

according to F , the data-generating process. F is assumed to belong to a class FS , as defined by

Assumption S.1 below, and in particular the pair (Y,X) obeys the heteroskedastic nonparametric

regression model

Y = µF (X) + ε, E[ε|X] = 0, E[ε2|X = x] = v(x). (S.1)

The parameter of interest is a derivative of the regression function, defined as

µ(ν) = µ
(ν)
F (x) :=

∂ν

∂xν
EF [Y | X=x]

∣∣∣∣
x=x

, (S.2)

for a point x in the support of X and an nonnegative integer ν ≤ S, the latter defined in Assumption

S.1, and indexing the class FS . As usual, we use the notation µF (x) = µ
(0)
F (x) = EF [Y | X=x].

Expectations and probability statements, as well as parameters and functions, are always un-

derstood to depend on F , though for simplicity this will often be omitted when doing so causes no

confusion. Similarly, unless it is explicitly required, we will omit the point of evaluation x as an

argument. For example,

µ
(ν)
F (x) = µ(ν)(x) = µ(ν).

Our main technical contributions are novel Edgeworth expansions for local polynomial based

Wald-type t statistics of the form

T =
θ̂ − µ(ν)

ϑ̂
, (S.3)

for a centering estimator θ̂ and scale estimator ϑ̂. We establish this expansion uniformly in a class

of distributions that generated the data, that is, we characterize the leading terms ET,F (z) and

rate rT,F , both specific to a t statistic and distribution, and prove that

lim
n→∞

sup
F∈FS

r−1
T,F sup

z∈R

∣∣∣PF [T < z]− Φ(z)− ET,F (z)
∣∣∣ = 0. (S.4)

This Edgeworth expansion is Theorem 1 of the paper and Theorem S.1 herein. We also study the

coverage error of commonly-used Wald-type confidence interval estimators given generically by

I =
[
θ̂ − zu ϑ̂ , θ̂ − zl ϑ̂

]
, (S.5)

for a pair of quantiles zl and zu. See Corollary 2 of the main paper.

Throughout, asymptotic orders and their in-probability versions always hold uniformly in FS ,

as required by our framework: for example, An = oP(an) means supF∈FS
PF [|An/an| > ε] = o(1)

for every ε > 0. Limits are taken as n→∞ unless stated otherwise.
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S.1.1 Centering Estimators

We now define the centering estimators θ̂. These are based on local polynomial regressions. The

standard local polynomial (of degree p) point estimator is defined via the local regression

µ̂(ν)
p = ν!e′νβ̂p =

1

nhν
ν!e′νΓ

−1ΩY , β̂p = arg min
β∈Rp+1

n∑
i=1

(Yi − rp(Xi − x)′β)2K (Xh,i) , (S.6)

where

• ek is a conformable zero vector with a one in the (k + 1) position, for example eν is the

(p+ 1)-vector with a one in the νth position and zeros in the rest,

• h is a positive bandwidth sequence that vanishes as n diverges,

• p is an integer greater at least ν, sometimes restricted such that p− ν odd,

• rp(u) = (1, u, u2, . . . , up)′,

• Xh,i = (Xi − x)/h, for a bandwidth h and point of interest x,

• to save space, products of functions will often be written together, with only one argument,

for example,

(Krpr
′
p)(Xh,i) := K(Xh,i)rp(Xh,i)rp(Xh,i)

′ = K

(
Xi − x

h

)
rp

(
Xi − x

h

)
rp

(
Xi − x

h

)′
,

• W = diag
(
h−1K(Xh,i) : i = 1, . . . , n

)
,

• H = diag
(
1, h, h2, . . . , hp

)
, where

• diag(ai : i = 1, . . . , k) denote the k × k diagonal matrix constructed using the elements

a1, a2, · · · , ak,

• R = [rp(X1 − x), · · · , rp(Xn − x)]′,

• Ř = RH−1 = [rp(Xh,1), · · · , rp(Xh,n)]′,

• Γ = 1
nh

∑n
i=1(Krpr

′
p)(Xh,i) = (Ř′WŘ)/n,

• Ω = h−1[(Krp)(Xh,1), (Krp)(Xh,2), . . . , (Krp)(Xh,n)] = Ř′W , and

• Y = (Y1, . . . , Yn)′.

We will also use, for bias correction,

• β̂p+1 which is defined exactly as in Equation (S.6) but with p+ 1 in place of p and b in place

of h in all instances.

For more details on local polynomial methods and related theoretical results, see Fan and Gijbels

(1996).
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For computing the rate of convergence, and clarifying the appearance of (nhν)−1 in Equation

(S.6), it is useful to spell out the form of β̂p, the solution to the minimization in Equation (S.6).

Standard least squares algebra yields

β̂p =
(
R′WR

)−1
R′WY

=
([
RH−1H

]′
W
[
RH−1H

])−1 [
RH−1H

]′
WY

= H−1
(
Ř′WŘ

)−1
H−1HŘ′WY

= H−1
(
Ř′WŘ

)−1
Ř′WY ,

= H−1Γ−1ΩY /n, (S.7)

and therefore, because e′νH
−1 = e′νh

−ν ,

ν!e′νβ̂p =
1

nhν
ν!e′νΓ

−1ΩY . (S.8)

The same applies to β̂p+1 with the necessary changes to the bandwidth and dimensions.

To conduct valid inference on µ(ν) the bias of the nonparametric estimator must be removed.

Assuming that the true µ(ν)(·) is smooth enough at x (formally, p+ 1 ≤ S, such as is required for

computing the mean square error optimal bandwidth), we find that the (conditional) bias of µ̂
(ν)
p is

E
[
µ̂(ν)
p

∣∣X1, . . . , Xn

]
− µ(ν) = hp+1−νν!e′νΓ

−1Λ1
µ(p+1)

(p+ 1)!
+ oP(hp+1−ν), (S.9)

where

• Λk = Ω
[
Xp+k
h,1 , . . . , Xp+k

h,n

]′
/n, where, in particular Λ1 was denoted Λ in the main text.

Throughout, asymptotic orders and their in-probability versions hold uniformly in FS , as required

by our framework; e.g., An = oP(an) means supF∈FS
PF [|An/an| > ε] = o(1) for every ε > 0. This

expression is valid for p− ν odd or even, though in the latter case the leading term of will be zero

due to symmetry for interior points, i.e. e′νΓ
−1Λ1 = O(h), and thus the rate will actually be faster

(see Fan and Gijbels, 1996). (Recall that asymptotic orders and their in-probability versions are

always required to hold uniformly in FS throughout.)

Sufficient smoothness for the validity of this calculation need not be available for many of

the results herein to apply, and the amount of smoothness assumed to exist is a key factor in

determining coverage error rates and optimality. See Section S.3 below for details and derivations

in all cases, in addition to the discussion in the main paper. For the present, Equation (S.9) serves

to motivate explicit bias correction by subtracting from µ̂
(ν)
p an estimate of the leading bias term.

This estimate is formed as

hp+1−νν!e′νΓ
−1Λ1e

′
p+1β̂p+1, with β̂p+1 =

1

nbp+1
Γ̄−1Ω̄Y ,
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where β̂p+1 is exactly as in Equation (S.6), but with p+ 1 and b in place of p and h, respectively.

Calonico et al. (2018a,b) discuss more general methods of bias correction. It is sometimes convenient

to use the form above, but we will also use the more explicit notation for what this approach does:

estimating the unknown derivative µ(p+1) and plugging it in directly

hp+1−νν!e′νΓ
−1Λ1

µ̂
(p+1)
p+1

(p+ 1)!
, µ̂

(p+1)
p+1 = (p+ 1)!e′p+1β̂p+1 =

1

nbp+1
(p+ 1)!e′p+1Γ̄

−1Ω̄Y ,

again matching (S.6), but with p+ 1 in place of p and ν and b in place of h. In particular, we have

defined the exact analogues for this new local regression:

• Xb,i = (Xi − x)/b, for a bandwidth b and point of interest x, exactly like Xh,i but with b in

place of h,

• Ω̄ = b−1[(Krp+1)(Xb,1), (Krp+1)(Xb,2), . . . , (Krp+1)(Xb,n)], exactly like Ω but with b in place

of h and p+ 1 in place of p,

• Γ̄ = 1
nb

∑n
i=1(Krp+1r

′
p+1)(Xb,i), exactly like Γ but with b in place of h and p+ 1 in place of

p, and

• Λ̄k = Ω̄
[
Xp+1+k
b,1 , . . . , Xp+1+k

b,n

]′
/n, exactly like Λk but with b in place of h and p+ 1 in place

of p (implying Ω̄ in place of Ω).

We thus consider two types of centering estimators. Conventional nonparametric local poly-

nomial inference sets θ̂ = µ̂
(ν)
p , which typically requires undersmoothing for valid inference, and

robust bias corrected centering, which incorporates the explicit bias correction. In sum, θ̂ of (S.5)

is one of

µ̂(ν)
p =

1

nhν
ν!e′νΓ

−1ΩY ;

θ̂rbc = µ̂(ν)
p − hp+1−νν!e′νΓ

−1Λ1

µ̂
(p+1)
p+1

(p+ 1)!
=

1

nhν
ν!e′νΓ

−1ΩrbcY .

(S.10)

where in the latter form of θ̂rbc, which is useful for defining the scale estimators below, we define

• Ωrbc = Ω− ρp+1Λ1e
′
p+1Γ̄

−1Ω̄ and

• ρ = h/b, the ratio of the two bandwidth sequences.

Comparing the two we see that only the matrix Ω premultiplying Y changes.

S.1.2 Scale Estimators

The next piece we define are the scaling estimators. As discussed in the paper, it is crucial for

coverage error to use fixed-n variance calculations, conditional in this case, to develop the Studen-

tization, and we will focus most of our attention on these. Discussion of other options can be found
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in Section S.4, with some mention in Section S.2. The fixed-n variance of the centering is defined

as

ϑ2 = V
[
θ̂
∣∣X1, . . . , Xn

]
=

1

nh1+2ν
ν!2e′νΓ

−1(hΩ•ΣΩ′•/n)Γ−1eν ,

where either Ω• = Ω or Ωrbc depending on the centering and

• Σ = diag(v(Xi) : i = 1, . . . , n), with v(x) = V[Y |X = x].

The rateless portions of the variance is defined by σ2 := (nh1+2ν)V
[
θ̂
∣∣X1, . . . , Xn

]
= (nh1+2ν)ϑ2,

with, in particular

σ2
p = ν!2e′νΓ

−1(hΩΣΩ′/n)Γ−1eν , and

σ2
rbc = ν!2e′νΓ

−1(hΩrbcΣΩ′rbc/n)Γ−1eν ,
(S.11)

The only unknown piece of these is the conditional variance matrix Σ, which we estimate using

either

• Σ̂p = diag(v̂(Xi) : i = 1, . . . , n), with v̂(Xi) = (Yi−rp(Xi−x)′β̂p)
2 for β̂p defined in Equation

(S.6), or

• Σ̂rbc = diag(v̂(Xi) : i = 1, . . . , n), with v̂(Xi) = (Yi − rp+1(Xi − x)′β̂p+1)2 for β̂p+1 defined

exactly as in Equation (S.6) but with p+ 1 in place of p and b in place of h.

The estimators v̂(Xi), using either p or p + 1, are not estimators of the function v(·) of (S.1) per

se, but rather are a convenient notation for predicted residuals.

The scale estimator ϑ̂ of I of (S.5) is thus one of

ϑ̂2 =
σ̂2
p

nh1+2ν
, σ̂2

p := ν!2e′νΓ
−1(hΩΣ̂pΩ

′/n)Γ−1eν , or

ϑ̂2 = ϑ̂2
rbc :=

σ̂2
rbc

nh1+2ν
, σ̂2

rbc := ν!2e′νΓ
−1(hΩrbcΣ̂rbcΩ

′
rbc/n)Γ−1eν ,

(S.12)

Remark S.1. For notational, and more importantly, practical/computational simplicity, the stan-

dard errors use the same local polynomial regressions (same kernel, bandwidth, and order) as the

point estimates. Changing this results in changes to the constants and potentially (depending on

the choices of h, b, and p) the rates for the coverage error expansions. Further, the procedure as

defined here is simple to implement because the bases rp(Xi − x) and rp+1(Xi − x) and vectors

β̂p and β̂p+1 are already available. Other standard errors are discussed in Section S.4 and, for

asymptotic versions, briefly in the main paper. y

S.1.3 Assumptions

The two following assumptions are sufficient for our results, both directly copied from the main

text. See discuss there. The first defines the class of distributions of the data, denoted FS .
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Assumption S.1. Let FS be the set of distributions F for the pair (Y,X) which obey model (S.1)

and for which there exist constants S ≥ ν, s ∈ (0, 1], 0 < c < C < ∞, and a neighborhood of x

on the support of X, none of which depend on F , such that for all x, x′ in the neighborhood the

following hold.

(a) The Lebesgue density of (Y,X), fyx(·), the Lebesgue density of X, f(·), and v(x) := V[Y |X =

x], are each continuous and lie inside [c, C], and E[|Y |8+c|X = x] ≤ C.

(b) µ(·) is S-times continuously differentiable and |µ(S)(x)− µ(S)(x′)| ≤ C|x− x′|s.

Throughout, {(Y1, X1), . . . , (Yn, Xn)} is a random sample from (Y,X).

Second, the class of confidence intervals is governed by the following condition on the kernel

function K(·) and polynomial degree p. We impose the following throughout.

Assumption S.2. The kernel K is supported on [−1, 1], positive, bounded, and even. Further,

K(u) is either constant (the uniform kernel) or (1,K(u)r3(k+1)(u))′ is linearly independent on

[−1, 0] and [0, 1], where k = p if T is based on µ̂
(ν)
p and σ̂p, and k = p + 1 if T uses θ̂rbc or σ̂rbc.

The order p is at least ν.

S.2 Main Theoretical Results

S.2.1 Main Result (Theorem 1 in the Paper)

We now give the main technical result of the paper, a uniformly (in F ∈ FS) valid Edgeworth

expansion of the distribution function of a generic local polynomial based t-statistic, from which

coverage error follows for any I. This result is the same as Theorem 1 in the main text.

The terms of the Edgeworth expansion are defined as

ET,F (z) =
1√
nh
ω1,T,F (z) + ΨT,Fω2,T,F (z) + λT,Fω3,T,F (z)

+
1

nh
ω4,T,F (z) + Ψ2

T,Fω5,T,F (z) +
1√
nh

ΨT,Fω6,T,F (z),

(S.13)

where:

• z is the point of evaluation of the distribution,

• ΨT,F denotes the generic non-random (fixed-n) bias of the
√
nh1+2ν-scaled numerator of T ,

detailed in all cases in Section S.3,

• λT,F denotes the mismatch between the variance of the numerator of the t-statistic and the

population standardization used, discussed in Section S.4, and

• the six terms ωk,T,F (z), k = 1, 2, . . . , 6, are non-random functions bounded uniformly in FS ,

and bounded away from zero for at least one F ∈ FS , whose exact forms are computed in

Section S.2.6.
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The main result is now the following, which is identical to Theorem 1 in the main paper.

Let Φ(z) is the standard Normal distribution function. (Recall that asymptotic orders and their

in-probability versions are always required to hold uniformly in FS throughout.)

Theorem S.1. Let Assumptions S.1 and S.2 hold, and assume that

log(nh)2+γ/nh = o(1), ΨT,F log(nh)1+γ = o(1), λT,F = o(1), ρ = O(1),

for any γ bounded away from zero uniformly in FS. Then,

lim
n→∞

sup
F∈FS

r−1
T,F sup

z∈R

∣∣∣PF [T < z]− Φ(z)− ET,F (z)
∣∣∣ = 0

holds with ET,F (z) of (S.13) and rT,F = max{(nh)−1,Ψ2
T,F , (nh)−1/2ΨT,F , λT,F }.

S.2.2 Proofs for Corollaries 1 and 2 in the Main Paper

Proof of Corollary 1 in the Main Paper. Define CI,F (zl, zu) = ET,F (zu) − ET,F (zl) and let rI be

such that CI,F (zl, zu) = O(rI). One can always take rI = supF∈FS
rT,F for rT,F given in Theorem

S.1. Then, for any I dual to T ,

r−1
I sup

F∈FS

∣∣∣PF [µ(ν)(x) ∈ I
]
− (1− α)− CI,F (zl, zu)

∣∣∣
= r−1

I sup
F∈FS

∣∣∣PF [T < zu]− PF [T < zl]− (1− α)− CI,F (zl, zu)
∣∣∣

≤ r−1
I sup

F∈FS

∣∣∣Φ(zu) + ET,F (zl)− Φ(zl)− ET,F (zl)− (1− α)− CI,F (zl, zu)
∣∣∣

+ r−1
I sup

F∈FS

∣∣∣PF [T < z]− Φ(z)− ET,F (z)
∣∣∣+ r−1

I sup
F∈FS

∣∣∣PF [T < z]− Φ(z)− ET,F (z)
∣∣∣.

The first line is zero by definition. Taking the limit as n→∞ of the second and applying Theorem

S.1 yields the result.

Proof of Corollary 2 in the Main Paper. Recall that CI,F (zl, zu) = ET,F (zu)−ET,F (zl). The func-

tions ω1 and ω2 are even functions of z while the remainder are odd. Therefore, the coverage

error of i ∈ Ip with zl = −zu and λT,F ≡ 0 vanishes faster than those without these properties.

Identifying the minimum possible worst-case coverage error requires minimizing the w4, w5, and w6

terms of Equation (S.13). For a fixed bandwidth sequence h, this amounts to comparing the rate

at which the bias ΨT,F = o(1). In every smoothness case, this rate can be found in Section S.3:

specifically, Tables S.2 and S.2 show the fastest attainable rate in every case. The result follows by

plugging the case-specific rate into

1

nh
C1 + Ψ2

T,FC2 +
1√
nh

ΨT,FC3,
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and minimizing with respect to h. The constants C1, C2, and C3, collecting the other portions of

the terms, are immaterial, as this calculation only requires rates.

S.2.3 Proof of Theorem S.1 (Theorem 1 in the paper) without Bias Correction

The goal of this section is to prove that the Edgeworth expansion of Theorem S.1 is valid for

Tp = T (µ̂
(ν)
p+1, σ̂

2
p/(nh

1+2ν)). The proof for Trbc is essentially the same from a conceptual and

technical point of view, just with more notation and a repetition of the same steps, and so only

a sketch is provided. See Section S.2.4. We also restrict to the fixed-n, HC0 standard errors of

(S.12), which, in particular, render λT,F ≡ 0. Other possibilities are discussed in Section S.4. The

terms of the expansion are computed, in a formal manner, in Section S.2.6.

For notational ease, we sometimes drop subscripts, along with the point of evaluation and/or

dependence on F . Also define

• sn =
√
nh

Recall that asymptotic orders and their in-probability versions are always required to hold uniformly

in FS throughout.

The proof consists of three main steps, which are tackled in the subsections below.

Step (I) – Section S.2.3.1

Show that

PF [Tp < z] = PF
[
T̆ < z

]
+ o

(
(nh)−1 + (nh)−1/2ΨTp,F + Ψ2

Tp,F

)
, (S.14)

for a smooth function T̆ := T̆ (s−1
n

∑n
i=1Zi), where Zi a random vector consisting of functions

of (Yi, Xi, εi) that, among other requirements, obeys Cramér’s condition under our assump-

tions.

Step (II) – Section S.2.3.2

Prove that
∑n

i=1 V[Zi]
−1/2(Zi − E[Zi])/

√
n obeys an Edgeworth expansion.

Step (III) – Section S.2.3.3

Prove that the expansion for Tp holds and that it holds uniformly over F ∈ FS .

Numerous intermediate results relied upon in the proof are collected as lemmas that are stated and

proved in Section S.2.5.

Unless it is important to emphasize the dependence on F , this will be suppressed to save

notation; for example P = PF . Throughout proofs C shall be a generic conformable constant that

may take different values in different places. If more than one constant is needed, C1, C2, . . . , will

be used. Also define
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• rTp,F = max{s−2
n ,Ψ2

Tp,F
, s−1
n ΨTp,F }, i.e. the slowest vanishing of the rates, and

• rn as a generic sequence that obeys rn = o(rTp,F ).

We will frequently use the elementary probability bounds that for random A and B and positive

fixed scalars a and b, P[|A + B| > a] ≤ P[|A| > a/2] + P[|B| > a/2] and P[|AB| > a] ≤ P[|A| >
b] + P[|B| > a/b], also relying on the elementary bound |AB| ≤ |A||B| for conformable vectors or

matrixes A and B.

S.2.3.1 Step (I)

We now prove Equation (S.14) holds for suitable choices of T̆ and Zi. Notice that the “numerator”

portion, Γ−1Ω (Y −Rβp) /n is already a smooth function of well-behaved random variables, and

will thus be incorporated into T̆ . Our difficulty lies with the Studentization, and in particular,

the estimated residuals. We will start by expanding σ̂2
p (see Equation (S.15)). Substituting this

expansion into Tp, we will identify the leading terms, collected as appropriate into T̆ (Equation

(S.17)) and Zi (Equation (S.18)), and the remainder terms, collected in Un := Tp − T̆ (Equation

(S.16)). Step (I) is complete upon showing that Un can be ignored in the expansion; this occupies

the latter half of the present subsection.

To begin, recall that σ̂2
p = ν!2e′νΓ

−1(hΩΣ̂pΩ
′/n)Γ−1eν . The matrix Γ−1, present in the nu-

merator as well, enters smoothly and is itself smooth in elements of s−1
n

∑n
i=1Zi. Thus our focus is

on the center matrix, (hΩΣ̂pΩ
′/n), which contains the estimated residuals. Using ŘH = R (and

for each observation, rp(Xi − x)H−1 = rp(Xh,i)) and Γ = ΩŘ/n we have

rp(Xi − x)′β̂p = rp(Xi − x)′H−1Γ−1ΩY /n = rp(Xh,i)
′Γ−1ΩY /n

and

rp(Xi − x)′βp = rp(Xi − x)′H−1Γ−1(ΩŘ/n)Hβp = rp(Xh,i)
′Γ−1ΩRβp/n.

We use these forms to expand as follows:

h

n
ΩΣ̂pΩ

′ =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)v̂(Xi)

=
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

(
Yi − rp(Xi − x)′β̂p

)2

=
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

(
εi +

[
µ(Xi)− rp(Xi − x)′βp

]
+ rp(Xi − x)′

[
βp − β̂p

])2

=
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

(
εi +

[
µ(Xi)− rp(Xi − x)′βp

]
− rp(Xh,i)

′Γ−1Ω [Y −Rβp] /n
)2
.
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The expansion of σ̂2
p is then

σ̂2
p = ν!2e′νΓ

−1
(
V1 + 2V4 − 2V2 + V3 − 2V5 + V6

)
Γ−1eν (S.15)

where

V1 =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)ε

2
i ,

V2 =
1

nh

n∑
i=1

(K2rpr
′
pr
′
p)(Xh,i)εiΓ

−1Ω [Y −Rβp] /n,

V3 =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]2
,

V4 =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

{
εi
[
µ(Xi)− rp(Xi − x)′βp

]}
,

V5 =
1

nh

n∑
i=1

(K2rpr
′
pr
′
p)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]
Γ−1Ω [Y −Rβp] /n,

V6 =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

{
rp(Xh,i)

′Γ−1Ω [Y −Rβp] /n
}2
.

With these terms in hand, define

• sn =
√
nh

• σ̆2
p = ν!2e′νΓ

−1
(
V1 − 2V2 + 2V4 − 2V̆5 + V̆6

)
Γ−1eν , where, with

[
Γ−1

]
li,lj

the {li + 1, lj + 1}
element of Γ−1, we define

V̆5 =

p∑
li=0

p∑
lj=0

[
Γ−1

]
li,lj

E
[
(K2rpr

′
p)(Xh,i)(Xh,i)

li
(
µ(Xi)− rp(Xi − x)′βp

)]

× 1

nh

n∑
j=1

{
K(Xh,j)(Xh,j)

lj
(
Yj − rp(Xj − x)′βp

)}
,

V̆6 =

p∑
li1=0

p∑
li2=0

p∑
lj1=0

p∑
lj2=0

[
Γ−1

]
li1 ,lj1

[
Γ−1

]
li2 ,lj2

E
[
h−1(K2rpr

′
p)(Xh,i)(Xh,i)

li1+li2

]

× 1

(nh)2

n∑
j=1

n∑
k=1

K(Xh,j)(Xh,j)
lj1
(
Yj − rp(Xj − x)′βp

)
K(Xh,k)(Xh,k)

lj2
(
Yk − rp(Xk − x)′βp

)
.

Next, using Equation (S.35) to rewrite µ(ν), canceling hν , and adding and subtracting σ̆−1
p , write

Tp as

Tp = σ̂−1
p

√
nh1+2ν(θ̂p − µ(ν))

= σ̂−1
p

√
nh1+2νν!e′νΓ

−1Ω (Y −Rβp) /(nhν)

11



= σ̂−1
p snν!e′νΓ

−1Ω (Y −Rβp) /n

= σ̆−1
p snν!e′νΓ

−1Ω (Y −Rβp) /n+
(
σ̂−1
p − σ̆−1

p

)
snν!e′νΓ

−1Ω (Y −Rβp) /n

=: T̆ + Un.

Then, referring back to Equation (S.14), we have

P [Tp < z] = P
[
T̆ + Un < z

]
,

with

Un =
(
σ̂−1
p − σ̆−1

p

)
snν!e′νΓ

−1Ω (Y −Rβp) /n (S.16)

and

T̆ = σ̆−1
p snν!e′νΓ

−1Ω (Y −Rβp) /n. (S.17)

As required, T̆ := T̆ (s−1
n

∑n
i=1Zi) is a smooth function of the sample average of Zi, which is given

by

Zi =

({
(Krp)(Xh,i)(Yi − rp(Xi − x)′βp)

}′
,

vech
{

(Krpr
′
p)(Xh,i)

}′
,

vech
{

(K2rpr
′
p)(Xh,i)ε

2
i

}′
,

vech
{

(K2rpr
′
p)(Xh,i)(Xh,i)

0εi

}′
, vech

{
(K2rpr

′
p)(Xh,i)(Xh,i)

1εi

}′
,

vech
{

(K2rpr
′
p)(Xh,i)(Xh,i)

2εi

}′
, . . . , vech

{
(K2rpr

′
p)(Xh,i)(Xh,i)

pεi

}′
,

vech
{

(K2rpr
′
p)(Xh,i)

{
εi
[
µ(Xi)− rp(Xi − x)′βp

]}}′)′
.

(S.18)

In order of their listing above, these pieces come from (i) the “score” portion of the numerator,

(ii) the “Gram” matrix Γ, (iii) V1, (iv) V2, and (v) V4. Notice that V̆5 and V̆6 do not add any

additional elements to Zi.

Equation (S.14) now follows from Lemma S.1(a), which completes Step (I), if we can show

that

r−1
Tp,F

P[|Un| > rn] = o(1), (S.19)

where rTp,F = max{s−2
n ,Ψ2

Tp,F
, s−1
n ΨTp,F } and rn = o(rTp,F ).

We now establish that Equation (S.19) holds. First

1

σ̂p
=

1

σ̆p

(
σ̂2
p

σ̆2
p

)−1/2

=
1

σ̆p

(
1 +

σ̂2
p − σ̆2

p

σ̆2
p

)−1/2

,

12



and hence a Taylor expansion gives 1

1

σ̂p
=

1

σ̆p

1− 1

2

σ̂2
p − σ̆2

p

σ̆2
p

+
1

2!

3

4

(
σ̂2
p − σ̆2

p

σ̆2
p

)2
σ̆5
p

σ̄5

 ,
for a point σ̄2 ∈ [σ̆2

p, σ̂
2
p], and so

σ̂−1
p − σ̆−1

p = −1

2

σ̂2
p − σ̆2

p

σ̆3
p

+
3

8

(
σ̂2
p − σ̆2

p

)2
σ̄5

. (S.20)

Plugging this into the definition of Un gives

Un =

(
− 1

2σ̆3
p

+
3

8

σ̂2
p − σ̆2

p

σ̄5

)(
σ̂2
p − σ̆2

p

)
snν!e′νΓ

−1Ω (Y −Rβp) /n.

Therefore, if
∣∣σ̂2
p − σ̆2

p

∣∣ = oP(1), the result in (S.19) will hold, and Step (I) will be complete, once

we have shown that

r−1
Tp,F

P
[∣∣(σ̂2

p − σ̆2
p

)
snν!e′νΓ

−1Ω (Y −Rβp) /n
∣∣ > rn

]
= r−1

Tp,F
P
[∣∣∣(ν!2e′νΓ

−1
(
V3 − 2[V5 − V̆5] + [V6 − V̆6]

)
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −Rβp) /n
∣∣∣ > rn

]
= o(1). (S.21)

Recall that rTp,F = max{s−2
n ,Ψ2

Tp,F
, s−1
n ΨTp,F } and rn = o(rTp,F ). This is what we now verify one

term at a time.

First, for the V3 term, we claim that

r−1
Tp,F

P
[∣∣∣ν!2e′νΓ

−1V3Γ
−1eνsnν!e′νΓ

−1Ω (Y −Rβp) /n
∣∣∣ > rn

]
≤ r−1

Tp,F
P
[∣∣∣ν!2e′νΓ

−1 (V3 − E[V3]) Γ−1eνsnν!e′νΓ
−1Ω (Y −M) /n

∣∣∣ > rn

]
+ r−1

Tp,F
P
[∣∣∣ν!2e′νΓ

−1E[V3]Γ−1eνsnν!e′νΓ
−1Ω (Y −M) /n

∣∣∣ > rn

]
+ r−1

Tp,F
P
[∣∣∣ν!2e′νΓ

−1 (V3 − E[V3]) Γ−1eνsnν!e′νΓ
−1Ω (M −Rβp) /n

∣∣∣ > rn

]
+ r−1

Tp,F
P
[∣∣∣ν!2e′νΓ

−1E[V3]Γ−1eνsnν!e′νΓ
−1Ω (M −Rβp) /n

∣∣∣ > rn

]
= o(1). (S.22)

1It is not necessary to retain higher order terms in the Taylor series, for example via

1

σ̂p
=

1

σ̆p

[
1 − 1

2

σ̂2
p − σ̆2

p

σ̆2
p

+
1

2!

3

4

(
σ̂2
p − σ̆2

p

σ̆2
p

)2

− 1

3!

15

8

(
σ̂2
p − σ̆2

p

σ̆2
p

)3
σ̆7
p

σ̄7

]
,

because σ̆2
p is constructed exactly to retain all the important terms from σ̂2

p. Put differently, because (σ̂2
p −

σ̆2
p)snν!e′νΓ

−1Ω (Y −Rβp) /n will be shown to be ignorable in the process of verifying Equation (S.19), it is imme-
diate that terms from (σ̂2

p − σ̆2
p)2 can also be ignored, as they are higher order. A longer Taylor expansion can be

useful when computing the terms of the Edgeworth expansion.
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For the first term, using the elementary bounds (note that |eq| = 1),

r−1
Tp,F

P
[∣∣∣ν!2e′νΓ

−1 (V3 − E[V3]) Γ−1eνsnν!e′νΓ
−1Ω (Y −M) /n

∣∣∣ > rn

]
≤ r−1

Tp,F
3P
[∣∣Γ−1

∣∣ > CΓ

]
+ r−1

Tp,F
P
[
sn |Ω (Y −M) /n| > δ log(sn)1/2

]
+ r−1

Tp,F
P
[∣∣∣∣ 1

nh

n∑
i=1

{
(K2rpr

′
p)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]2
− E

[
(K2rpr

′
p)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]2]}∣∣∣∣ > rn
1

(|eq|q!CΓ)3δ log(sn)1/2

]
= o(1),

by Lemmas S.2, S.4, and S.6. In applying the last, take the constant to be (|eq|q!CΓ)−3δ−1 and

note that rn = o(rTp,F ) may be chosen such that rn log(sn)−1/2 vanishes slower than (i.e. is larger

than) Ψ2
Tp,F

s−2
n log(sn)γ , making the probability in the penultimate line bounded by the one in the

Lemma. For example, take rn = ΨTp,F s
−1
n log(sn)−1/2−γ and note that

rn

log(sn)1/2
=

(
ΨTp,F

sn

)2

log(sn)γ

[(
sn

ΨTp,F

)2 rn

log(sn)1/2+γ

]
=

(
ΨTp,F

sn

)2

log(sn)γ
[

sn
ΨTp,F

]
,

where factor in square brackets diverges by assumption.

The second term required for result (S.22) obeys

r−1
Tp,F

P
[∣∣∣ν!2e′νΓ

−1E[V3]Γ−1eνsnν!e′νΓ
−1Ω (Y −M) /n

∣∣∣ > rn

]
≤ r−1

Tp,F
3P
[∣∣Γ−1

∣∣ > CΓ

]
+ r−1

Tp,F
P

[
sn |Ω (Y −M) /n| > log(sn)1/2

{
s2
n

Ψ2
Tp,F

rn
1

(|eq|q!CΓ)3 log(sn)1/2

}]
= o(1),

using Lemmas S.2 and S.4, as the term in braces diverges (e.g. for rn = Ψ2
Tp,F

log(sn)−1/2) and

E[V3] = O(Ψ2
Tp,F

s−2
n ) as follows:

E[V3] =
1

nh

n∑
i=1

E
[
(K2rpr

′
p)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]2]
= E

[
h−1(K2rpr

′
p)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]2]
=

Ψ2
Tp,F

s2
n

E

[
h−1(K2rpr

′
p)(Xh,i)

[
sn

ΨTp,F

(
µ(Xi)− rp(Xi − x)′βp

)]2
]

= O

(
Ψ2
Tp,F

s2
n

)
.
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The third term required for result (S.22) obeys

r−1
Tp,F

P
[∣∣∣ν!2e′νΓ

−1 (V3 − E[V3]) Γ−1eνsnν!e′νΓ
−1Ω (M −Rβp) /n

∣∣∣ > rn

]
≤ r−1

Tp,F
3P
[∣∣Γ−1

∣∣ > CΓ

]
+ r−1

Tp,F
P
[
|Ω (M −Rβp) /n| > log(sn)1/2

]
+ r−1

Tp,F
P
[∣∣∣∣ 1

nh

n∑
i=1

{
(K2rpr

′
p)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]2
− E

[
(K2rpr

′
p)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]2]}∣∣∣∣ > rn
1

sn(|eq|q!CΓ)3 log(sn)1/2

]
= o(1),

by Lemmas S.2, S.5, and S.6. In applying the last, take δ = (|eq|q!CΓ)−3 and note that rn = o(rTp,F )

may be chosen such that rn log(sn)−1/2 vanishes slower than (i.e. is larger than) Ψ2
Tp,F

s−2
n log(sn)γ ,

making the probability in the penultimate line bounded by the one in the Lemma. For example,

take rn = ΨTp,F s
−1
n log(sn)−γ and note that

rn

sn log(sn)1/2
=

(
ΨTp,F

sn

)2

log(sn)γ

[(
sn

ΨTp,F

)2 rn

sn log(sn)1/2+γ

]
=

(
ΨTp,F

sn

)2

log(sn)γ
[

1

ΨTp,F log(sn)1/2+2γ

]
,

where factor in square brackets diverges by assumption.

The fourth term follows the same pattern as the second, using Lemma S.5 in place of Lemma

S.4, the same way the third term followed the pattern of the first. This completes the proof of

result (S.22).

Turning to the V5 terms, first observe that, when all its components are considered, V5 is a

(p+ 1)× (p+ 1) matrix (from (rpr
′
p)(Xh,i)) multiplied by a scalar. We write out

r′p(Xh,i)Γ
−1Ω [Y −Rβp] /n =

1

nh

n∑
j=1

{
r′p(Xh,i)Γ

−1r′p(Xh,j)
}
K(Xh,j)

(
Yj − rp(Xj − x)′βp

)

=
1

nh

n∑
j=1


p∑

li=0

p∑
lj=0

[
Γ−1

]
li,lj

(Xh,i)
li(Xh,j)

lj

K(Xh,j)
(
Yj − rp(Xj − x)′βp

)
.

where
[
Γ−1

]
li,lj

is the {li + 1, lj + 1} element of Γ−1, which is well-behaved by Lemma S.2. We

make use of this in order to write

ν!2e′νΓ
−1
[
V5

]
Γ−1eν = ν!2e′νΓ

−1 1

nh

n∑
i=1

(K2rpr
′
pr
′
p)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]
Γ−1Ω [Y −Rβp] /nΓ−1eν

=

p∑
li=0

p∑
lj=0

ν!2e′νΓ
−1
[
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

n∑
j=1

{
(K2rpr

′
p)(Xh,i)K(Xh,j)(Xh,i)

li(Xh,j)
lj
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×
[
µ(Xi)− rp(Xi − x)′βp

] (
Yj − rp(Xj − x)′βp

)}
Γ−1eν

=:

p∑
li=0

p∑
lj=0

ν!2e′νΓ
−1
{
V5,1(li, lj) + V5,2(li, lj)

}
Γ−1eν , (S.23)

where V5,1(li, lj) and V5,2(li, lj) are the “own” and “cross” summands

V5,1(li, lj) :=
[
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

{
(K3rpr

′
p)(Xh,i)(Xh,i)

li+lj

×
[
µ(Xi)− rp(Xi − x)′βp

] (
Yi − rp(Xi − x)′βp

)}
V5,2(li, lj) :=

[
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

{
(K2rpr

′
p)(Xh,i)K(Xh,j)(Xh,i)

li(Xh,j)
lj

×
[
µ(Xi)− rp(Xi − x)′βp

] (
Yj − rp(Xj − x)′βp

)}
.

Recall that the goal is result (S.21). We will study one term of the double sum (S.23), i.e.

V5,1(li, lj) and V5,2(li, lj) for a fixed pair {li, lj}, as all terms are identically handled. If each term

is ignorable in the expansion, then it follows that

r−1
Tp,F

P
[∣∣∣(ν!2e′νΓ

−1
(
−2[V5 − V̆5

)
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −Rβp) /n
∣∣∣ > rn

]
≤ C max

0≤li,lj≤p
r−1
Tp,F

P
[∣∣∣∣ (ν!2e′νΓ

−1
(
V5,1(li, lj) + V5,2(li, lj)− V̆5,2(li, lj)

)
Γ−1eν

)
× snν!e′νΓ

−1Ω (Y −Rβp) /n
∣∣∣∣ > rn

]
= o(1), (S.24)

by Boole’s inequality and p fixed.

As hinted at in this display, V̆5 will be constructed from the pieces of V5,2(li, lj) which contribute

to the expansion. We first show that the V5,1(li, lj) terms may be ignored. Begin by splitting

(Yi − rp(Xi − x)′βp) = εi + (µ(Xi) − rp(X−x)′βp) everywhere, as the “variance” and “bias” type

pieces have different rates, which must be accounted for:

r−1
Tp,F

P
[∣∣(ν!2e′νΓ

−1 (V5,1(li, lj)) Γ−1eν
)
snν!e′νΓ

−1Ω (Y −Rβp) /n
∣∣ > rn

]
≤ r−1

Tp,F
P
[∣∣(ν!2e′νΓ

−1 (V5,1(li, lj)) Γ−1eν
)
snν!e′νΓ

−1Ω (Y −M) /n
∣∣ > rn

]
+ r−1

Tp,F
P
[∣∣(ν!2e′νΓ

−1 (V5,1(li, lj)) Γ−1eν
)
snν!e′νΓ

−1Ω (M −Rβp) /n
∣∣ > rn

]
≤ r−1

Tp,F
P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

{
(K3rpr

′
p)(Xh,i)(Xh,i)

li+lj

×
[
µ(Xi)− rp(Xi − x)′βp

]2})
Γ−1eν

)
snν!e′νΓ

−1Ω (M −Rβp) /n

∣∣∣∣∣ > rn

]
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+ r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

{
(K3rpr

′
p)(Xh,i)(Xh,i)

li+lj

×
[
µ(Xi)− rp(Xi − x)′βp

]2})
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

∣∣∣∣∣ > rn

]

+ r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

{
(K3rpr

′
p)(Xh,i)(Xh,i)

li+lj

×
[
µ(Xi)− rp(Xi − x)′βp

]
εi

})
Γ−1eν

)
snν!e′νΓ

−1Ω (M −Rβp) /n

∣∣∣∣∣ > rn

]

+ r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

{
(K3rpr

′
p)(Xh,i)(Xh,i)

li+lj

×
[
µ(Xi)− rp(Xi − x)′βp

]
εi

})
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

∣∣∣∣∣ > rn

]
.

For the first (i.e. the first term on the right hand side of the last inequality)

r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

{
(K3rpr

′
p)(Xh,i)(Xh,i)

li+lj

×
[
µ(Xi)− rp(Xi − x)′βp

]2})
Γ−1eν

)
snν!e′νΓ

−1Ω (M −Rβp) /n

∣∣∣∣∣ > rn

]
≤ r−1

Tp,F
4P
[∣∣Γ−1

∣∣ > CΓ

]
+ r−1

Tp,F
P
[
|Ω (M −Rβp) /n| > log(sn)1/2

]
+ r−1

Tp,F
P
[∣∣∣∣ 1

nh

n∑
i=1

{
(K3rpr

′
p)(Xh,i)(Xh,i)

li+lj

×
[
µ(Xi)− rp(Xi − x)′βp

]2}∣∣∣∣ > rn
nh

sn(|eq|q!)3C4
Γ log(sn)1/2

]
= o(1),

by Lemmas S.2 and S.5, the latter applied twice, and the fact that, for rn = ΨTp,F sn log(sn)−γ ,

with any γ > 0

rn
nh

sn(|eq|q!)3C4
Γ log(sn)γ

�
ΨTp,F

sn
log(sn)1/2

[
sn

log(sn)1/2+2γ

]
,

and the factor in square brackets diverges. The rest of the V5,1(li, lj) terms are handled by exactly

the same steps, but using Lemmas S.4, S.5, and S.7 as needed for the final convergence. This

establishes the V5,1(li, lj) part of Equation (S.24).

Turning to the V5,2(li, lj) part of Equation (S.24), we again begin by splitting (Yi − rp(Xi −

17



x)′βp) = εi + (µ(Xi)− rp(X−x)′βp) everywhere, just like above,

r−1
Tp,F

P
[∣∣(ν!2e′νΓ

−1 (V5,2(li, lj)) Γ−1eν
)
snν!e′νΓ

−1Ω (Y −Rβp) /n
∣∣ > rn

]
≤ r−1

Tp,F
P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

{
(K2rpr

′
p)(Xh,i)K(Xh,j)(Xh,i)

li(Xh,j)
lj

×
[
µ(Xi)− rp(Xi−x)′βp

]
(εj)

})
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

∣∣∣∣∣ > rn

]

+ r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

{
(K2rpr

′
p)(Xh,i)K(Xh,j)(Xh,i)

li(Xh,j)
lj

×
[
µ(Xi)− rp(Xi−x)′βp

] (
µ(Xj)− rp(Xj−x)′βp

)})
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

∣∣∣∣∣ > rn

]

+ r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

{
(K2rpr

′
p)(Xh,i)K(Xh,j)(Xh,i)

li(Xh,j)
lj

×
[
µ(Xi)− rp(Xi−x)′βp

]
(εj)

})
Γ−1eν

)
snν!e′νΓ

−1Ω (M −Rβp) /n

∣∣∣∣∣ > rn

]

+ r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

{
(K2rpr

′
p)(Xh,i)K(Xh,j)(Xh,i)

li(Xh,j)
lj

×
[
µ(Xi)− rp(Xi−x)′βp

] (
µ(Xj)− rp(Xj−x)′βp

)})
Γ−1eν

)
snν!e′νΓ

−1Ω (M −Rβp) /n

∣∣∣∣∣ > rn

]

For the first term, which has two “variance” terms and one bias-type term:

r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

{
(K2rpr

′
p)(Xh,i)K(Xh,j)(Xh,i)

li(Xh,j)
lj

×
[
µ(Xi)− rp(Xi−x)′βp

]
(εj)

})
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

∣∣∣∣∣ > rn

]
≤ r−1

Tp,F
4P
[∣∣Γ−1

∣∣ > CΓ

]
+ r−1

Tp,F
P
[
|Ω (Y −M) /n| > C1s

−1
n log(sn)1/2

]
+ r−1

Tp,F
P
[∣∣∣∣ 1

nh

n∑
j=1

{
K(Xh,j)(Xh,i)

ljεj

}∣∣∣∣ > C2s
−1
n log(sn)1/2

]

+ r−1
Tp,F

P
[∣∣∣∣ 1

nh

n∑
i=1

{
(K2rpr

′
p)(Xh,i)(Xh,i)

li
[
µ(Xi)− rp(Xi − x)′βp

]} ∣∣∣∣ > rn
s2
n

sn(|eq|q!)3C4
ΓC1C2 log(sn)

]
= o(1),

by Lemmas S.2, S.4 applied twice, and S.5. For the last, note that for rn = ΨTp,F sn log(sn)−γ , with
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γ > 0,

rn
s2
n

sn(|eq|q!)3C4
ΓC1C2 log(sn)

�
ΨTp,F

sn
log(sn)γ

[
sn

log(sn)1+2γ

]
,

and the term in square brackets diverges by assumption.

Turning to the second V5,2 term (the third and fourth will be similar), which has one “variance”

terms and two bias-type terms:, observe that

r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

{
(K2rpr

′
p)(Xh,i)K(Xh,j)(Xh,i)

li(Xh,j)
lj

×
[
µ(Xi)− rp(Xi−x)′βp

] (
µ(Xj)− rp(Xj−x)′βp

)})
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

∣∣∣∣∣ > rn

]
6= o(1),

because, compared to the above, Lemma S.4 is applied only once, while Lemma S.5 is needed twice,

instead of vice versa. The slower rate in the latter implies that this term can not be ignored. Thus

pieces of this will contribute to V̆5. To see which, we will first center some bias terms. Just for

notational ease, define the shorthand

V5,2,i = (K2rpr
′
p)(Xh,i)(Xh,i)

li
[
µ(Xi)− rp(Xi−x)′βp

]
and

V5,2,j = K(Xh,j)(Xh,j)
lj
[
µ(Xj)− rp(Xj−x)′βp

]
.

The term in question is then(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

V5,2,iV5,2,j

)
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

=

(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

E[h−1V5,2,i]
1

nh

n∑
j=1

V5,2,j

)
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

+

(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

nh

n∑
i=1

(V5,2,i − E[V5,2,i])E[h−1V5,2,j ]

)
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

+

(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

(V5,2,i − E[V5,2,i]) (V5,2,j − E[V5,2,j ])

)
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

The first term here will be incorporated into V̆5, and thus into T̆ . Note that it is a smooth function

of the Zi from Equation (S.18), which is why we choose the centering the way we do, that is,

keeping the term with E[h−1V5,2,i] instead of E[h−1V5,2,j ]. Doing the reverse would force further

variables into the vector Zi, and require a stronger Cramér’s condition, which we seek to avoid.2

2Calonico et al. (2018a,b) use such an approach, requiring not only a strengthening of Cramér’s condition, but
also in the process, ruling out the uniform kernel.
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The next term obeys

r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

nh

n∑
i=1

(V5,2,i − E[V5,2,i])E[h−1V5,2,j ]

)
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −M) /n

∣∣∣∣∣ > rn

]
≤ r−1

Tp,F
4P
[∣∣Γ−1

∣∣ > CΓ

]
+ r−1

Tp,F
P
[
|Ω (Y −M) /n| > C1s

−1
n log(sn)1/2

]
+ r−1

Tp,F
P
[∣∣∣∣ 1

nh

n∑
i=1

(V5,2,i − E[V5,2,i])

∣∣∣∣ > rn
sn

CΨTp,F sn log(sn)1/2

]
= o(1),

by Lemmas S.2, S.4, and S.6, the fact that E[h−1V5,2,j ] � s−1
n ΨTp,F (see Section S.3 or the compu-

tation for E[V3] above), and that for rn = ΨTp,F s
−1
n log(sn)−γ , with any γ > 0,

rn
sn

CΨTp,F sn log(sn)1/2
�

ΨTp,F

sn
log(sn)γ

[
1

ΨTp,F log(sn)1/2+2γ

]
the factor in square brackets diverges by assumption.

The final piece of the second V5,2 term similarly obeys

r−1
Tp,F

P

[∣∣∣∣∣
(
ν!2e′νΓ

−1

([
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

(V5,2,i − E[V5,2,i]) (V5,2,j − E[V5,2,j ])

)
Γ−1eν

)

× snν!e′νΓ
−1Ω (Y −M) /n

∣∣∣∣∣ > rn

]
≤ r−1

Tp,F
4P
[∣∣Γ−1

∣∣ > CΓ

]
+ r−1

Tp,F
P
[
|Ω (Y −M) /n| > C1s

−1
n log(sn)1/2

]
+ r−1

Tp,F
P
[∣∣∣∣ 1

nh

n∑
j=1

(V5,2,j − E[V5,2,j ])

∣∣∣∣ > ΨTp,F

sn
log(sn)γ

]
+ o(1)

+ r−1
Tp,F

P
[∣∣∣∣ 1

nh

n∑
i=1

(V5,2,i − E[V5,2,i])

∣∣∣∣ > rn
sn

CΨTp,F sn log(sn)1/2+γ

]
= o(1),

by Lemmas S.2, S.4, and S.6 applied twice, and that for rn = ΨTp,F s
−1
n log(sn)−γ , with any γ > 0,

rn
sn

CΨTp,F sn log(sn)1/2
�

ΨTp,F

sn
log(sn)γ

[
1

ΨTp,F log(sn)1/2+3γ

]
the factor in square brackets diverges by assumption. The o(1) factor in the third to last line

accounts for the missing term in the sum over the “j” index.

Comparing the first and second V5,2 terms, we see the the first was ignorable because it had
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two “variance” type terms, while the second had only one. This generalizes to the third and fourth

V5,2 terms, the third being just like the second and the fourth having three bias-type terms. For

these, the same centering must be done as was done here. The bounding is then nearly identical.

Putting these pieces together, recall the definition of V5,2(li, lj):

V5,2(li, lj) :=
[
Γ−1

]
li,lj

1

(nh)2

n∑
i=1

∑
j 6=i

{
(K2rpr

′
p)(Xh,i)K(Xh,j)(Xh,i)

li(Xh,j)
lj

×
[
µ(Xi)− rp(Xi − x)′βp

] (
Yj − rp(Xj − x)′βp

)}
.

Following the logic above, always centering the “i” term first, we define

V̆5,2(li, lj) :=
[
Γ−1

]
li,lj

E
[
(K2rpr

′
p)(Xh,i)(Xh,i)

li
(
µ(Xi)− rp(Xi − x)′βp

)]
× 1

nh

n∑
j=1

{
K(Xh,j)(Xh,j)

lj
(
Yj − rp(Xj − x)′βp

)}

Returning to Equations (S.23), V̆5 is defined via

ν!2e′νΓ
−1
[
V̆5

]
Γ−1eν :=

p∑
li=0

p∑
lj=0

ν!2e′νΓ
−1
[
Γ−1

]
li,lj

E
[
(K2rpr

′
p)(Xh,i)(Xh,i)

li
(
µ(Xi)− rp(Xi − x)′βp

)]

× 1

nh

n∑
j=1

{
K(Xh,j)(Xh,j)

lj
(
Yj − rp(Xj − x)′βp

)}
Γ−1eν .

This completes the proof of Equation (S.24).

Lastly, we consider the V6 − V̆6 term of (S.21). Proving this is ignorable will complete Step

(I). Begin by expanding the inner product, just as was done for V5:

V6 =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

{
rp(Xh,i)

′Γ−1Ω [Y −Rβp] /n
}2

=
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

 1

nh

n∑
j=1

rp(Xh,i)
′Γ−1rp(Xh,j)K(Xh,j)

(
Yj − rp(Xj − x)′βp

)
2

=
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

 1

nh

n∑
j=1

p∑
li=0

p∑
lj=0

(Xh,i)
li
[
Γ−1

]
li,lj

(Xh,j)
ljK(Xh,j)

(
Yj − rp(Xj − x)′βp

)
2

=

p∑
li1=0

p∑
li2=0

p∑
lj1=0

p∑
lj2=0

[
Γ−1

]
li1 ,lj1

[
Γ−1

]
li2 ,lj2

1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)(Xh,i)

li1+li2

× 1

(nh)2

n∑
j=1

n∑
k=1

K(Xh,j)(Xh,j)
lj1
(
Yj − rp(Xj − x)′βp

)
K(Xh,k)(Xh,k)

lj2
(
Yk − rp(Xk − x)′βp

)
.
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Define

V̆6 =

p∑
li1=0

p∑
li2=0

p∑
lj1=0

p∑
lj2=0

[
Γ−1

]
li1 ,lj1

[
Γ−1

]
li2 ,lj2

E
[
h−1(K2rpr

′
p)(Xh,i)(Xh,i)

li1+li2

]

× 1

(nh)2

n∑
j=1

n∑
k=1

K(Xh,j)(Xh,j)
lj1
(
Yj − rp(Xj − x)′βp

)
K(Xh,k)(Xh,k)

lj2
(
Yk − rp(Xk − x)′βp

)
.

Completely analogous steps to those above will show that

r−1
Tp,F

P
[∣∣∣(ν!2e′νΓ

−1
(
V6 − V̆6

)
Γ−1eν

)
snν!e′νΓ

−1Ω (Y −Rβp) /n
∣∣∣ > rn

]
= o(1). (S.25)

The starting point will again be splitting (Yi−rp(Xi−x)′βp) = εi+(µ(Xi)−rp(X−x)′βp) everywhere,

which now occurs in three places, giving eight total terms. The most difficult of these will be when

all three are bias terms. The rest of the terms will have at least one “variance” type term, and the

faster rates of Lemma S.4 can be brought to bear. Thus, we shall only demonstrate the former.

For a fixed set of the indexes li1 , li2 , lj1 , lj2 , let

V6,i = (K2rpr
′
p)(Xh,i)(Xh,i)

li1+li2 ,

V6,j = K(Xh,j)(Xh,j)
lj1
(
µ(XJ)− rp(Xj − x)′βp

)
, and

V6,k = K(Xh,k)(Xh,k)
lj2
(
µ(Xk)− rp(Xk − x)′βp

)
.

The term in question, with three “bias” type terms”, is:

ν!2e′νΓ
−1
(
V6 − V̆6

)
Γ−1eνsnν!e′νΓ

−1Ω (M −Rβp) /n

= ν!2e′νΓ
−1

([
Γ−1

]
li1 ,lj1

[
Γ−1

]
li2 ,lj2

1

nh

n∑
i=1

(V6,i − E[V6,i])
1

(nh)2

n∑
j=1

n∑
k=1

E[V6,j ]E[V6,k]

)
× Γ−1eνsnν!e′νΓ

−1Ω (M −Rβp) /n

+ ν!2e′νΓ
−1

([
Γ−1

]
li1 ,lj1

[
Γ−1

]
li2 ,lj2

1

nh

n∑
i=1

(V6,i − E[V6,i])
1

(nh)2

n∑
j=1

n∑
k=1

E[V6,j ] (V6,k − E[V6,k])

)
× Γ−1eνsnν!e′νΓ

−1Ω (M −Rβp) /n

+ ν!2e′νΓ
−1

([
Γ−1

]
li1 ,lj1

[
Γ−1

]
li2 ,lj2

1

nh

n∑
i=1

(V6,i − E[V6,i])
1

(nh)2

n∑
j=1

n∑
k=1

(V6,j − E[V6,j ])E[V6,k]

)
× Γ−1eνsnν!e′νΓ

−1Ω (M −Rβp) /n

+ ν!2e′νΓ
−1

([
Γ−1

]
li1 ,lj1

[
Γ−1

]
li2 ,lj2

1

nh

n∑
i=1

(V6,i − E[V6,i])
1

(nh)2

n∑
j=1

n∑
k=1

(V6,j − E[V6,j ]) (V6,k − E[V6,k])

)
× Γ−1eνsnν!e′νΓ

−1Ω (M −Rβp) /n
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The first term is bounded as

≤ r−1
Tp,F

5P
[∣∣Γ−1

∣∣ > CΓ

]
+ r−1

Tp,F
P [|Ω (M −Rβp) /n| > C1 log(sn)γ ]

+ r−1
Tp,F

P

[∣∣∣∣∣ 1

nh

n∑
i=1

(V6,i − E[V6,i])

∣∣∣∣∣ > rn
1

C1C5
Γν!3|eν |3E[h−1V6,j ]E[h−1V6,k]sn log(sn)γ

]
= o(1),

by Lemmas S.2, S.5, and S.3. In applying the last, we have used that E[h−1V6,j ] � E[h−1V6,k] �
s−1
n ΨTp,F (see Section S.3 or the computation for E[V3] above) and rn = s−1

n ΨTp,F log(sn)−γ for

γ > 0, leaving

rn
1

E[h−1V6,j ]E[h−1V6,k]sn log(sn)γ
� s−1

n log(sn)1/2

[
1

s−1
n ΨTp,F log(sn)1/2+2γ

]
.

The factor in square brackets diverges by assumption. The second term is

ν!2e′νΓ
−1

([
Γ−1

]
li1 ,lj1

[
Γ−1

]
li2 ,lj2

1

nh

n∑
i=1

(V6,i − E[V6,i])
1

(nh)2

n∑
j=1

n∑
k=1

E[V6,j ] (V6,k − E[V6,k])

)
× Γ−1eνsnν!e′νΓ

−1Ω (M −Rβp) /n

≤ r−1
Tp,F

5P
[∣∣Γ−1

∣∣ > CΓ

]
+ r−1

Tp,F
P [|Ω (M −Rβp) /n| > C1 log(sn)γ ]

+ r−1
Tp,F

P

[∣∣∣∣∣ 1

nh

n∑
k=1

(V6,k − E[V6,k])

∣∣∣∣∣ > C2
ΨTp,F

sn
log(sn)γ

]

+ r−1
Tp,F

P

[∣∣∣∣∣ 1

nh

n∑
i=1

(V6,i − E[V6,i])

∣∣∣∣∣ > rn
C1C2C5

Γν!3|eν |3E[h−1V6,j ]ΨTp,F sns
−1
n log(sn)2γ

]
= o(1),

by nearly identical reasoning, additionally using Lemma S.6. The third term is the identical to this

one, and the fourth term is similar, requiring Lemma S.6 twice.

Referring back to the discussion following Equation (S.25), this completes the proof of that result

for the case where the bias portion of (Yi − rp(Xi − x)′βp) = εi + (µ(Xi)− rp(X−x)′βp) is retained

everywhere, which is the most difficult. All other pieces will follow by similar logic, applying Lemma

S.4 when needed. Because this Lemma delivers a faster rate, these other terms will not require

strong assumptions. Altogether, this establishes the convergence required by Equation (S.25).

Combining Equations (S.22), (S.24), and (S.25) establishes that
∣∣σ̂2
p − σ̆2

p

∣∣ = oP(1) and (S.21)

holds, proving (S.19) and thus completing Step (I).
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S.2.3.2 Step (II)

We now prove that

Sn :=

n∑
i=1

V[Zi]
−1/2(Zi − E[Zi])/

√
n

obeys an Edgeworth expansion by verifying the conditions of Theorem 3.4 of Skovgaard (1981).

Repeating the definition of Zi from Equation (S.18):

Zi =

({
(Krp)(Xh,i)(Yi − rp(Xi − x)′βp)

}′
,

vech
{

(Krpr
′
p)(Xh,i)

}′
,

vech
{

(K2rpr
′
p)(Xh,i)ε

2
i

}′
,

vech
{

(K2rpr
′
p)(Xh,i)(Xh,i)

0εi

}′
, vech

{
(K2rpr

′
p)(Xh,i)(Xh,i)

1εi

}′
,

vech
{

(K2rpr
′
p)(Xh,i)(Xh,i)

2εi

}′
, . . . , vech

{
(K2rpr

′
p)(Xh,i)(Xh,i)

pεi

}′
,

vech
{

(K2rpr
′
p)(Xh,i)

{
εi
[
µ(Xi)− rp(Xi − x)′βp

]}}′)′
.

First, define

B := hV[Zi],

which may be readily computed, but the constants are not needed here. All that matters at present

is that, under our assumptions, B is bounded and bounded away from zero. Write

Sn =

n∑
i=1

B−1/2(Zi − E[Zi])/sn.

By construction, the mean of Sn is zero and the variance is the identity matrix. That is, for any

t ∈ Rdim(Zi), E[t′Sn] = 0 and V[t′Sn] = |t|2.

To verify conditions (I) and (II) of Skovgaard (1981, Theorem 3.4) we first compute the third

and fourth moments of Zi, and use these to compute the required directional cumulants of Sn. For

a nonnegative integer l and k ∈ {3, 4}, by a change of variables we find that

E
[(
K(Xh,i)(Xh,i)

l
)k]

= h

∫
K(u)kulkf(x− uh)du = O(h),

under the conditions on the kernel function and the marginal density of Xi, f(·). In exactly the

same way, for the remaining pieces of Zi, we find that:

E
[(
K(Xh,i)(Xh,i)

l(Yi − rp(Xi − x)′βp)
)k]

= O(h),
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E
[(
K(Xh,i)(Xh,i)

lε2
i

)k]
= O(h), and E

[(
K(Xh,i)(Xh,i)

lεi

)k]
= O(h),

E
[(
K(Xh,i)(Xh,i)

lεi(µ(Xi)− rp(Xi − x)′βp)
)k]

= O(h),

using the assumed moment conditions on εi. Therefore, for a t ∈ Rdim(Zi) with |t| = 1

E
[(
t′B−1/2(Zi − E[Zi])

)3
]

= O(h).

and

E
[(
t′B−1/2(Zi − E[Zi])

)4
]

= O(h).

Using these, and the fact that the Zi are i.i.d. and the summands of Sn are mean zero, we have,

again for a t ∈ Rdim(Zi) with |t| = 1,

E
[
(t′Sn)3

]
= s−3

n

n∑
i=1

E
[(
t′B−1/2(Zi − E[Zi])

)3
]

= O(s−3
n nh) = O(s−1

n ).

The third moment agrees with the third cumulant of Sn. The fourth cumulant is

E
[
(t′Sn)4

]
− 3E

[
(t′Sn)2

]2
.

The first term of these two is

E
[
(t′Sn)4

]
= s−4

n

(
4

2

) n∑
i=1

∑
j 6=i

E
[(
t′B−1/2(Zi − E[Zi])

)2
]
E
[(
t′B−1/2(Zj − E[Zj ])

)2
]

+ s−4
n

n∑
i=1

E
[(
t′B−1/2(Zi − E[Zi])

)4
]

= 3h−2[1 + o(1/n)]E
[(
t′B−1/2(Zi − E[Zi])

)2
]2

+O(s−2
n ).

By direct computation, the second piece of the fourth cumulant is

E
[
(t′Sn)2

]2
=

(
s−2
n nE

[(
t′B−1/2(Zi − E[Zi])

)2
])2

.

This cancels with the corresponding term of E
[
(t′Sn)4

]
, and thus the fourth cumulant is O(s−2

n ).

Thus, we find that, in the notation of Skovgaard (1981), ρs,n(t) � s−1
n , and so condition (II) of

Skovgaard (1981) is satisfied by setting an(t) = Csn for an appropriate constant C. Recall that

rn = o(rTp,F ), with rTp,F = max{s−2
n ,Ψ2

Tp,F
, s−1
n ΨTp,F }, i.e. the slowest vanishing of the rates.

Thus our rn is εn in the notation of Skovgaard (1981), and condition (I) therein is satisfied because

an(t)−(s−1) = s−3
n = o(s−2

n ) = O(rn).

Next, we verify condition (III′′α) of Skovgaard (1981, Theorem 3.4 and Remark 3.5). Let ξS(t) be
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the characteristic function of Sn and ξZ(t) that of Zi, where t ∈ Rdim(Zi). By the i.i.d. assumption,

ξS(t) = E[exp{it′Sn}] =
n∏
i=1

E[exp{it′B−1/2(Zi − E[Zi])/sn}]

=
n∏
i=1

E
[
exp

{
i
(
t′B−1/2/sn

)
Zi

}]
exp{−it′B−1/2E[Zi])/sn}.

The second factor is bounded by one, leaving

ξS(t) ≤
[
ξZ

(
t′B−1/2/sn

)]n
.

Recall that, in the notation of Skovgaard (1981), an(t) = Cs−1
n , and so condition (III′′α) of Theorem

3.4 (and Remark 3.5) is satisfied because

sup
|t|>δCs−1

n

|ξS(t)| ≤ sup
|t|>δCs−1

n

∣∣∣ξZ (t′B−1/2/sn

)∣∣∣n
≤ sup
|t1|>C1

|ξZ(t1)|n

= (1− C2h)n = o(r−C3
n ),

for any C3 > 0 by the assumption that log(nh)/(nh) = o(1). Thus condition (III′′α) holds. The

penultimate equality holds by Lemma S.9, which verifies that Zi obeys the n-varying version of

Cramér’s condition: for h sufficiently small, for all C1 > 0 there is a C2 > 0 such that

sup
|t|>C1

|ξZ(t)| < (1− C2h).

Finally, we check condition (IV) of Skovgaard (1981, Theorem 3.4). We aim to prove that

sup
0<s<1

∣∣∣∣ d5

ds5
log ξS

(
s
δan(t)t

|t|

)∣∣∣∣
5!

∣∣∣∣δan(t)t

|t|

∣∣∣∣5
= O(an(t)−3), (S.26)

for some δ > 0, with an(t) = Csn defined by conditions (I) and (II). For the supremum, as s ranges

in (0, 1), the quantity w = sδan(t) ranges in (0, δan(t)). Further, by the chain rule

d5

ds5
log ξS

(
s
δan(t)t

|t|

)
=

d5

dw5
log ξS

(
wt

|t|

)
(δan(t))5 .

To see why, write log ξS (sδan(t)t/|t|) as g(w(s)), where w(s) = sδan(t) and g(w) = log ξS (wt/|t|)
and then the chain rule gives

d5

ds5
log ξS

(
s
δan(t)t

|t|

)
=
d5g

dw5

(
dw

ds

)5
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because all the other terms in the chain rule expansion involve higher derivatives of the linear

function w(s) = sδan(t) and hence are zero. Therefore

sup
0<s<1

∣∣∣∣ d5

ds5
log ξS

(
s
δan(t)t

|t|

)∣∣∣∣
5!

∣∣∣∣δan(t)t

|t|

∣∣∣∣5
= sup

0<w<δan(t)

∣∣∣∣ d5

dw5
log ξS

(
wt

|t|

)
(δan(t))5

∣∣∣∣
5!

∣∣∣∣δan(t)t

|t|

∣∣∣∣5
= sup

0<w<δan(t)

∣∣∣∣ d5

dw5
log ξS

(
wt

|t|

)∣∣∣∣
5!

,

where we have canceled terms and used the fact that |(t/|t|)| = 1.

With an(t) = Csn, proving Equation (S.26) is equivalent to showing that

sup
0<w<δan(t)

∣∣∣∣ d5

dw5
log ξS

(
wt

|t|

)∣∣∣∣ = O
(
s−3
n

)
.

Let ξZ̄(t) be the characteristic function of (Zi − E[Zi]). (This is distinct from ξZ(t), which is the

characteristic function of Zi itself. The two are related via ξZ̄(t) = ξZ(t) exp{−it′E[Zi]}.) By the

i.i.d. assumption

log ξS

(
wt

|t|

)
= n log ξZ̄

(
wB−1/2t

|t|sn

)
.

As w varies in (0, δan(t)), the quantity u = wB−1/2s−1
n varies in (0, CδB−1/2), by the definition

of an(t). Using the same chain rule logic as above,

d5

dw5
log ξZ̄

(
wB−1/2t

|t|sn

)
=

(
d5

du5
log ξZ̄

(
ut

|t|

))(
B−1/2

sn

)5

.

Therefore

sup
0<w<δan(t)

∣∣∣∣ d5

dw5
log ξS

(
wt

|t|

)∣∣∣∣ = sup
0<w<δan(t)

∣∣∣∣∣ d5

dw5
n log ξZ̄

(
wB−1/2t

|t|sn

)∣∣∣∣∣
= n

(
B−1/2

sn

)5

sup
0<u<CδB−1/2

∣∣∣∣ d5

du5
log ξZ̄

(
ut

|t|

)∣∣∣∣ .
We aim to show that the final quantity is O

(
s−3
n

)
. As sn =

√
nh and B is bounded above and

below, this will hold if

sup
0<u<CδB−1/2

∣∣∣∣ d5

du5
log ξZ̄

(
ut

|t|

)∣∣∣∣ = O(h). (S.27)

for some δ > 0.

By Corollary 8.2 of Bhattacharya and Rao (1976) for the first inequality and direct calculation

for the second, ∣∣∣∣log ξZ̄

(
ut

|t|

)
− 1

∣∣∣∣ ≤ 1

2

∣∣∣∣ut|t|
∣∣∣∣E [|Zi − E[Zi]|2

]
≤ C|u|h. (S.28)

Therefore, for h small enough there is a δ > 0 such that C|u|h < 1/2 for all u such that 0 < u <
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CδB−1/2. This allows us to apply Lemma 9.4 of Bhattacharya and Rao (1976), yielding the bound

sup
0<u<CδB−1/2

∣∣∣∣ d5

du5
log ξZ̄

(
ut

|t|

)∣∣∣∣ ≤ CE [|Zi − E[Zi]|5
]
.

As the fifth moment of Zi is O(h), this establishes Equation (S.27) and therefore Equation (S.26),

verifying condition (IV) of Skovgaard (1981, Theorem 3.4). All of the conditions of this Theorem

are now verified, thus completing Step (II).

Remark S.2. For building intuition it is useful to compare the bound bound in Equation (S.28)

and the n-varying version of Cramér’s condition established in Lemma S.9. Both reflect the fact

that as h = o(1), K(Xh,i) = o(1), and therefore in the limit Zi ≡ 0 is a degenerate random

variable. In this case of (S.28), the bound shows that as h = o(1), the characteristic function

log ξZ̄ (ut/|t|)→ 1, uniformly. Lemma S.9 shows the same thing, as it is proven therein that

sup
|t|>C1

|ξZ(t)| < (1− C2h).

Notice that in the limit as h = o(1), the conventional Cramér’s condition fails. Equation (S.28)

and Lemma S.9 are in qualitative agreement in this sense. y

S.2.3.3 Step (III)

We now prove that the expansion for Tp holds and that it holds uniformly over F ∈ FS . First, by

Equation (S.14) and Lemma S.1(a), Tp will obey the desired expansion (computed formally as in

Section S.2.6) if T̆ obeys an Edgeworth expansion. Now, T̆ is given by

T̆

(
s−1
n

n∑
i=1

Zi

)
= T̆

(
V[Zi]

1/2Sn + nE[Zi]/sn

)
,

which is a smooth function of Sn :=
∑n

i=1 V[Zi]
−1/2(Zi − E[Zi])/sn. Step (II) proved that Sn

obeys an Edgeworth expansion, and therefore by Skovgaard (1986) we have that T̆ does as well.

Equation (S.14) and Lemma S.1(a) deliver the result pointwise for Tp.

To prove that the expansion holds uniformly, first notice that all our results hold pointwise

along a sequence Fn ∈ FS . That is, the results of Skovgaard (1981) and Skovgaard (1986) hold

along this sequence. We thus proceed by arguing as in Romano (2004). Recall that rTp,F =

max{s−2
n ,Ψ2

Tp,F
, s−1
n ΨTp,F }, i.e. the slowest vanishing of the rates. Suppose the result failed. Then

we can extract a subsequence {Fm ∈ FS} such that

rTp,F
∣∣PFm [Tp < z]− Φ(z)− ETp,Fm(z)

∣∣ 6= o(1).

But this contradicts the result above, because Tp obeys the expansion given on {Fm ∈ FS}.
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S.2.4 Proof of Theorem S.1 (Theorem 1 in the paper) with Bias Correction

Proving Theorem S.1 for Trbc follows the exact same steps as for Tp. The reason being that both

are based such similar estimation procedures. To illustrate this point, recall that when ρ = 1, Trbc

is the same as Tp but based on a higher degree polynomial. In this special case, there is nothing

left to prove: simply apply Theorem S.1 with p replaced with p+ 1. Or, alternatively, re-walk the

entire proof replacing p with p+ 1 everywhere.

The more general case, that is, with generic ρ, is not conceptually more difficult, just more

cumbersome. There are two chief changes. First, the bias rate changes due to the bias correction,

but this is automatically accounted for by the terms of the expansion and the conditions of the

theorem. For example, note that the rate rIrbc automatically includes the new bias rate, as it is

defined in general in terms of ΨT,F Second, there are additional kernel-weighted averages that enter

into Trbc and these will enter into the construction of Zi and the bounding of remainder terms.

Recall the definitions of the point estimators, standard errors, and t-statistics from Section S.1,

specifically Equations (S.10), (S.12), and (S.3):

µ̂(ν)
p =

1

nhν
ν!e′νΓ

−1ΩY , σ̂2
p = ν!2e′νΓ

−1(hΩΣ̂pΩ
′/n)Γ−1eν , Tp =

√
nh1+2ν(µ̂

(ν)
p − µ(ν))

σ̂p

θ̂rbc =
1

nhν
ν!e′νΓ

−1ΩrbcY , σ̂2
rbc = ν!2e′νΓ

−1(hΩrbcΣ̂rbcΩ
′
rbc/n)Γ−1eν , Trbc =

√
nh1+2ν(θ̂rbc − µ(ν))

σ̂rbc
.

Comparing these, we see that the only differences in the change from Σ̂p and Ω to Σ̂rbc and Ωrbc,

where (to repeat):

• Σ̂rbc = diag(v̂(Xi) : i = 1, . . . , n), with v̂(Xi) = (Yi − rp+1(Xi − x)′β̂p+1)2,

• Ωrbc = Ω− ρp+1Λ1e
′
p+1Γ̄

−1Ω̄,

• ρ = h/b,

• Λk = Ω
[
Xp+k
h,1 , . . . , Xp+k

h,n

]′
/n,

• Xb,i = (Xi − x)/b,

• Γ̄ = 1
nb

∑n
i=1(Krp+1r

′
p+1)(Xb,i), and

• Ω̄ = [(Krp+1)(Xb,1), (Krp+1)(Xb,2), . . . , (Krp+1)(Xb,n)].

Notice that these are the same as their counterparts for Tp, but with b = hρ−1 in place of h and

p + 1 in place of p. With these comparisons in mind, we briefly discuss the three steps of Section

S.2.3, highlighting key pieces.

For Step (I), first observe that the “numerator”, or θ̂rbc, portion of the t-statistic is once

again already a smooth function of well-behaved random variables, albeit different ones that for Tp.

Terms will be added to Zi to reflect this. In particular, Λ1, Γ̄, and Ω̄ are present. Importantly,

Lemma S.2 applies to Γ̄ with b = hρ−1 in place of h and p+ 1 in place of p.

29



Turning to the Studentization, Equation (S.15) expands the quantity (hΩΣ̂pΩ
′/n) and this

needs to be adapted to account instead for (hΩrbcΣ̂rbcΩ
′
rbc/n), which requires two changes. The

fundamental issue remains the estimated residuals and thus the terms represented by V1 – V6 will

remain conceptually the same. The first change, which is automatically accounted for by the rate

assumptions of the Theorem and the terms of the expansion, are that the bias is now lower because

the residuals are estimated with a p + 1 degree fit. This matches the numerator bias, and thus

the calculations are as above. Second, whereas the summands of each term of V1 – V6 include

(K2rpr
′
p)(Xh,i) stemming from the pre- and post-multiplying by Ω, now we multiply by Ωrbc,

which means the new versions of V1 – V6 have(
(Krp)(Xh,i)− ρp+1Λ1e

′
p+1Γ̄

−1(Krp+1)(Xb,i)
)(

(Krp)(Xh,i)− ρp+1Λ1e
′
p+1Γ̄

−1(Krp+1)(Xb,i)
)′
.

This is mostly a change in notation and increased complexity of all terms, which now will include

many more factors that much be accounted for. This does not affect the rates or the identity of

the important terms: in other words the expansion is not fundamentally changed. Notice that

in estimating the residuals v̂(Xi) = (Yi − rp+1(Xi − x)′β̂p+1)2 is used, and not, as might also be

plausible, any further bias correction (such as v̂(Xi) = (Yi − rp+1(Xi − x)′Γ−1ΩrbcY /(nh))2. This

means no other terms appear.

We illustrate with one example. Consider the first term bounded in Equation (S.22). For V3

defined following Equation (S.15) it was shown following Equation (S.22) that

r−1
Trbc,F

P
[∣∣∣ν!2e′νΓ

−1 (V3 − E[V3]) Γ−1eνsnν!e′νΓ
−1Ω (Y −M) /n

∣∣∣ > rn

]
= o(1).

The corresponding bound required here is

r−1
Irbc,F

P
[∣∣∣ν!2e′νΓ

−1 (V3,rbc − E[V3,rbc]) Γ−1eνsnν!e′νΓ
−1Ωrbc (Y −M) /n

∣∣∣ > rn

]
= o(1). (S.29)

The analogue of V3 is given by applying the two changes above: the bias term and replacing

(K2rpr
′
p)(Xh,i) with the expression above, yielding what we will call V3,rbc:

V3,rbc =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

[
µ(Xi)− rp+1(Xi − x)′βp+1

]2
+ ρ2p+2Λ1e

′
p+1Γ̄

−1

{
1

nh

n∑
i=1

(K2rp+1r
′
p+1)(Xb,i)

[
µ(Xi)− rp+1(Xi − x)′βp+1

]2}
Γ̄−1ep+1Λ

′
1

+ ρp+1Λ1e
′
p+1Γ̄

−1

{
1

nh

n∑
i=1

(Krp+1)(Xb,i)(Krp)(Xh,i)
[
µ(Xi)− rp+1(Xi − x)′βp+1

]2}

+ ρp+1

{
1

nh

n∑
i=1

(Krp)(Xh,i)(Kr
′
p+1)(Xb,i)

[
µ(Xi)− rp+1(Xi − x)′βp+1

]2}
Γ̄−1ep+1Λ

′
1.

Verifying Equation (S.29) now amounts to repeating the original logic (for the first term of Equation
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(S.22)) four times, once for each line here.

First, observe that all the conclusions of Lemma S.2 hold in exactly the same way for Γ̄ (sub-

stituting b and p + 1 for h and p respectively, as needed), and thus the same type of bounds can

be applied whenever necessary. Second, Lemma S.3 implies that we can bound and remove the Λ1

everywhere as well, just as was originally done with Γ−1. These two together imply that Lemma

S.4 holds for Ωrbc in place of Ω (again with b and p+ 1 where necessary).

For the first term listed of V3,rbc the original logic now goes through almost as written, simply

with additional bounds for Λ1 and Γ̄. Lemma S.6 applies just the same, only p is replaced by p+ 1

but this is accounted for automatically by the generic rates.

For the remaining three terms listed of V3,rbc, the argument is much the same. The only

additional complexity is the bandwidth b (or ρ). However, because b does not vanish faster than h,

this will not cause a problem. Firstly, pre-multiplication by ρ to a positive power can only reduce

the asymptotic order because ρ 6→ ∞. Secondly, for the factors enclosed in braces in each of the

three terms, Lemma S.6 will still hold. Checking the proof of Lemma S.10(d), which gives Lemma

S.6, we can see that we simply must substitute the appropriate bias calculations of Section S.3.

For the second term listed of V3,rbc this is immediate, since the form is identical and we only

need to substitute b and p + 1 for h and p respectively, after re-writing so the averaging is done

according to nb instead of nh.

ρ2p+1Λ1e
′
p+1Γ̄

−1

{
1

nb

n∑
i=1

(K2rp+1r
′
p+1)(Xb,i)

[
µ(Xi)− rp+1(Xi − x)′βp+1

]2}
Γ̄−1ep+1Λ

′
1.

For the third and fourth terms listed of V3,rbc, the only potential further complication is that the

summand includes both Xh,i and Xb,i. However, because Xb,i = ρXh,i, all applications of changing

variables can proceed as usual, as typified by, for smooth functions m1 and m2 (c.f. Lemma S.10)

h−1E[(Km1)(Xh,i)(Km2)(Xb,i)] =

∫ 1

−1
(Km1)(u)(Km2)(ρu)f(x + uh)du,

which is just as well behaved as usual.

Collecting all of these results establishes the convergence of Equation (S.29). This illustrates

that although the notational complexity is increased and there are more terms to keep track of,

there is nothing fundamentally different in Step (I) for Trbc. We omit the rest of the details.

Moving to Step (II), the proof proceeds in almost exactly the same way as in Section S.2.3.2,

but now the quantity Zi is different. Collecting all the changes described above (the inclusion of

Γ̄, Lp1, and Ω̄, the change in estimated residuals to Σ̂rbc, and the premultiplication by Ωrbc), the
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new Zi is now the collection (deleting duplicate entries)

Zi,rbc =

(
Znumer
i,rbc , Zdenom

i,rbc

[
(K2rpr

′
p)(Xh,i)

]
, Zdenom

i,rbc

[
(K2rp+1r

′
p+1)(Xb,i)

]
,

Zdenom
i,rbc

[
(Krp)(Xh,i)(Kr

′
p+1)(Xb,i)

])′
,

(S.30)

where

Znumer
i,rbc =

({
(Krp)(Xh,i)(Yi − rp+1(Xi − x)′βp+1)

}′
,{

(Krp+1)(Xb,i)(Yi − rp+1(Xi − x)′βp+1)
}′
,

vech
{

(Krpr
′
p)(Xh,i)

}′
,

vech
{

(Krp+1r
′
p+1)(Xb,i)

}′
,

vech
{

(Krp)(Xh,i)(Xh,i)
p+1
}′
,

)

and for a matrix depending on (Xh,i, Xb,i), the function Zdenom
i,rbc

[
κ(Xh,i, Xb,i)

]
is

Zdenom
i,rbc

[
κ(Xh,i, Xb,i)

]
=

(
vech

{
κ(Xh,i, Xb,i)ε

2
i

}′
,

vech
{
κ(Xh,i, Xb,i)(Xb,i)

0εi

}′
, vech

{
(K2rpr

′
p)(Xh,i)(Xb,i)

1εi

}′
,

vech
{
κ(Xh,i, Xb,i)(Xb,i)

2εi

}′
, . . . , vech

{
(K2rpr

′
p)(Xh,i)(Xb,i)

p+1εi

}′
,

vech
{
κ(Xh,i, Xb,i)

{
εi
[
µ(Xi)− rp+1(Xi − x)′βp+1

]}}′)
.

Zi,rbc is notationally intimidating, but comparing this to the original Zi of Equation (S.18), we see

that nothing fundamentally different has been added: the additions are mostly just repetition to

account for the higher degree local polynomial. Notice that if ρ = 1, i.e. h = b, then many of the

elements are duplicated (or contained in others) and can be removed: examples include the first,

third, and fifth lines of Znumer
i,rbc and all of Zdenom

i,rbc

[
(K2rpr

′
p)(Xh,i)

]
. (Note also that in estimating

the residuals v̂(Xi) = (Yi − rp+1(Xi − x)′β̂p+1)2 is used, and not, as might also be plausible, any

further bias correction (such as v̂(Xi) = (Yi−rp+1(Xi−x)′Γ−1ΩrbcY /(nh))2. This means no other

terms appear.)

Because, by assumption, ρ 6→ ∞, the asymptotic orders do not change. Therefore, verifying

conditions (I), (II), and (IV) of Theorem 3.4 of Skovgaard (1981) are nearly identical for this new

Zi,rbc. For condition (III′′α) of Skovgaard (1981, Theorem 3.4 and Remark 3.5) the crucial ingredient
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is Lemma S.9, which continues to hold in exactly the same way.

Finally, Step (III) carries over essentially without change, completing the proof of Theorem

S.1 with bias correction.

S.2.5 Lemmas

Our proof of Theorem S.1 relies on the following lemmas. Consistent with the above, we give

mainly details for the Tp case, i.e. the proof in Section S.2.3. The details for Trbc, Section S.2.4,

are entirely analogous. Indeed, though all the results below are stated for a bandwidth sequence h

and polynomial degree p, they generalize in the obvious way under the appropriate substitutions

and appropriate assumptions.

The first lemma collects high level results regarding the Delta method for Edgeworth expansions,

pertaining to Step (I), verifying Equation (S.14).

Lemma S.1.

(a) Let Un := Tp − T̆ . If r−1
Tp,F

P[|Un| > rn] = o(1) for a sequence rn such that rn = o(rTp,F ), then

P [Tp < z] = P
[
T̆ + Un < z

]
= P

[
T̆ < z

]
+ o(rTp,F ).

(b) If r1 = O(r′1) and r2 = O(r′2), for sequences of positive numbers r1, r′1, r2, and r′2 and if a

sequence of nonnegative random variables obeys (r1)−1P[Un > r2] = o(1)0 it also holds that

(r′1)−1P[Un > r′2] = o(1). In particular, r−1
1 P[|Un| > rn] = o(1) implies r−1

Tp,F
P[|Un| > rn] =

o(1), for r1 equal in order to any of s−2
n , Ψ2

Tp,F
, or s−1

n ΨTp,F , because rTp,F is the largest of

these, and any rn = o(rTp,F ). Thus, for different pieces of Un defined above, we may make

different choices for these two sequences, as convenient.

Proof. Part (a) is the Delta method for Edgeworth expansions, which essentially follows from the

fact that the Edgeworth expansion itself is a smooth function. See Hall (1992a, Chapter 2.7) or

Maesono (1997, Lemma 2 and Remark following). Part (b) follows from elementary inequalities.

The next set of results, Lemmas S.2–S.8, give rate bounds on the probability of deviations for

various kernel-weighted sample averages. These are used in establishing Equation (S.21) in Step

(I). The proofs for all these Lemmas are given in the subsubsection below.

Lemma S.2. Let the conditions of Theorem S.1 hold. For some δ > 0, a positive integer k, and

CΓ <∞, we have

(a) r−1
Tp,F

P[|Γ− Γ̃| > δs−1
n log(sn)1/2] = o(1),

(b) r−1
Tp,F

P
[∣∣∣Γ−1 −

∑k
j=0

(
Γ−1(Γ̃− Γ)

)j
Γ̃−1

∣∣∣ > δs
−(k+1)
n log(sn)(k+1)/2

]
= o(1), and in particular

(i.e. k = 0) r−1
Tp,F

P[|Γ−1 − Γ̃−1| > δs−1
n log(sn)1/2] = o(1), and

(c) r−1
Tp,F

P[Γ−1 > CΓ] = o(1).
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Lemma S.3. Let the conditions of Theorem S.1 hold. Let A be a fixed-dimension vector or matrix

of continuous functions of Xh,i that does not depend on n. For some δ > 0,

r−1
Tp,F

P

[∣∣∣∣∣ 1

nh

n∑
i=1

{(KA)(Xh,i)− E[(KA)(Xh,i)]}

∣∣∣∣∣ > δs−1
n log(sn)1/2

]
= o(1).

Further, there is some constant CA > 0 such that r−1
Tp,F

P[
∑n

i=1(KA)(Xh,i)/(nh) > CA] = o(1). In

particular, r−1
Tp,F

P[|Λ1 − Λ̃1| > δs−1
n log(sn)1/2] = o(1). Lemma S.2(a) is also a special case.

Lemma S.4. Let the conditions of Theorem S.1 hold. Let A be a fixed-dimension vector or matrix

of continuous functions of Xh,i that does not depend on n. For some δ > 0,

r−1
Tp,F

P

[∣∣∣∣∣ 1

nh

n∑
i=1

{(KA)(Xh,i)εi}

∣∣∣∣∣ > δs−1
n log(sn)1/2

]
= o(1).

In particular, with A = rp(Xh,i), r
−1
Tp,F

P
[
|Ω (Y −M) /n| > δs−1

n log(sn)1/2
]
.

Lemma S.5. Let the conditions of Theorem S.1 hold. Let A be a fixed-dimension vector or matrix

of continuous functions of Xh,i that does not depend on n. For any δ > 0, γ > 0, and positive

integer k,

r−1
Tp,F

P
[∣∣∣∣ 1

nh

n∑
i=1

{
(KA)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]k }∣∣∣∣ > δ
Ψk−1
Tp,F

sk−1
n

log(sn)γ
]

= o(1).

In particular, with k = 1 and A = rp(Xh,i), r
−1
Tp,F

P [|Ω (M −Rβp) /n| > δ log(sn)γ ] = o(1).

Lemma S.6. Let the conditions of Theorem S.1 hold. Let A be a fixed-dimension vector or matrix

of continuous functions of Xh,i that does not depend on n. For any δ > 0, γ > 0, and positive

integer k,

r−1
Tp,F

P
[∣∣∣∣ 1

nh

n∑
i=1

{
(KA)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]k
− E

[
(KA)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]k]}∣∣∣∣ > δ2

Ψk
Tp,F

skn
log(sn)γ

]
= o(1).

Lemma S.7. Let the conditions of Theorem S.1 hold. Let A be a fixed-dimension vector or matrix

of continuous functions of Xh,i that does not depend on n. For any δ > 0 and γ > 0,

r−1
Tp,F

P
[∣∣∣∣ 1

nh

n∑
i=1

{
(KA)(Xh,i)

[
µ(Xi)− rp(Xi − x)′βp

]
εi

}∣∣∣∣ > δ
ΨTp,F

sn
log(sn)γ

]
= o(1).
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Lemma S.8. Let the conditions of Theorem S.1 hold. For any δ > 0 and γ > 0,

r−1
Tp,F

P
[∣∣∣∣ 1

nh

n∑
i=1

{
(Krpr

′
p)(Xh,i)

(
K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)
− E

[
K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)] )
εi

}∣∣∣∣ > δan log(sn)γ
]

= o(1).

where set an = s−1
n ΨTp,F if rTp,F = s−2

n ; an = s−2
n if rTp,F = Ψ2

Tp,F
; or an = s

−3/2
n Ψ

1/2
Tp,F

if

rTp,F = s−1
n ΨTp,F .

Next, we show that the random variable Zi, given in Equation (S.18), obeys the appropriate

n-varying version of Cramér’s condition. This is used in Step (II) to prove that the distribution

of the (properly centered and scaled) sample average of Zi has an Edgeworth expansion. This type

of Cramér’s condition was first (to our knowledge) used by Hall (1991).

Lemma S.9. Let the conditions of Theorem S.1 hold. Let ξZ(t) be the characteristic function of

the random variable Zi, given in Equation (S.18). For h sufficiently small, for all C1 > 0 there is

a C2 > 0 such that

sup
|t|>C1

|ξZ(t)| < (1− C2h).

Proof of Lemma S.9. Recall the definition of Zi in Equation (S.18). It is useful to consider Zi as

a function of (Xh,i, Yi) rather than (Xi, Yi). We compute the characteristic function separately

depending on whether Xi is local to x. Note that h is fixed. The characteristic function of Zi is

ξZ(t) = E[exp{it′Zi}] = E
[
exp{it′Zi}1 {|Xh,i| > 1}

]
+ E

[
exp{it′Zi}1 {|Xh,i| ≤ 1}

]
. (S.31)

We examine each piece in turn. For the first, begin by noticing that |Xh,i| > 1 (i.e. Xi 6∈ {x± h}),
then K(Xh,i) = 0, in turn implying that Zi is the zero vector and exp{it′Zi} = 1. Therefore

E
[
exp{it′Zi}1 {|Xh,i| > 1}

]
= P[Xi 6∈ {x± h}].

By assumption, the density of X is bounded and bounded away from zero in a fixed neighborhood

of x. For now consider interior x, we will return to the boundary case at the end. Assume that h

is small enough that this neighborhood contains {x± h}. Then this probability is bounded as

P[Xi 6∈ {x± h}] = 1−
∫ x+h

x−h
f(x)dx ≤ 1− h2

(
min

x∈{x±h}
f(x)

)
:= 1− C3h. (S.32)

Next, consider the event that |Xh,i| ≤ 1. Let fxy(x, y) denote the joint density of (X,Y ) and

explicitly write Zi = Zi(Xh,i, Yi). Using the change of variables U = (X − x)/h,

E
[
exp{it′Zi(Xh,i, Yi)}1 {|Xh,i| ≤ 1}

]
=

∫ ∫ x+h

x−h
exp{it′Zi(x, y)}fxy(x, y)dxdy
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= h

∫ ∫ 1

−1
exp{it′Zi(u, y)}fxy(x + uh, y)dudy.

Suppose thatK is not the uniform kernel. The assumption that (1,Kr3p)(u)′ is linearly independent

implies that Zi is a set of linearly independent and continuously differentiable functions of (u, y)

on {[−1, 1]} ∪ R. Furthermore, by assumption, the density of (U, Y ), as random variables on

{[−1, 1]}∪Y, for some Y ⊂ R, is strictly positive. Therefore, by (Bhattacharya, 1977, Lemma 1.4),

Zi = Zi(U, Y ) obeys Cramér’s condition (as a function of random variables on {[−1, 1]} ∪ R), and

so (Bhattacharya and Rao, 1976, p. 207) there is some C > 0 such that

sup
|t|>C

∣∣∣∣∫ ∫ 1

−1
exp{it′Zi(u, y)}fxy(x + uh, y)dudy

∣∣∣∣ < 1. (S.33)

Collecting Equations (S.31), (S.32), and (S.33) yields the result when the kernel is not uniform.

If K is the uniform kernel, Equation (S.33) will still hold, as follows. Note that one element

of Zi(U, Y ) is K(U). For notational ease, let this be the first element, and further write Zi(U, Y )

as Zi(U, Y ) := 2(K(U), Z̃ ′i)
′ and t ∈ Rdim(Z) as t = (t(1), t̃

′)′. Then, because K(U) ≡ 1/2 for

U ∈ [−1, 1],

sup
|t|>C

∣∣∣∣∫ ∫ 1

−1
exp

{
it′Zi(u, y)

}
fxy(x + uh, y)dudy

∣∣∣∣
= sup
|t|>C

∣∣∣∣∫ ∫ 1

−1
exp

{
it′
[
2(K(U), Z̃ ′i)

′
]}

fxy(x + uh, y)dudy

∣∣∣∣
= sup
|t|>C

∣∣∣∣∫ ∫ 1

−1
exp

{
it′
[
(1, Z̃ ′i)

′
]}

fxy(x + uh, y)dudy

∣∣∣∣
= sup
|t|>C

∣∣∣∣eit1

∫ ∫ 1

−1
exp

{
it̃′Z̃i

}
fxy(x + uh, y)dudy

∣∣∣∣ .
Exactly as above, (Bhattacharya, 1977, Lemma 1.4) applies, but now to Z̃i, and |eit1 | is bounded

by one, thus yielding Equation (S.33).

Finally, if x is a boundary point, then all that changes in the above proof are ranges of integra-

tion: replace x− h with zero and remove the factor of 2 in the definition of C3 in (S.32), and then

in the subsequent steps, integrate over [0, 1] instead of [−1, 1].

S.2.5.1 Proofs of Lemmas S.2–S.8

Before proving Lemmas S.2–S.7 we first state some generic results that serve as building blocks

for the main Lemmas above. Indeed, those results are often are almost immediate consequences of

these generic results. The versions of these results for Irbc are usually omitted, as they are entirely

analogous (replacing p and h by p+ 1 and b, as well as other obvious modifications).

Lemma S.10. Let the conditions of Theorem S.1 hold. Let g(·) and m(·) be generic continuous

scalar functions. For some δ1 > 0, any δ2 > 0, γ > 0, and positive integer k, the following hold.
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(a) s2
nP

[∣∣∣∣∣s−2
n

n∑
i=1

{(Km)(Xh,i)g(Xi)− E[(Km)(Xh,i)g(Xi)]}

∣∣∣∣∣ > δ1s
−1
n log(sn)1/2

]
= o(1).

(b) s2
nP

[∣∣∣∣∣s−2
n

n∑
i=1

{(Km)(Xh,i)g(Xi)εi}

∣∣∣∣∣ > δ1s
−1
n log(sn)1/2

]
= o(1).

(c)
sn

ΨTp,F
P

[∣∣∣∣∣s−2
n

n∑
i=1

(Km)(Xh,i)g(Xi)
[
µ(Xi)− rp(Xi − x)′βp

]k∣∣∣∣∣ > δ2

Ψk−1
Tp,F

sk−1
n

log(sn)γ

]
= o(1).

(d) s2
nP
[∣∣∣∣s−2

n

n∑
i=1

{
(Km)(Xh,i)g(Xi)(µ(Xi)− rp(Xi − x)′βp)

k

spacing−E
[
(Km)(Xh,i)g(Xi)(µ(Xi)− rp(Xi − x)′βp)

k
]}∣∣∣∣ > δ2

(
ΨTp,F

sn

)k
log(sn)γ

]
= o(1).

(e) s2
nP

[∣∣∣∣∣s−2
n

n∑
i=1

(Km)(Xh,i)g(Xi)εi
[
µ(Xi)− rp(Xi − x)′βp

]∣∣∣∣∣ > δ2
ΨTp,F

sn
log(sn)γ

]
= o(1).

(f) r−1
Tp,F

P
[∣∣∣∣ 1

nh

n∑
i=1

{
(Km)(Xh,i)

(
K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)
forspacing − E

[
K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)] )
εi

}∣∣∣∣ > δan log(sn)γ
]

= o(1),

where set an = s−1
n ΨTp,F if rTp,F = s−2

n ; an = s−2
n if rTp,F = Ψ2

Tp,F
; or an = s

−3/2
n Ψ

1/2
Tp,F

if

rTp,F = s−1
n ΨTp,F .

Proof of Lemma S.10(a). Because the kernel function has compact support and g(·) and m(·) are

continuous, we have

|(Km)(Xh,i)g(Xi)− E[(Km)(Xh,i)g(Xi)]| < C1.

Further, by a change of variables and using the assumptions on f , g and m:

V[(Km)(Xh,i)g(Xi)] ≤ E
[
(Km)(Xh,i)

2g(Xi)
2
]

=

∫
f(Xi)(Km)(Xh,i)

2g(Xi)
2dXi

= h

∫
f(x + uh)g(x + uh)(Km)(u)2du ≤ C2h.

Therefore, by Bernstein’s inequality

s2
nP

[∣∣∣∣∣ 1

s2
n

n∑
i=1

{(Km)(Xh,i)g(Xi)− E[(Km)(Xh,i)g(Xi)]}

∣∣∣∣∣ > δ1s
−1
n log(sn)1/2

]

≤ 2s2
n exp

{
− (s4

n)(δ1s
−1
n log(sn)1/2)2/2

C2s2
n + C1s2

nδ1s
−1
n log(sn)1/2/3

}

= 2 exp{2 log(sn)} exp

{
− δ2

1 log(sn)/2

C2 + C1δ1s
−1
n log(sn)1/2/3

}
= 2 exp

{
log(sn)

[
2− δ2

1/2

C2 + C1δ1s
−1
n log(sn)1/2/3

]}
,
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which vanishes for any δ1 large enough, as s−1
n log(sn)1/2 = o(1).

Proof of Lemma S.10(b). For a sequence an →∞ to be given later, define

Hi = s−1
n (Km)(Xh,i)g(Xi) (Yi1{Yi ≤ an} − E[Yi1{Yi ≤ an} | Xi])

and

Ti = s−1
n (Km)(Xh,i)g(Xi) (Yi1{Yi > an} − E[Yi1{Yi > an} | Xi]) .

By the conditions on g(·) and t(·) and the kernel function,

|Hi| < C1s
−1
n an

and

V[Hi] = s−2
n V[(Km)(Xh,i)g(Xi)Yi1{Yi ≤ an}] ≤ s−2

n E
[
(Km)(Xh,i)

2g(Xi)
2Y 2
i 1{Yi ≤ an}

]
≤ s−2

n E
[
(Km)(Xh,i)

2g(Xi)
2Y 2
i

]
= s−2

n

∫
(Km)(Xh,i)

2g(Xi)
2v(Xi)f(Xi)dXi

= s−2
n h

∫
(Km)(u)2(gvf)(x− uh)du

≤ C2/n.

Therefore, by Bernstein’s inequality

s2
nP

[∣∣∣∣∣
n∑
i=1

Hi

∣∣∣∣∣ > δ1 log(sn)1/2

]
≤ 2s2

n exp

{
− δ2

1 log(sn)/2

C2 + C1s
−1
n anδ1 log(sn)1/2/3

}
≤ 2 exp{2 log(sn)} exp

{
− δ2

1 log(sn)/2

C2 + C1s
−1
n anδ1 log(sn)1/2/3

}
≤ 2 exp

{
log(sn)

[
2− δ2

1/2

C2 + C1s
−1
n anδ1 log(sn)1/2/3

]}
,

which vanishes for δ1 large enough as long as s−1
n an log(sn)1/2 does not diverge.

Next, let π > 2 be such that E[|Y |2+π|X = x] is finite in the neighborhood of x, which is possible

under Assumption S.1, and then, by Markov’s inequality:

s2
nP

[∣∣∣∣∣
n∑
i=1

Ti

∣∣∣∣∣ > δ log(sn)1/2

]
≤ s2

n

1

δ2 log(sn)
E

∣∣∣∣∣
n∑
i=1

Ti

∣∣∣∣∣
2


≤ s2
n

1

δ2
1 log(sn)

nE
[
T 2
i

]
≤ s2

n

1

δ2
1 log(sn)

nV
[
s−1
n (Km)(Xh,i)g(Xi)Yi1{Yi > an}

]
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≤ s2
n

1

δ2
1 log(sn)

ns−2
n E

[
(Km)(Xh,i)

2g(Xi)
2Y 2
i 1{Yi > an}

]
≤ s2

n

1

δ2
1 log(sn)

ns−2
n E

[
(Km)(Xh,i)

2g(Xi)
2|Yi|2+πa−πn

]
≤ s2

n

1

δ2
1 log(sn)

ns−2
n (Cha−πn )

≤ C

δ2
1

s2
n

log(sn)aπn
,

which vanishes if s2
n log(sn)−1a−πn = o(1).

It thus remains to choose an such that s−1
n an log(sn)1/2 does not diverge and s2

n log(sn)−1a−πn =

o(1). This can be accomplished by setting an = sAn for any 2/π ≤ A < 1, which is possible as

π > 2.

Proof of Lemma S.10(c). By Markov’s inequality

sn
ΨTp,F

P

[∣∣∣∣∣s−2
n

n∑
i=1

(Km)(Xh,i)g(Xi)
[
µ(Xi)− rp(Xi − x)′βp

]k∣∣∣∣∣ > δ2(s−1
n ΨTp,F )k−1 log(sn)γ

]

≤ sn
ΨTp,F

(
sn

ΨTp,F

)k−1 1

δ2 log(sn)γ
E
[
h−1(Km)(Xh,i)g(Xi)

[
µ(Xi)− rp(Xi − x)′βp

]k]
≤ 1

δ2 log(sn)γ
E

[
h−1(Km)(Xh,i)g(Xi)

[
sn

ΨTp,F

(
µ(Xi)− rp(Xi − x)′βp

)]k]
= O(log(sn)−γ) = o(1).

This relies on the calculations in Section S.3, and the compact support of the kernel and continuity

of m(·) and g(·) to ensure that the expectation is otherwise bounded.

Proof of Lemma S.10(d). Note that the summand is mean zero and apply Markov’s inequality to

find

s2
nP
[∣∣∣∣s−2

n

n∑
i=1

{
(Km)(Xh,i)g(Xi)(µ(Xi)− rp(Xi − x)′βp)

k

− E
[
(Km)(Xh,i)g(Xi)(µ(Xi)− rp(Xi − x)′βp)

k
]}∣∣∣∣ > δ2

(
ΨTp,F

sn

)k
log(sn)γ

]
≤ s2

n

(
sn

ΨTp,F

)2k 1

δ2
2 log(sn)2γ

s−2
n E

[
h−1(Km)(Xh,i)g(Xi)(µ(Xi)− rp(Xi − x)′βp)

2k
]

=
1

δ2
2 log(sn)2γ

E

[
h−1(Km)(Xh,i)g(Xi)

[(
sn

ΨTp,F

)
(µ(Xi)− rp(Xi − x)′βp)

]2k
]

= o(1).

The final line relies on the calculations in Section S.3.
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Proof of Lemma S.10(e). By Markov’s inequality, since εi is conditionally mean zero, we have

s2
nP

[∣∣∣∣∣s−2
n

n∑
i=1

(Km)(Xh,i)g(Xi)εi
[
µ(Xi)− rp(Xi − x)′βp

]∣∣∣∣∣ > δ2(s−1
n ΨTp,F ) log(sn)γ

]

≤ s2
n

1

δ2
2s
−2
n Ψ2

Tp,F
log(sn)2γ

1

s2
n

E
[
h−1 ((Km)(Xh,i)g(Xi)εi)

2 [µ(Xi)− rp(Xi − x)′βp
]2]

≤ 1

δ2
2 log(sn)2γ

E

[
h−1 ((Km)(Xh,i)g(Xi)εi)

2

[
sn

ΨTp,F

(
µ(Xi)− rp(Xi − x)′βp

)]2
]

= O(log(sn)−2γ) = o(1).

This relies on the calculations in Section S.3, and the compact support of the kernel and continuity

of m(·) and g(·) to ensure that the expectation is otherwise bounded.

Proof of Lemma S.10(f). By Markov’s inequality, since εi is conditionally mean zero, we have

r−1
Tp,F

P
[∣∣∣∣ 1

nh

n∑
i=1

{
(Km)(Xh,i)

(
K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)
− E

[
K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)] )
εi

}∣∣∣∣ > δan log(sn)γ
]

≤
r−1
Tp,F

a2
n log(sn)2γ

1

nh
E
[
h−1(Km)2(Xh,i)

(
K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)
− E

[
K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)] )2
v(Xi)

]
=

r−1
Tp,F

a2
n log(sn)2γ

1

nh

{
E
[
h−1(Km)2(Xh,i)K(Xh,i)

2
(
µ(Xi)− rp(Xi − x)′βp

)2
v(Xi)

]
− 2E

[
h−1(Km)2(Xh,i)K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)
v(Xi)

]
E
[
K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)]
+ E

[
h−1(Km)2(Xh,i)v(Xi)

]
E
[
K(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)]2}

�
r−1
Tp,F

a2
n log(sn)2γ

1

nh

(
ΨTp,F

sn

)2 {
1 + h+ h2

}
�

r−1
Tp,F

a2
n log(sn)2γ

1

nh

(
ΨTp,F

sn

)2

.

If rTp,F = s−2
n , this vanishes for an = s−1

n ΨTp,F . If rTp,F = Ψ2
Tp,F

, this vanishes for an = s−2
n . If

rTp,F = s−1
n ΨTp,F , this vanishes for an = s

−3/2
n Ψ

1/2
Tp,F

. This relies on the calculations in Section S.3,

and the compact support of the kernel and continuity of m(·) to ensure that the expectation is

otherwise bounded.
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Proof of Lemma S.2. A typical element of Γ− Γ̃ is, for some integer k ∈ [0, 2p],

1

nh

n∑
i=1

{
K(Xh,i)X

k
h,i − E

[
K(Xh,i)X

k
h,i

]}
,

which has the form treated in Lemma S.10(a). Therefore, by Boole’s inequality and p fixed,

r−1
Tp,F

P[|Γ− Γ̃| > δs−1
n log(sn)1/2]

≤ Cr−1
Tp,F

max
k∈[0,2p]

P

[∣∣∣∣∣ 1

nh

n∑
i=1

{
K(Xh,i)X

k
h,i − E

[
K(Xh,i)X

k
h,i

]}∣∣∣∣∣ > δs−1
n log(sn)1/2

]
= o(1),

by Lemma S.1(b). This establishes part (a).

To prove part (b), first note that for any fixed δ1, part (a) and the sub-multiplicativity of the

Frobenius norm imply

r−1
Tp,F

P
[
|Γ−1(Γ− Γ̃)| ≥ δ1

]
≤ r−1

Tp,F
P
[
|(Γ− Γ̃)| ≥ δ1|Γ−1|−1

]
= o(1), (S.34)

because under the maintained assumptions

Γ̃ = E
[
h−1(Krpr

′
p)(Xh,i)

]
= h−1

∫
(Krpr

′
p)(Xh,i)f(Xi)dXi =

∫
(Krpr

′
p)(u)f(x + uh)du

is bounded away from zero and infinity for n large enough.

Now, on the event Gn = {|Γ−1(Γ − Γ̃)| < 1}, we use the identity Γ = Γ̃
(
I − Γ−1(Γ̃− Γ)

)
to

write Γ−1 as

Γ−1 =
(
I − Γ−1(Γ̃− Γ)

)−1
Γ̃−1 =

∞∑
j=0

(
Γ−1(Γ̃− Γ)

)j
Γ̃−1.

Write an = s
−(k+1)
n log(sn)(k+1)/2 Using results (S.34) with δ1 = 1, we find that r−1

Tp,F
(1− P[Gn]) =

r−1
Tp,F

P[|Γ−1(Γ− Γ̃)| ≥ 1] = o(1). Therefore

r−1
Tp,F

P

∣∣∣∣∣∣Γ−1 −
k∑
j=0

(
Γ−1(Γ̃− Γ)

)j
Γ̃−1

∣∣∣∣∣∣ > δan


≤ r−1

Tp,F
P


∣∣∣∣∣∣Γ−1 −

k∑
j=0

(
Γ−1(Γ̃− Γ)

)j
Γ̃−1

∣∣∣∣∣∣ > δan

 ∪ Gn
+ r−1

Tp,F
(1− P[Gn])

≤ r−1
Tp,F

P

∣∣∣∣∣∣
∞∑
j=0

(
Γ−1(Γ̃− Γ)

)j
Γ̃−1 −

k∑
j=0

(
Γ−1(Γ̃− Γ)

)j
Γ̃−1

∣∣∣∣∣∣ > δan

+ o(1)

= r−1
Tp,F

P

∣∣∣∣∣∣
∞∑

j=k+1

(
Γ−1(Γ̃− Γ)

)j
Γ̃−1

∣∣∣∣∣∣ > δan

+ o(1).
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Again using sub-multiplicativity and part (a), |(Γ−1(Γ̃− Γ))j | ≤ |Γ−1|j |Γ̃− Γ|j = o(1), and so by

dominated convergence and the partial sum formula, the above display is bounded as

≤ r−1
Tp,F

P

 ∞∑
j=k+1

∣∣∣∣(Γ−1(Γ̃− Γ)
)j∣∣∣∣ ∣∣∣Γ̃−1

∣∣∣ > δan

+ o(1)

≤ r−1
Tp,F

P


∣∣∣Γ−1(Γ̃− Γ)

∣∣∣k+1

1−
∣∣∣Γ−1(Γ̃− Γ)

∣∣∣
∣∣∣Γ̃−1

∣∣∣ > δan

+ o(1).

Finally, using result (S.34) with some fixed δ1 < 1, this last display is bounded by

r−1
Tp,F

P
[∣∣∣Γ̃− Γ

∣∣∣k+1
>
∣∣∣Γ̃−1

∣∣∣−k−2
(1− δ1)δan

]
+ r−1

Tp,F
P
[∣∣∣Γ−1(Γ̃− Γ)

∣∣∣ ≥ δ1

]
+ o(1) = o(1),

where the final convergence follows by part (a).

For part (c), let CΓ <∞ be such that |Γ̃−1| < CΓ/2. Then

r−1
Tp,F

P[Γ−1 > CΓ] = r−1
Tp,F

P[
(
Γ−1 − Γ̃−1

)
+ Γ̃−1 > CΓ]

≤ r−1
Tp,F

P
[∣∣∣Γ−1 − Γ̃−1

∣∣∣ > δs−1
n log(sn)1/2

]
+ r−1

Tp,F
P
[∣∣∣Γ̃−1

∣∣∣ > CΓ − δs−1
n log(sn)1/2

]
,

which vanishes because the second term is zero for n large enough such that δs−1
n log(sn)1/2 < CΓ/2

and the first is o(1) by part (a).

Proof of Lemma S.3. The result follows from identical steps to proving Lemma S.2(a), because

Lemma S.10(a) also applies. The second conclusion follows from the first exactly the same way

Lemma S.2(c) follows from Lemma S.2(a).

Proof of Lemma S.4. Let [A]j,k be the {j, k} entry of A. By Boole’s inequality, since the dimension

of A is fixed, and Lemma S.1(b),

r−1
Tp,F

P

[∣∣∣∣∣ 1

nh

n∑
i=1

{(KA)(Xh,i)εi}

∣∣∣∣∣ > δs−1
n log(sn)1/2

]

≤ Cr−1
Tp,F

max
j,k

P

[∣∣∣∣∣s−2
n

n∑
i=1

{(
K [A]j,k

)
(Xh,i)εi

}∣∣∣∣∣ > δs−1
n log(sn)γ

]

≤ Cs2
n max

j,k
P

[∣∣∣∣∣s−2
n

n∑
i=1

{(
K [A]j,k

)
(Xh,i)εi

}∣∣∣∣∣ > δs−1
n log(sn)γ

]
,

which vanishes by Lemma S.10(b).

Proof of Lemma S.5. Exactly as above, but using Lemma S.10(c).

Proof of Lemma S.6. Exactly as above, but using Lemma S.10(d).
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Proof of Lemma S.7. Exactly as above, but using Lemma S.10(e).

Proof of Lemma S.8. Exactly as above, but using Lemma S.10(f).

S.2.6 Terms of the Expansion

We now give the precise forms of the terms in the Edgeworth expansion, ET,F (z). We first define

them and then show their computation in a subsection below. To list them amounts to defining the

terms ωk, k = 1, 2, . . . , 6, ΨT,F , and λT,F . For all T (or I), ΨT,F is given in Section S.3 and explicitly

given in Equation (S.38). For the expansion, the special cases are not needed. For the variance

errors λT,F , we mention a few examples. First, as already discussed, the fixed-n standard errors

of Equation (S.12) yield λT,F ≡ 0. When it is nonzero, typically λT,F has the form λT,F = lnL,

for a rate ln = o(1) and a constant (or at least, a sequence bounded and bounded away from zero)

L. The term L is exactly the difference between the variance of the numerator of the t-statistic

and the population standardization chosen. This has nothing to do with estimation error. Loosely

speaking,

L =
V
[√

nh1+2ν(θ̂ − µ(ν))
]

σ2
− 1,

where σ2 is the limit of Studentization whatever σ̂2 has been chosen (c.f. Equation (S.3)). As

an example, consider traditional explicit bias correction, where the point estimate (or numerator

of T ) is bias-corrected but it is assumed that σp provides valid standardization (this requires

ρ = o(1)), we find that λT,F = ρp+2(L1 + ρp+2L2), where L1 captures the (scaled) covariance

between µ̂(ν) and µ̂(p+1) and L2 the variance of µ̂(p+1); see Calonico et al. (2018a,b) for the exact

expressions. For another example, for inference at the boundary when using the asymptotic variance

for standardization (i.e. the probability limit of the conditional variance of the numerator), one finds

ln = h and L capturing the difference between the conditional variance and its limit, based on the

localization of the kernel; see Chen and Qin (2002) for the exact expression.

It remains to define ωk, k = 1, 2, . . . , 6. More notation is required. As with the bias, all terms

must be nonrandom. We will maintain, as far as possible, fixed-n calculations. First, define the

following functions, which depend on F , n, h, b, ν, p, and K, though this is mostly suppressed

notationally. These functions are all calculated in a fixed-n sense and are all bounded and rateless.

`0Tp(Xi) = ν!e′νΓ̃
−1(Krp)(Xh,i);

`0Trbc(Xi) = `0Tp(Xi)− ρp+1ν!e′νΓ̃
−1Λ̃1e

′
p+1

˜̄Γ
−1

(Krp+1)(Xb,i);

`1Tp(Xi, Xj) = ν!e′νΓ̃
−1
(
E[(Krpr

′
p)(Xh,j)]− (Krpr

′
p)(Xh,j)

)
Γ̃−1(Krp)(Xh,i);

`1Trbc(Xi, Xj) = `1Tp(Xi, Xj)− ρp+1ν!e′νΓ̃
−1
{(

E[(Krpr
′
p)(Xh,j)]− (Krpr

′
p)(Xh,j)

)
Γ̃−1Λ̃1e

′
p+1

+
(

(Krp)(Xh,j)X
p+1
h,i − E[(Krp)(Xh,j)X

p+1
h,i ]

)
e′p+1

+ Λ̃1e
′
p+1

˜̄Γ
−1 (

E[(Krp+1r
′
p+1)(Xb,j)]− (Krp+1r

′
p+1)(Xb,j)

)}˜̄Γ
−1

(Krp+1)(Xb,i).
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With this notation, define

σ̃2
T = E[h−1`0T (X)2v(X)].

We can also rewrite the bias terms using this notation as

ΨTp,F =
√
nhE

[
h−1`0Tp(Xi)[µ(Xi)− rp(Xi − x)′βp]

]
and

Ψrbc,F =
√
nhE

[
h−1`0Trbc(Xi)[µ(Xi)− rp+1(Xi − x)′βp+1]

]
.

Now we can define the Edgeworth expansion polynomials ωk, k = 1, 2, . . . , 6. The standard

Normal density is φ(z). The term ω4 is the most cumbersome. Beginning with the others:

ω1,T,F (z) = φ(z)σ̃−3
T E

[
h−1`0T (Xi)

3ε3
i

] {
(2z2 − 1)/6

}
,

ω2,T,F (z) = −φ(z)σ̃−1
T ,

ω3,T,F (z) = −φ(z) {z/2} ,

ω5,T,F (z) = −φ(z)σ̃−2
T {z/2} ,

ω6,T,F (z) = φ(z)σ̃−4
T E[h−1`0T (Xi)

3ε3
i ]
{
z3/3

}
.

For ω3, it is not quite as simple to state a generic version. Let G̃ stand in for Γ̃ or ˜̄Γ, p̃ stand in

for p or p + 1, and dn stand in for h or b, all depending on if T = Tp or Trbc. Note however, that

h is still used in many places, in particular for stabilizing fixed-n expectations, for Trbc. Indexes i,

j, and k are always distinct (i.e. Xh,i 6= Xh,j 6= Xh,k).

ω4,T,F (z) = φ(z)σ̃−6
T E

[
h−1`0T (Xi)

3ε3
i

]2 {
z3/3 + 7z/4 + σ̃2

T z(z
2 − 3)/4

}
+ φ(z)σ̃−2

T E
[
h−1`0T (Xi)`

1
T (Xi, Xi)ε

2
i

] {
−z(z2 − 3)/2

}
+ φ(z)σ̃−4

T E
[
h−1`0T (Xi)

4(ε4
i − v(Xi)

2)
] {
z(z2 − 3)/8

}
− φ(z)σ̃−2

T E
[
h−1`0T (Xi)

2rp̃(Xdn,i)
′G̃−1(Krp̃)(Xdn,i)ε

2
i

] {
z(z2 − 1)/2

}
− φ(z)σ̃−4

T E
[
h−1`0T (Xi)

3rp̃(Xdn,i)
′G̃−1ε2

i

]
E
[
h−1(Krp̃)(Xdn,i)`

0
T (Xi)ε

2
i

] {
z(z2 − 1)

}
+ φ(z)σ̃−2

T E
[
h−2`0T (Xi)

2(rp̃(Xdn,i)
′G̃−1(Krp̃)(Xdn,j))

2ε2
j

] {
z(z2 − 1)/4

}
+ φ(z)σ̃−4

T E
[
h−3`0T (Xj)

2rp̃(Xdn,j)
′G̃−1(Krp̃)(Xdn,i)`

0
T (Xi)rp̃(Xdn,j)

′G̃−1(Krp̃)(Xdn,k)`
0
T (Xk)ε

2
i ε

2
k

]
×
{
z(z2 − 1)/2

}
+ φ(z)σ̃−4

T E
[
h−1`0T (Xi)

4ε4
i

] {
−z(z2 − 3)/24

}
+ φ(z)σ̃−4

T E
[
h−1

(
`0T (Xi)

2v(Xi)− E[`0T (Xi)
2v(Xi)]

)
`0T (Xi)

2ε2
i

] {
z(z2 − 1)/4

}
+ φ(z)σ̃−4

T E
[
h−2`1T (Xi, Xj)`

0
T (Xi)`

0
T (Xj)

2ε2
jv(Xi)

] {
z(z2 − 3)

}
+ φ(z)σ̃−4

T E
[
h−2`1T (Xi, Xj)`

0
T (Xi)

(
`0T (Xj)

2v(Xj)− E[`0T (Xj)
2v(Xj)]

)
ε2
i

]
{−z}
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+ φ(z)σ̃−4
T E

[
h−1

(
`0T (Xi)

2v(Xi)− E[`0T (Xi)
2v(Xi)]

)2] {−z(z2 + 1)/8
}
.

For computation, note that the seventh term can be rewritten by factoring the expectation,

after rearranging the terms using the fact that rp̃(Xdn,j)
′G̃−1rp̃(Xdn,i) is a scalar, as follows

E
[
h−3`0T (Xj)

2rp̃(Xdn,j)
′G̃−1(Krp̃)(Xdn,i)`

0
T (Xi)rp̃(Xdn,j)

′G̃−1(Krp̃)(Xdn,k)`
0
T (Xk)ε

2
i ε

2
k

]
= E

[
h−1`0T (Xi)ε

2
i (Kr

′
p̃)(Xdn,i)G̃

−1
]
E
[
h−1rp̃(Xdn,j)`

0
T (Xj)

2rp̃(Xdn,j)
′G̃−1

]
× E

[
h−1(Krp̃)(Xdn,k)`

0
T (Xk)ε

2
k

]
.

This will greatly ease implementation.

S.2.6.1 Computing the Terms

Computing the terms of the Edgeworth expansion of Theorem S.1, listed above, is straightforward

but tedious. We give a short summary here, following the essential steps of (Hall, 1992a, Chapter

2). In what follows, will always discard higher order terms (those that will not appear in the

Theorem) and write A
o
= B to denote A = B + o((nh)−1 + (nh)−1/2ΨT,F + Ψ2

T,F ). Let G̃ stand in

for Γ̃ or ˜̄Γ, p̃ stand in for p or p+ 1, and dn stand in for h or b, all depending on if T = Tp or Trbc.

Note however, that h is still used in many places, in particular for stabilizing fixed-n expectations,

for Trbc.

The steps to compute the expansion are as follows. First, we compute a Taylor expansion of

T around nonrandom denominators. Then we compute the first four moments of this expansion.

These are then combined into cumulants, which determine the terms of the expansion.

The Taylor expansion is

T
o
=

{
1− 1

2σ̃2
T

(WT,1 +WT,2 +WT,3) +
3

8σ̃4
T

(WT,1 +WT,2 +WT,3)2

}
× σ̃−1

T {NT,1 +NT,2 +NT,3 +BT,1} ,

where

WT,1 =
1

nh

n∑
i=1

{
`0T (Xi)

2
(
ε2
i − v(Xi)

)}
− 2

1

n2h2

n∑
i=1

n∑
j=1

{
`0T (Xi)

2rp̃(Xdn,i)
′G̃−1(Krp̃)(Xdn,i)εiεj

}
+

1

n3h3

n∑
i=1

n∑
j=1

n∑
k=1

{
`0T (Xi)

2rp̃(Xdn,i)
′G̃−1(Krp̃)(Xdn,i)εjεk

}
,

WT,2 =
1

nh

n∑
i=1

{
`0T (Xi)

2v(Xi)
2 − E[`0T (Xi)

2v(Xi)
2]
}

+ 2
1

n2h2

n∑
i=1

n∑
j=1

`2T (Xi, Xj)`
0
T (Xi)v(Xi),

WT,3 =
1

n3h3

n∑
i=1

n∑
j=1

n∑
k=1

`1T (Xi, Xj)`
1
T (Xi, Xk)v(Xi) + 2

1

n3h3

n∑
i=1

n∑
j=1

n∑
k=1

`2T (Xi, Xj , Xk)`
0
T (Xi)v(Xi),
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BT,1 = sn
1

nh

n∑
i=1

`0T (Xi)[µ(Xi)− rp̃(Xi − x)′βp̃],

NT,1 = sn
1

nh

n∑
i=1

`0T (Xi)εi,

NT,2 = sn
1

(nh)2

n∑
i=1

n∑
j=1

`1T (Xi, Xj)εi,

NT,3 = sn
1

(nh)3

n∑
i=1

n∑
j=1

n∑
k=1

`2T (Xi, Xj , Xk)εi,

with the final line defining `2T (Xi, Xj , Xk) in the obvious way following `1T , i.e. taking account of

the next set of remainders. Terms involving `2T (Xi, Xj , Xk) are higher-order, which is why it is not

needed in the final terms of the expansion. To concretize the notation, note that ΨT,F = E[BT,1],

and, for example for Tp we are defining,

NTp,1 = snν!e′νΓ̃
−1Ω(YM)/n,

NTp,2 = snν!e′νΓ̃
−1(Γ̃− Γ)Γ̃−1Ω(YM)/n,

NTp,3 = snν!e′νΓ̃
−1(Γ̃− Γ)Γ̃−1(Γ̃− Γ)Γ̃−1Ω(YM)/n.

Straightforward moment calculations yield, where “E[T ]
o
=” denotes moments of the Taylor

expansion above,

E[T ]
o
= σ̃−1

T E [BT,1]− 1

2σ̃2
T

E [WT,1NT,1] ,

E[T 2]
o
=

1

σ̃2
T

E
[
N2
T,1 +N2

T,2 + 2NT,1NT,2 + 2NT,1NT,3

]
− 1

σ̃4
T

E
[
WT,1N

2
T,1 +WT,2N

2
T,1 +WT,3N

2
T,1 + 2WT,2NT,1NT,2

]
+

1

σ̃6
T

E
[
W 2
T,1N

2
T,1 +W 2

T,2N
2
T,1

]
+

1

σ̃2
T

E
[
B2
T,1

]
− 1

σ̃4
T

E [WT,1NT,1BT,1] ,

E[T 3]
o
=

1

σ̃3
T

E
[
N3
T,1

]
− 3

2σ̃5
T

E
[
WT,1N

3
T,1

]
+

3

σ̃3
T

E
[
N2
T,1BT,1

]
,

and

E[T 4]
o
=

1

σ̃4
T

E
[
N4
T,1 + 4N3

T,1NT,2 + 4N3
T,1NT,3 + 6N2

T,1N
2
T,3

]
− 2

σ̃6
T

E
[
WT,1N

4
T,1 +WT,2N

4
T,1 + 4WT,2N

3
T,1NT,2 +WT,3NT,1

]
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+
3

σ̃8
T

E
[
W 2
T,1N

4
T,1 +W 2

T,2N
4
T,1

]
+

4

σ̃4
T

E
[
N3
T,1BT,1

]
− 8

σ̃6
T

E
[
WT,1N

3
T,1BT,1

]
+

6

σ̃4
T

E
[
N2
T,1B

2
T,1

]
.

Computing each factor, we get the following results. For these terms below, indexes i, j, and k are

always distinct (i.e. Xh,i 6= Xh,j 6= Xh,k).

E [BT,1] = ΨT,F ,

E [WT,1NT,1]
o
= s−1

n E
[
h−1`0T (Xi)

3ε3
i

]
,

E
[
N2
T,1

] o
= σ̃2

T ,

E [NT,1NT,2]
o
= s−2

n E
[
h−1`1T (Xi, Xi)`

0
T (Xi)ε

2
i

]
,

E
[
N2
T,2

] o
= s−1

n E
[
h−2`1T (Xi, Xj)

2ε2
i

]
,

E [NT,2NT,3]
o
= s−2

n E
[
h−2`2v(Xi, Xj , Xj)`

0
T (Xi)ε

2
i

]
,

E
[
WT,1N

2
T,1

] o
= s−2

n

{
E
[
h−1`0T (Xi)

4
(
ε4
i − v(Xi)

2
)]

− 2σ̃2
TE
[
h−1`0T (Xi)

2rp̃(Xdn,i)
′G̃−1(Krp̃)(Xdn,i)ε

2
i

]
− 4E

[
h−1`0T (Xi)

4rp̃(Xdn,i)
′G̃−1ε2

i

]
E
[
h−1(Krp̃)(Xdn,i)`

0
T (Xi)ε

2
i

]
+ σ̃2

TE
[
h−2`0T (Xi)

2
(
rp̃(Xdn,i)

′G̃−1(Krp̃)(Xdn,j)
)2
ε2
j

]
+ 2E

[
h−1`0T (Xj)

2
(
E
[
h−1rp̃(Xdn,j)

′G̃−1(Krp̃)(Xdn,i)`
0
T (Xi)ε

2
i |Xj

])2
]}

,

E
[
WT,2N

2
T,1

] o
= s−2

n

{
E
[
h−1

(
`0T (Xi)

2v(Xi)− E[`0T (Xi)
2v(Xi)]

)
`0T (Xi)

2ε2
i

]
+ 2σ̃2

TE
[
h−1`1T (Xi, Xi)`

0
T (Xi)v(Xi)

]}
,

E [WT,2NT,1NT,2]
o
= s−2

n

{
E
[
h−2

(
`0T (Xj)

2v(Xj)− E[`0T (Xj)
2v(Xj)]

)
`1T (Xi, Xj)`

0
T (Xi)ε

2
i

]
+ 2E

[
h−3`1T (Xi, Xj)`

1
T (Xk, Xj)`

0
T (Xi)`

0
T (Xk)v(Xi)ε

2
k

]}
,

E
[
WT,3N

2
T,1

] o
= s−2

n

{
σ̃2
TE
[
h−2

(
`1T (Xi, Xj)

2 + 2`2T (Xi, Xj , Xj)
)
v(Xi)

]}
,

E
[
W 2
T,1N

2
T,1

] o
= s−2

n

{
σ̃2
TE
[
h−1`0T (Xi)

4
(
ε4
i − v(Xi)

2
)]

+ 2E
[
h−1`0T (Xi)

3ε3
i

]2}
,

E
[
W 2
T,2N

2
T,1

] o
= s−2

n σ̃2
T

{
E
[
h−1

(
`0T (Xi)

2v(Xi)− E[`0T (Xi)
2v(Xi)]

)2]
+ 4E

[
h−2

(
`0T (Xi)

2v(Xi)− E[`0T (Xi)
2v(Xi)]

)
`1T (Xj , Xi)`

0
T (Xj)v(Xj)

]
+ 4E

[
h−3`1T (Xi, Xj)`

0
T (Xi)v(Xi)`

1
T (Xk, Xj)`

0
T (Xk)v(Xk)

]}
,

E [WT,1NT,1BT,1]
o
= E [WT,1NT,1]E [BT,1] ,

E
[
N3
T,1

] o
= s−1

n E
[
h−1`0T (Xi)

3ε3
i

]
,

E
[
WT,1N

3
T,1

] o
= E

[
N2
T,1

]
E [WT,1NT,1] ,
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E
[
N4
T,1

] o
= 3σ̃4

T + s−2
n E

[
h−1`0T (Xi)

4ε3
i

]
,

E
[
N3
T,1NT,2

] o
= s−2

n 6σ̃2
TE
[
h−1`1T (Xi, Xi)`

0
T (Xi)ε

2
i

]
,

E
[
N3
T,1NT,3

] o
= s−2

n 3σ̃2
TE
[
h−2`2T (Xi, Xj , Xj)`

0
T (Xi)ε

2
i

]
,

E
[
N2
T,1N

2
T,2

] o
= s−2

n

{
σ̃2
TE
[
h−2`1T (Xi, Xj)

2ε2
i

]
+ 2E

[
h−3`1T (Xi, Xj)`

1
T (Xk, Xj)`

0
T (Xi)`

0
T (Xk)ε

2
i ε

2
k

]}
,

E
[
WT,1N

4
T,1

] o
= s−2

n

{
E
[
h−1`0T (Xi)

3ε3
i

]
E
[
h−1`0T (Xi)

3ε3
i

]
+ 6E

[
N2
T,1

]
E
[
WT,1N

2
T,1

]}
,

E
[
WT,2N

4
T,1

] o
= s−2

n σ̃2
T 6
{
E
[
h−1

(
`0T (Xi)

2v(Xi)− E[`0T (Xi)
2v(Xi)]

)
`0T (Xi)

2ε2
i

]
+ 2E

[
h−2`1T (Xi, Xj)`

0
T (Xi)`

0
T (Xj)

2ε2
jv(Xi)

]
+ E

[
h−1`1T (Xi, Xi)`

0
T (Xi)v(Xi)

]}
,

E
[
WT,2N

3
T,1NT,2

] o
= 3E

[
N2
T,1

]
E [WT,2NT,1NT,2] ,

E
[
WT,3N

4
T,1

] o
= 3E

[
N2
T,1

]
E
[
WT,3N

2
T,1

]
,

E
[
W 2
T,1N

4
T,1

] o
= 3E

[
N2
T,1

]
E
[
W 2
T,1N

2
T,1

]
,

E
[
W 2
T,2N

4
T,1

] o
= 3E

[
N2
T,1

]
E
[
W 2
T,2N

2
T,1

]
.

The so-called approximate cumulants of T , denoted here by κT,k for the kth cumulant, can

now be directly calculated from these approximate moments using standard formulas (Hall, 1992a,

Equation (2.6)). It is useful to list these and collect their asymptotic orders. For the first two, we

split them into two subterms each, by their different asymptotic order.

κT,1 = E[T ] := κT,1,1 + κT,1,2
o
= s−1

n + ΨT,F ,

κT,2 = E[T 2]− E[T ]2 := 1 + κT,2,1 + κT,2,2
o
= 1 + s−2

n + s−1
n ΨT,F ,

κT,3 = E[T 3]− 3E[T 2]E[T ] + 2E[T ]3
o
= s−1

n ,

κT,4 = E[T 4]− 4E[T 3]E[T ]− 3E[T 2]2 + 12E[T 2]E[T ]2 − 6E[T ]4
o
= s−2

n .

Next, our equivalent of (Hall, 1992a, Equation (2.22)) would be the exponential of

κT,1(it) +
1

2
(it)2(κT,2 − 1) +

1

3!
(it)3κT,3 +

1

4!
(it)4κT,4

+
1

2
(it)2

(
κ2
T,1,1 + 2κT,1,1κT,1,2κ

2
T,1,2

)
+

1

2

1

3!2
(it)6κ2

T,3

+
1

2
2

1

3!
(it)(it)3 (κT,1,1κT,3 + κT,1,2κT,3) .

Then, the final computation is done by following (Hall, 1992a, p. 44f, Equations (2.17)). We

find that the Edgeworth expansion, with asymptotic order listed in parentheses at right, is given

by

Φ(z)− φ(z)

{[
κT,1,1 +

1

3!
(z2 − 1)κT,3

]
(s−1
n )[

κT,1,2

]
(ΨT,F )
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[
1

2
zκ2

T,1,1 +
1

2

1

3!2
z(z4 − 10z2 + 15)κ2

T,3

+
1

2
2

1

3!
z(z2 − 3)κT,1,1κT,3 +

1

2
zκT,2,1 +

1

4!
z(z2 − 3)κT,4

] (s−2
n )

[
1

2
zκ2

T,1,2

]
(Ψ2

T,F )[
1

2
z2κT,1,1κT,1,2 +

1

2
2

1

3!
z(z2 − 3)κT,1,2κT,3 +

1

2
zκT,2,2

]}
. (s−1

n ΨT,F )

This is exactly the result of Theorem S.1 and these terms, in the order displayed, are exactly the

ωk(T, z), k = 1, 2, 3, 4, 5 above.

S.3 Bias and the Role of Smoothness

In this section we derive (and list) all the necessary bias terms, both in generic form and for

special cases. We will cover different centerings, different smoothness cases, as well as interior and

boundary points. We first give a generic derivation, followed by discussion of the bias of θ̂ = µ̂
(ν)
p+1

and then θ̂rbc, and in the final subsection, a complete list of all results and formulae.

The conditional bias defined above in Equation (S.9), and the similarly computed E[θ̂rbc
∣∣X1, . . . , Xn],

are useful for describing bias correction, first order asymptotics, and computing and implementing

optimal bandwidths. However, these can not be present in the Edgeworth and coverage error ex-

pansions because they are random quantities. Further, the leading term isolated in Equation (S.9)

presumes sufficient smoothness, which we avoid for general results. (The analogous calculation for

θ̂rbc is shown below.)

The bias terms in the expansions are generic and nonrandom. In Theorem S.1 we denote the bias

contribution by ΨT,F . This term, and its particular cases ΨTp,F and Ψrbc,F = ΨTrbc,F in particular,

capture the entire bias, that is both the rate and the constant. These terms are defined both (i)

before a Taylor approximation is performed, and (ii) with Γ, Γ̄, and Λ1 replaced with their fixed-n

expectations, denoted Γ̃, ˜̄Γ, and Λ̃1. In both sense, these bias terms reflect the “fixed-n” approach.

(A tilde always denotes a fixed-n expectation, and all expectations are fixed-n calculations unless

explicitly denoted otherwise.)

For notation, we maintain the dependence on F if it is useful to emphasize that for certain

F ∈ FS the bias may be lower or higher. For example, if it happens that µ
(p+1)
F (x) = 0, the leading

term of Equation (S.9) will be zero even if p − ν is odd. Further, at present we explicitly write

these as functions of the t-statistic, as the expansions in Section S.2 are for the t-statistics, but it

would be equivalent to write them as functions of the corresponding interval: that is ΨI,F ≡ ΨT,F ,

in terms of I and F . For example, Ψrbc,F = ΨTrbc,F = ΨIrbc,F .

S.3.1 Generic Bias Formulas

Define
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• βk (usually k = p or k = p + 1) as the k + 1 vector with (j + 1) element equal to µ(j)(x)/j!

for j = 0, 1, . . . , k as long as j ≤ S, and zero otherwise,

• M = [µ(X1), . . . , µ(Xn)]′,

• Bk as the n-vector with ith entry [µ(Xi)− rk(Xi − x)′βk],

• ρ = h/b, the ratio of the two bandwidth sequences, and

• Γ̃ = E[Γ], ˜̄Γ = E[Γ̄], Λ̃1 = E[Λ1], and so forth. A tilde always denotes a fixed-n expecta-

tion, and all expectations are fixed-n calculations unless explicitly denoted otherwise. The

dependence on F and FS is suppressed. As a concrete example:

Λk = Ω
[
Xp+k
h,1 , . . . , Xp+k

h,n

]′
/n =

1

nh

n∑
i=1

(Krp)(Xh,i)X
p+k
h,i ,

and so

Λ̃k = E[Λk] = h−1E
[
(Krp)(Xh,i)X

p+k
h,i

]
= h−1

∫
supp{X}

K

(
Xi − x

h

)
rp

(
Xi − x

h

)(
Xi − x

h

)p+k
f(Xi)dXi

=

∫ 1

−1
K(u)rp(u)up+kf(x + uh)du.

The range of integration for integrals will generally be left implicit. The range will change

when the point of interest is on a boundary, but the notation will remain the same and it is

to be understood that moments and moments of the kernel be replaced by the appropriate

truncated version. For example, if supp{X} = [0,∞) and the point of interest is x = 0, then

by a change of variables

Λ̃k = h−1

∫
supp{X}

(Krp)(Xh,i)X
p+k
h,i f(Xi)dXi =

∫ ∞
0

(Krp)(u)up+kf(uh)du,

whereas if supp{X} = (−∞, 0] and x = 0, then

Λ̃k =

∫ 0

−∞
(Krp)(u)up+kf(−uh)du.

For the remainder of this section, the notation is left generic.

To compute the terms ΨTp,F and Ψrbc,F , begin with the conditional mean of µ̂
(ν)
p :

E
[
µ̂(ν)
p

∣∣X1, . . . , Xn

]
= ν!e′νE

[
β̂p
∣∣X1, . . . , Xn

]
=

1

nhν
ν!e′νΓ

−1ΩM

=
1

nhν
ν!e′νΓ

−1Ω(M −Rβp) +
1

nhν
ν!e′νΓ

−1ΩRβp

=
1

nhν
ν!e′νΓ

−1ΩBp +
1

nhν
ν!e′νΓ

−1ΩRβp.
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Because h−νe′ν = e′νH
−1, Ř = RH−1, Ω = Ř′W , and Γ = Ř′WŘ/n = ΩŘ/n, (the same

calculations used for (S.7) and (S.8)) the second term above is

ν!
(
e′νH

−1
)
Γ−1

(
ΩŘ/n

)
Hβp = ν!e′νβp = µ(ν)(x), (S.35)

using the definition of βp (the ν + 1 element of the vector βp will not be zero, as ν ≤ S holds by

Assumption S.1). Therefore

E
[
µ̂(ν)
p

∣∣X1, . . . , Xn

]
− µ(ν) =

1

nhν
ν!e′νΓ

−1ΩBp

= h−νν!e′νΓ
−1 1

nh

n∑
i=1

(Krp)(Xh,i)
(
µ(Xi)− rp(Xi − x)′βp

)
. (S.36)

From here, a Taylor expansion of µ(Xi) around X = x immediately gives Equation (S.9),

provided that S ≥ p + 1. Instead, the bias terms of the Edgeworth expansions use this form

directly, replacing the sample averages with population averages. The biases, ΨT,F in general and

ΨTp,F and Ψrbc,F in particular, must explicitly account for the rate scaling of
√
nh1+2ν , because

the Edgeworth expansions are proven directly for the t-statistics.

For θ̂ = µ̂(ν), for Tp or Ip, we apply the rate scaling to the above display and then define

ΨTp,F =
√
nh1+2νh−νν!e′νΓ̃

−1E
[
h−1(Krp)(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)]
.

Note that the h−ν cancels, and thus the rate of decay of the scaled bias does not depend on the

level of derivative of interest. Because of the fixed-n nature of this calculation, the parity of p− ν
does not matter. If a Taylor series were performed and the matrixes were allowed to converge to

their limit, the well-known symmetry cancellation would occur for p−ν even at interior x (Fan and

Gijbels, 1996). The generic expansions are stated without being explicit on this, but for certain

derivations and specific cases the symmetry will be exploited. It holds that ΨTp,F = O(
√
nhhζ)

uniformly in FS where ζ varies depending on smoothness, parity of p− ν, and location of x. If p is

small relative to S, depending again on parity and location, we can isolate the leading term ψTp,F

such that ΨTp,F =
√
nhhζψTp,F [1 + o(1)] where ψTp,F = O(1) uniformly in FS and is nonzero for

some F ∈ FS . Results for every case are given in Section S.3.2 and summarized in Table S.1.

For θ̂rbc (i.e. for Trbc and Irbc),

E
[
θ̂rbc

∣∣X1, . . . , Xn

]
− µ(ν) =

{
E
[
µ̂(ν)

∣∣X1, . . . , Xn

]
− µ(ν)

}
−
{
hp+1−νν!e′νΓ

−1Λ1
1

(p+ 1)!
E
[
µ̂(p+1)

∣∣X1, . . . , Xn

]}
.

The first term is given exactly in (S.36). For the second term, following exactly the same steps that

we used to arrive at (S.36), but with (p+ 1) in place of v and p and b in place of h, we find that
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E
[
µ̂(p+1)

∣∣X1, . . . , Xn

]
= (p+ 1)!e′p+1βp+1

+ b−p−1(p+ 1)!e′p+1Γ̄
−1 1

nb

n∑
i=1

(Krp+1)(Xb,i)
(
µ(Xi)− rp+1(Xi − x)′βp+1

)
Inserting this result and (S.36) into E

[
θ̂rbc

∣∣X1, . . . , Xn

]
− µ(ν), we find that

E
[
θ̂rbc

∣∣X1, . . . , Xn

]
− µ(ν)

= h−νν!e′νΓ
−1 1

nh

n∑
i=1

(Krp)(Xh,i)
(
µ(Xi)− rp(Xi − x)′βp

)
− hp+1−νν!e′νΓ

−1Λ1
1

(p+ 1)!
(p+ 1)!e′p+1βp+1

− hp+1−νν!e′νΓ
−1Λ1

1

(p+ 1)!
b−p−1(p+ 1)!e′p+1Γ̄

−1 × 1

nb

n∑
i=1

(Krp+1)(Xb,i)
(
µ(Xi)− rp+1(Xi − x)′βp+1

)
= h−νν!e′νΓ

−1 1

nh

n∑
i=1

(Krp)(Xh,i)
(
µ(Xi)− rp(Xi − x)′βp

)
− hp+1−νν!e′νΓ

−1Λ1e
′
p+1βp+1

− h−νρp+1ν!e′νΓ
−1Λ1e

′
p+1Γ̄

−1 × 1

nb

n∑
i=1

(Krp+1)(Xb,i)
(
µ(Xi)− rp+1(Xi − x)′βp+1

)
= h−νν!e′νΓ

−1 1

nh

n∑
i=1

(Krp)(Xh,i)
(
µ(Xi)− rp+1(Xi − x)′βp+1

)
− h−νρp+1ν!e′νΓ

−1Λ1e
′
p+1Γ̄

−1 × 1

nb

n∑
i=1

(Krp+1)(Xb,i)
(
µ(Xi)− rp+1(Xi − x)′βp+1

)
. (S.37)

where the last equality combines the first two terms (in the penultimate line), by noticing that

hp+1−νν!e′νΓ
−1Λ1e

′
p+1βp+1 = hp+1−νν!e′νΓ

−1 1

nh

n∑
i=1

(Krp)(Xh,i)(Xh,i)
p+1e′p+1βp+1

= hp+1−νν!e′νΓ
−1 1

nh

n∑
i=1

(Krp)(Xh,i)h
−p−1(Xi − x)p+1e′p+1βp+1,

and that (Xi−x)p+1e′p+1βp+1 is exactly the difference between rp(Xi−x)′βp and rp+1(Xi−x)′βp+1.

As before, Ψrbc,F is now defined replacing sample averages with population averages and apply-

ing the scaling of
√
nh1+2ν from the t-statistic. Again the h−ν cancels, and thus the rate of decay

of the scaled bias does not depend on the level of derivative of interest.

In sum, the generic formulas are

ΨTp,F =
√
nh ν!e′νΓ̃

−1E
[
h−1(Krp)(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)]
,

Ψrbc,F =
√
nh ν!e′νΓ̃

−1E
[{
h−1(Krp)(Xh,i)− ρp+1Λ̃1e

′
p+1

˜̄Γ
−1
b−1(Krp+1)(Xb,i)

}
×
(
µ(Xi)− rp+1(Xi − x)′βp+1

)] (S.38)
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or using Ω and Ωrbc as in Eqn. (S.10), and Bk,

ΨTp,F =
√
nh ν!e′νΓ̃

−1E[ΩBp]

and

Ψrbc,F =
√
nh ν!e′νΓ̃

−1

(
E[ΩBp+1]− ρp+1Λ̃e′p+1

˜̄Γ
−1

E[Ω̄Bp+1]

)
.

For the generic results of coverage error or the generic Edgeworth expansions of Theorem S.1

below, these definitions are suitable and the ΨTp,F and Ψrbc,F may appear directly. For Tp, parity

of p−ν is not used, but can matter: the rate at which ΨTp,F vanishes is faster by one factor of h at

interior points (Fan and Gijbels, 1996). The validity of the Edgeworth expansions is not affected

by this; the statements are seamless.

However, it is also useful to separate the rate and leading constant term of these biases when

possible. When it is possible we will isolate both the rate and the constant term of the bias. It holds

that ΨTp,F = O(
√
nhhζ) uniformly in FS and if p is small relative to S, depending again on parity

and location, we can isolate the leading term ψTp,F such that ΨTp,F =
√
nhhζψTp,F [1 + o(1)] where

ψTp,F = O(1) uniformly in FS and is nonzero for some F ∈ FS . Similarly, it is always possible

to show that Ψrbc,F = O(
√
nh t(h, b)) for a function t(·, ·) and further, if ρ = h/b is bounded and

bounded away from zero then t(·, ·) can be simplified to hζ . If p is small relative to S we can isolate

the leading terms via a Taylor expansion. If p is small and ρ is bounded and bounded away from

zero, we can write Ψrbc,F =
√
nhhζψrbc,F [1 + o(1)].

For both ΨTp,F and Ψrbc,F , ζ, t(h, b), ψTp,F and ψrbc,F depend on smoothness, parity of p− ν,

and location of x. Complete derivations for ΨTp,F and Ψrbc,F are given in Sections S.3.2 and S.3.3

below and both are summarized in Tables S.1 and S.2 for lists of all cases.

The starting point of the derivations is a Taylor approximation. Recall the definitions of rp(u)

and βp, where in particular elements of the latter beyond S + 1 are zero. A Taylor approximation,

for some x̄, gives

µ(Xi)− rp(Xi − x)′βp =

S∑
k=0

1

k!
(Xi − x)kµ(k)(x) +

1

S
(Xi − x)S

(
µ(S)(x̄)− µ(S)(x)

)

−
S∧p∑
k=0

1

k!
(Xi − x)kµ(k)(x)

=
S∑

k=S∧p+1

1

k!
(Xi − x)kµ(k)(x) +

1

S!
(Xi − x)S

(
µ(S)(x̄)− µ(S)(x)

)

=
S∑

k=S∧p+1

hk

k!
(Xh,i)

kµ(k)(x) +O(hS+s), (S.39)

where the first summation in the last two lines is taken to be zero if p ≥ S, and we have applied

Assumption S.1 and restricted to Xi ∈ [x ± h] (i.e. K(Xh,i) > 0). Note that by assumption the
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order of the remainder, O(hS+s), holds uniformly in FS . We will use this expansion repeatedly

below, or analogous results for other bandwidths and polynomial degrees.

S.3.2 No Bias Correction: Specific Cases and Leading Terms

We now turn to specific cases for ΨTp,F . We will characterize the rate and leading constant terms in

all cases, depending on depending on the relationship of p and S, the parity of p−ν, and whether x

is an interior point or on the boundary. Note that here, unlike Equation (S.9), we are working with

nonrandom quantities. The general case, from Equation (S.38), which appears in the Edgeworth

expansion is

ΨTp,F =
√
nh ν!e′νΓ̃

−1E[ΩBp] =
√
nh ν!e′νΓ̃

−1E
[
h−1(Krp)(Xh,i)

(
µ(Xi)− rp(Xi − x)′βp

)]
.

It is always true that the rate is captured by the exponent ζ in the form

ΨTp,F = O(
√
nhhζ).

If p is small enough relative to S, then we write

ΨTp,F =
√
nhhζψTp,F [1 + o(1)]

and call ψTp,F the leading constant. Recall that ψTp,F is not truly constant, but rather a nonrandom

sequence that is O(1) uniformly in FS and is nonzero for some F ∈ FS . Table S.1 is complete list

of the results, including ζ and ψTp,F . These cases are derived in the rest of this section.

As an aside, it is technically possible to obtain the representation ΨTp,F =
√
nhhζψTp,F [1+o(1)]

in general, that is for any p, by letting ψTp,F to capture the final term in the Taylor expansion,

(Xi−x)S [µ(S)(x̄)−µ(S)(x)]/S!, see the penultimate step of Equation (S.39), and taking the o(1) term

to be exactly zero. However, we do not use ψTp,F in this case because the representation is not useful

for practice nor is it more concrete than simply using ΨTp,F , since in this case ΨTp,F =
√
nhhζψTp,F

amounts to little more than a redefinition of notation.

S.3.2.1 Boundary Point

Here parity plays no role.

Case 1: p < S. The leading bias term can be characterized, and we find (cf. Equation (S.9))

ΨTp,F =
√
nh1+2νh−νhp+1 µ

(p+1)

(p+ 1)!
ν!e′νΓ̃

−1Λ̃1 [1 + o(1)] .

Note that this holds regardless of whether x is an interior or boundary point, with suitable changes

to the ranges of integration in Γ̃ and Λ̃1.
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Location of x Parity of p−ν Smoothness Rate Exponent ζ ψTp,F

Boundary odd or even
p < S p+ 1 ν!e′νΓ̃

−1Λ̃1
µ(p+1)

(p+1)!

p ≥ S S + s N/A

Interior

odd
p < S p+ 1 ν!e′νΓ̃

−1Λ̃1
µ(p+1)

(p+1)!

p ≥ S S + s N/A

even
p+ 2 ≤ S p+ 2 ν!e′νΓ̃

−1
(
h−1Λ̃1

µ(p+1)

(p+1)! + Λ̃2
µ(p+2)

(p+2)!

)
p+ 2 > S S + s N/A

Table S.1: Summary of Bias Terms in All Cases For Uncorrected Centering µ̂
(ν)
p . Rate exponent ζ

is such that ΨTp,F = O(
√
nhhζ). When possible, ψTp,F is such that ΨTp,F =

√
nhhζψTp,F [1 + o(1)].

Case 2: p ≥ S. All that is left in Equation (S.39) is this remainder term, and we therefore

have

ΨTp,F =
√
nh1+2νh−νO(hS+s) = O(

√
nhhS+s),

and cannot say anything further regarding constants. This result applies any time p ≥ S, regardless

of ν, parity of p− ν, and at interior and boundary points.

S.3.2.2 Interior Point: p− ν odd

The results for p − ν odd are identical to the boundary point case. This automatic boundary

carpentry is discussed briefly in the main text. It is one of the celebrated features of local polynomial

regression, known for point estimation since their inception, see Fan and Gijbels (1996) for review,

and proven for inference for the first time in Calonico et al. (2018a).

Case 1: p < S. The leading bias term can be characterized, and we find (cf. Equation (S.9))

ΨTp,F =
√
nh1+2νh−νhp+1 µ

(p+1)

(p+ 1)!
ν!e′νΓ̃

−1Λ̃1 [1 + o(1)] .

Note that this holds regardless of whether x is an interior or boundary point, with suitable changes

to the ranges of integration in Γ̃ and Λ̃1.

Case 2: p ≥ S. All that is left in Equation (S.39) is this remainder term, and we therefore have

ΨTp,F =
√
nh1+2νh−νO(hS+s) = O(

√
nhhS+s),

and cannot say anything further regarding constants. This result applies any time p ≥ S, regardless

of ν, parity of p− ν, and at interior and boundary points.
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S.3.2.3 Interior Point: p− ν even

Here the parity of p will matter. It is worth spelling out three smoothness cases, though we will

find the same result for the latter two.

Case 1: p+ 2 ≤ S. We begin by retaining two terms of Equation (S.39):

ΨTp,F =
√
nh1+2νh−νhp+1ν!e′νΓ̃

−1

(
Λ̃1

µ(p+1)

(p+ 1)!
+ hΛ̃2

µ(p+2)

(p+ 2)!

)
[1 + o(1)] .

To find the leading term, we must appeal to the limits of (the fixed-n) expectations Γ̃−1 and Λ̃k

where it holds that

e′νΓ̃
−1Λ̃k = A+ hB + o(h), with A = 0 if (p+ k − ν) is odd and x is in the interior. (S.40)

Note that at present we use this fact with k = 1, and hence (p + k − ν) is odd if p − ν is even,

the more common way of referring to this cancellation. Rather than derive the precise form of A

and B in (S.40), we maintain the fixed-n approach by stabilizing e′νΓ̃
−1Λ̃k for interior points when

needed. This has the dual the advantages of easy implementability (using the sample, non-tilde

versions) and capturing all terms. We will thus write

ΨTp,F =
√
nh1+2νh−νhp+2ν!e′νΓ̃

−1

(
h−1Λ̃1

µ(p+1)

(p+ 1)!
+ Λ̃2

µ(p+2)

(p+ 2)!

)
[1 + o(1)] .

Case 2: p+ 1 = S. We can no longer retain the second term above, because µ(p+2) does not

exist. Instead we find that

ΨTp,F =
√
nh1+2νh−νhp+1ν!e′νΓ̃

−1

(
Λ̃1

µ(p+1)

(p+ 1)!
+O(hs)

)
[1 + o(1)] .

The same symmetry still applies to the first term however, and thus we have

ΨTp,F =
√
nh1+2νh−νhp+1+sν!e′νΓ̃

−1

(
h1−sh−1Λ̃1

µ(p+1)

(p+ 1)!
+O(1)

)
[1 + o(1)] ,

but since s ≤ 1, the second term is (part of) the leading form, and we therefore write

ΨTp,F =
√
nh1+2νh−νO(hp+1+s) =

√
nh1+2νh−νO(hS+s),

with the final equality holding because, by assumption, p+ 1 = S in this case.

Case 3: p ≥ S. All that is left in Equation (S.39) is this remainder term, and we therefore have

ΨTp,F =
√
nh1+2νh−νO(hS+s) = O(

√
nhhS+s),
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and cannot say anything further regarding constants. This result applies any time p ≥ S, regardless

of ν, parity of p− ν, and at interior and boundary points.

S.3.3 Post Bias Correction: Specific Cases and Leading Terms

The general case, from Equation (S.38), which appears in the Edgeworth expansion is

Ψrbc,F =
√
nh ν!e′νΓ̃

−1

(
E [ΩBp+1]− ρp+1Λ̃e′p+1

˜̄Γ
−1

E
[
Ω̄Bp+1

])
=
√
nh ν!e′νΓ̃

−1E
[{
h−1(Krp)(Xh,i)− ρp+1Λ̃1e

′
p+1

˜̄Γ
−1
b−1(Krp+1)(Xb,i)

}
×
(
µ(Xi)− rp+1(Xi − x)′βp+1

)]
.

It is always true that the rate is captured by a function t(·, ·) such that

Ψrbc,F = O(
√
nh t(h, b)),

or if ρ is bounded and bounded away from zero, the rate is captured by the exponent ζ such that

Ψrbc,F = O(
√
nhhζ).

Additionally, if p is small enough relative to S, then we write

Ψrbc,F =
√
nhhζψrbc,F [1 + o(1)],

and call ψrbc,F the leading constant. Recall that ψrbc,F is not truly constant, but rather a nonran-

dom sequence that is O(1) uniformly in FS and is nonzero for some F ∈ FS . Table S.2 is complete

list of the results, including t(h, b)), and where possible, ζ and ψTp,F . These cases are derived in

the rest of this section.

ψrbc,F in Table S.2 can be



µ(p+2)

(p+ 2)!
ν!e′νΓ̃

−1
{

Λ̃2 − ρ−1Λ̃1e
′
p+1

˜̄Γ
−1 ˜̄Λ1

}
, (S.41a)

µ(p+2)

(p+ 2)!
ν!e′νΓ̃

−1Λ̃2, or (S.41b)

ν!e′νΓ̃
−1

{
µ(p+2)

(p+ 2)!

[
h−1Λ̃2 − ρ−2b−1Λ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ1

]
+
µ(p+3)

(p+ 3)!

[
Λ̃3 − ρ−2Λ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ2

]}, (S.41c)

The starting point of all the derivations is again a Taylor approximation. We use Equation

(S.39) with different choices for the bandwidth and polynomial degree. It will be useful at times

to consider the two terms of ψrbc,F in Equation (S.38) separately, as the bandwidths h and b may
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ρ bounded above 0, below ∞

Location of x Parity of p−ν Smoothness Rate t(h, b) ζ ψrbc,F

Boundary odd or even
p+ 2 ≤ S hp+2(1 + ρ−1) p+ 2 (S.41a)

p+ 2 > S hS+s[1 + ρp+1−S−s] S + s N/A

Interior

even
p+ 2 ≤ S hp+2 p+ 2 (S.41b)

p+ 2 > S hS+s
[
1 + ρp+1−S−s] S + s N/A

odd

p+ 3 ≤ S hp+3(1 + ρ−2) p+ 3 (S.41c)

p+ 2 = S hp+2+s[1 + ρ−1−s] p+2+s = S+s N/A

p+ 2 > S hS+s
[
1 + ρp+1−S−s] S + s N/A

Table S.2: Summary of Bias Terms in All Cases For Bias-Corrected Centering θ̂rbc. Rate function
t(h, b) is such that Ψrbc,F = O(

√
nh t(h, b)). If ρ is bounded and bounded away from zero then we

can take t(h, b) = hζ . When possible, ψTp,F is such that Ψrbc,F =
√
nhhζψrbc,F [1 + o(1)].

be different and even vanish at different rates. The two terms represent (i) the second bias term

of µ̂
(ν)
p , not targeted by bias correction, and (ii) the bias of the bias estimator. For discussion in

the context of kernel-based density estimation, see Hall (1992b) and Calonico et al. (2018a,b). See

the latter also for bias correction using a generic polynomial of degree q ≥ p+ 1; here we maintain

degree p+ 1 for bias correction throughout.

The two terms of ψrbc,F in Equation (S.38) are separated appropriately in Equation (S.37). We

will resume there and apply the Taylor expansion Equation (S.39) with p+ 1 in place of p and, for

the second term of (S.37), also with b in place of h. Doing this, assuming for the present sufficient

smoothness, and applying the definitions of Λk and Λ̄k and their respective fixed-n expectations,

we have,

E
[
θ̂rbc

∣∣X1, . . . , Xn

]
− µ(ν)

= h−νν!e′νΓ
−1 1

nh

n∑
i=1

(Krp)(Xh,i)
(
µ(Xi)− rp+1(Xi − x)′βp+1

)
− h−νρp+1ν!e′νΓ

−1Λ1e
′
p+1Γ̄

−1 × 1

nb

n∑
i=1

(Krp+1)(Xb,i)
(
µ(Xi)− rp+1(Xi − x)′βp+1

)
= h−νν!e′νΓ

−1

(
hp+2Λ2

µ(p+2)

(p+ 2)!
+ hp+3Λ3

µ(p+3)

(p+ 3)!

)
[1 + oP(1)]

− h−νρp+1ν!e′νΓ
−1Λ1e

′
p+1Γ̄

−1

(
bp+2Λ̄1

µ(p+2)

(p+ 2)!
+ bp+3Λ̄2

µ(p+3)

(p+ 3)!

)
[1 + oP(1)].
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Collecting terms and replacing sample averages with expectations, we arrive at

= hp+2−νν!e′νΓ̃
−1

{
µ(p+2)

(p+ 2)!

(
Λ̃2 − ρ−1Λ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ1

)

+
µ(p+3)

(p+ 3)!

(
hΛ̃3 − ρ−1bΛ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ2

)}
[1 + oP(1)]

(S.42)

This final form will serve as the starting point for the special cases that follow.

S.3.3.1 Boundary Point

Here parity does not matter. Therefore we need only the first term of (S.42), containing µ(p+2). It

matters only if there is sufficient smoothness.

Case 1: p+ 2 ≤ S. The first term of (S.42) exists and dominates others if they exist, and so

Ψrbc,F =
√
nh1+2νh−νhp+2 µ

(p+2)

(p+ 2)!
ν!e′νΓ̃

−1
{

Λ̃2 − ρ−1Λ̃1e
′
p+1

˜̄Γ
−1 ˜̄Λ1

}
[1 + o(1)] .

Case 2: p+ 2 > S. In this case µ(p+2) does not exist, and therefore

Ψrbc,F =
√
nh1+2νh−ν

(
O(hS+s) + ρp+1O(bS+s)

)
= O

(√
nhhS+s[1 + ρp+1−S−s]

)
.

The final rate depends on p and ρ in three cases: (i) if ρ is bounded and bounded away from zero,

then ρp+1−S−s � 1 and Ψrbc,F = O
(√

nhhS+s
)

; (ii) the same rate is obtained if ρ = o(1) and

p + 1 > S, because, since p ≥ S and 1 ≥ s, the exponent on ρ is positive and, with ρ bounded,

Ψrbc,F = O
(√

nhhS+s
)

; (iii) if ρ = o(1) and p + 1 = S, then the second term is ρ−s → ∞, thus

Ψrbc,F = O
(√

nhhS+sρ−s
)

.

S.3.3.2 Interior Point: p− ν odd

Cancellations due to symmetry will occur here as well, even though the initial centering uses p− ν
odd, because bias correction involves p+ 1−ν, which is even. Again we will have three smoothness

cases, though we will find the same result for the latter two.

The analogue of Equation (S.40) for the bias correction is

e′ν
˜̄Γ
−1 ˜̄Λk = Ā+ bB̄ + o(b), with Ā = 0 if (p+ 1 + k − ν) is odd and x is in the interior. (S.43)

We will use this along with (S.40); both matter here because θ̂rbc involves both µ̂
(ν)
p and µ̂

(p+1)
p+1 .
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Case 1: p+ 3 ≤ S. Starting with the formula for Ψrbc,F at the boundary given above, Equations

(S.40) and (S.43) yield e′νΓ̃
−1Λ̃2 = O(h) and e′p+1

˜̄Γ
−1 ˜̄Λ1 = O(b). Therefore, these are the same

order as the appropriate “next” term in the expansion (S.42), i.e. one further derivative must be

retained. This is possible with p+ 3 ≤ S.

Applying this to Ψrbc,F , we find that

Ψrbc,F =
√
nhhp+3 ν!e′νΓ̃

−1

{
µ(p+2)

(p+ 2)!

[
h−1Λ̃2 − ρ−2b−1Λ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ1

]
+

µ(p+3)

(p+ 3)!

[
Λ̃3 − ρ−2Λ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ2

]}
[1 + o(1)] .

Notice that rather than spell out the limiting form of e′νΓ̃
−1Λ̃2 and e′p+1

˜̄Γ
−1 ˜̄Λ1, that is, the C2

and C̄2 above, we keep with the fixed-n spirit and write h−1e′νΓ̃
−1Λ̃2 and b−1e′p+1

˜̄Γ
−1 ˜̄Λ1, which

dual the advantages of easy implementability (using the sample, non-tilde versions) and capturing

all terms.

Case 2: p+ 2 = S. The terms above involving µ(p+3) must be replaced by the O(hS+s) (or bS+s)

term of (S.39), which if p+ 2 = S, leaves the exponent as p+ 2 + s. This gives

Ψrbc,F =
√
nhhp+3 ν!e′νΓ̃

−1

{
µ(p+2)

(p+ 2)!

[
h−1Λ̃2 − ρ−2b−1Λ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ1

]}
+O

(√
nhhp+2+s

)
+O

(√
nhρp+1bp+2+s

)
=
√
nhhp+3 ν!e′νΓ̃

−1

{
µ(p+2)

(p+ 2)!

[
h−1Λ̃2 − ρ−2b−1Λ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ1

]}
+O

(√
nhhp+2+s[1 + ρ−1−s]

)
.

(Note that the order of second term is equivalently
√
nhhS+s[1 + ρ−1−s].) Recall that s ∈ (0, 1].

Therefore the first term above is higher order unless s = 1 (which is not known) and ρ→ ρ̄ ∈ (0,∞),

in which case the two are of the same order. Otherwise, the second term dominates, and further,

if the ρ−1−s portion is the dominant rate if ρ = h/b = o(1) regardless of s. Therefore in this case

it is more clear to suppress the constants of the higher order term and write

Ψrbc,F = O
(√

nhhp+2+s[1 + ρ−1−s]
)
.

Case 3: p + 2 > S. Now the symmetry does not apply (because only when the deriva-

tives exist do the Taylor series terms collapse to Λk and Λ̄k) and so we find that Ψrbc,F =

O
(√

nh
[
hS+s + ρp+1bS+s

])
= O

(√
nhhS+s

[
1 + ρp+1−S−s]).
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S.3.3.3 Interior Point: p− ν even

Case 1: p+ 3 ≤ S. The conditions for A = 0 and Ā = 0 in Equations (S.40) and (S.43) reduce

to whether or not k is odd, because p − ν is even for the former and the latter is always applied

with ν = p+ 1. Using this to add the stabilization needed to Equation (S.42) yields

E
[
θ̂rbc

∣∣X1, . . . , Xn

]
− µ(ν)

= hp+2−νν!e′νΓ̃
−1

{
µ(p+2)

(p+ 2)!

(
Λ̃2 − ρ−1hh−1Λ̃1bb

−1e′p+1
˜̄Γ
−1 ˜̄Λ1

)

+
µ(p+3)

(p+ 3)!

(
h2h−1Λ̃3 − ρ−1hh−1bΛ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ2

)}
[1 + oP(1)]

= hp+2−νν!e′νΓ̃
−1

{
µ(p+2)

(p+ 2)!

(
Λ̃2 − b2

[
h−1Λ̃1b

−1e′p+1
˜̄Γ
−1 ˜̄Λ1

])

+
µ(p+3)

(p+ 3)!

(
h2
[
h−1Λ̃3

]
− b2

[
h−1Λ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ2

])}
[1 + oP(1)].

Therefore

Ψrbc,F =
√
nhhp+2 µ

(p+2)

(p+ 2)!
ν!e′νΓ̃

−1Λ̃2[1 + o(1)].

To build intuition for why this result is correct, recall that if ρ = 1 then θ̂rbc = µ̂
(ν)
p −hp+1−νν!e′νΓ

−1Λ1
µ̂
(p+1)
p+1

(p+1)! =

µ̂
(ν)
p+1, that is, θ̂rbc is equivalent to fitting a p + 1 degree local polynomial rather than p. Here we

are working under p − ν even and so p + 1 − ν is odd, and so naturally we recover the standard

result for odd degree local polynomials.

Case 2: p+ 2 = S. The terms above involving µ(p+3) must be replaced by the O(hS+s) (or bS+s)

term of (S.39), which if p+ 2 = S, leaves the exponent as p+ 2 + s. Thus the leading term on the

right of Equation (S.42) becomes

hp+2−νν!e′νΓ̃
−1

{
µ(p+2)

(p+ 2)!

(
Λ̃2 − ρ−1Λ̃1e

′
p+1

˜̄Γ
−1 ˜̄Λ1

)
+O(hs + ρ−1bs)

}
.

The same symmetry applies as in the previous case, and therefore we still have

Ψrbc,F =
√
nhhp+2 µ

(p+2)

(p+ 2)!
ν!e′νΓ̃

−1Λ̃2[1 + o(1)].

Case 3: p + 2 > S. Now the symmetry does not apply (because only when the deriva-

tives exist do the Taylor series terms collapse to Λk and Λ̄k) and so we find that Ψrbc,F =

O
(√

nh
[
hS+s + ρp+1bS+s

])
= O

(√
nhhS+s

[
1 + ρp+1−S−s]).
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S.4 Notes on Alternative Standard Errors

The proofs above are based on specific standard errors. In particular, we use the fixed-n form of

the variance from Equation (S.11), namely

σ2
p = ν!2e′νΓ

−1(hΩΣΩ′/n)Γ−1eν ,

and estimate Σ using regression residuals, Σ̂p = diag(v̂(Xi) : i = 1, . . . , n), with v̂(Xi) = (Yi −
rp(Xi − x)′β̂p)

2 for β̂p defined in Equation (S.6). This is the HC0 variance estimator. We discuss

two types of alternatives here: (i) different estimators of essentially the same fixed-n object and

(ii) different population standardizations altogether. If other standard errors are used, the results

may change. The type and severity of the change will depend on the choice of standard error. In

particular, the coverage error rate can be slower, but not faster. This is because the Studentization

and standardization do not affect the rate of any term besides the λI,Fω3,I,F term, and thus λI,F ≡ 0

is the most that can be accomplished through variance estimation.

Within the fixed-n form, we consider two alternative estimators of (essentially) the conditional

variances of Equation (S.11): the HCk class estimators and nearest-neighbor based estimators.

First, motivated by the fact that the least-squares residuals are on average too small, we could

implement one of the HCk class of heteroskedasticity-consistent standard errors (MacKinnon, 2013)

beyond HC0. In particular, HC0, HC1, HC2, and HC3 are allowed in the nprobust package

(Calonico et al., 2019). These are defined as follows. First, σ̂2
p (and σ̂2

rbc) defined above and treated

in the proofs is the HC0 estimator, employing the estimated residuals unweighted: ε̂2
i = v̂(Xi) =

(Yi − rp(Xi − x)′β̂p)
2. Then, for k = 1, 2, 3, the σ̂2

p-HCk estimator is obtained by dividing ε̂2
i

by, respectively, (n − 2 trace(Qp) + trace(Q′pQp))/n, (1 − Qp,ii), and (1 − Qp,ii)
2, where Qp,ii is

the i-th diagonal element of the projection matrix Qp := Ř′(Ř′WŘ)−1Ř′W = Ř′Γ−1Ω/n. The

corresponding estimators σ̂2
rbc-HCk are the same way, substituting the appropriate pieces.

These estimators may perform better in small samples, a conjecture backed by simulation studies

elsewhere. Adapting the proofs to allow for HC1, HC2, and HC3 would be notationally extremely

cumbersome, but is conceptually straightforward. The building block of each is the matrix Qp,

which is almost already a function of Zi from (S.18); it is not difficult to see that Cramér’s condition

is plausible for this object. It is important to note that the rates in the expansion would not change,

only the constants (through the terms of (S.15)).

A second option, still using the fixed-n form and also designed to improve upon the least squares

residuals, is to use a nearest-neighbor-based estimator with a fixed number of neighbors (Muller and

Stadtmuller, 1987). This is also allowed in our software (Calonico et al., 2019). For a fixed, positive

integer J , let Xj(i) denote the j-th closest observation to Xi, j = 1, . . . , J . Set v̂(Xi) = J
J+1(Yi −∑J

j=1 Yj(i)/J)2. This estimate is unbiased for v(Xi), and although v̂(·) is inconsistent, the resulting

σ̂2
p = ν!2e′νΓ

−1(hΩΣ̂NNΩ′/n)Γ−1eν provides valid Studentization (as would the analogous σ̂2
rbc).

This approach, however, falls outside our proofs. Lemma S.9 would not verify Cramér’s condition

for this estimator. A modified approach to verifying condition (III′′α) of Skovgaard (1981) would be
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required and Assumption S.2 would not be sufficient.

Finally, as discussed above, on may use a different form of standardization altogether. As argued

in the main text and above, using variance forms other than (S.11) can be detrimental to coverage

by injecting terms with λI,F 6= 0. Examples were given in Section S.2.6 and discussed further in

the main paper. The most common option would be to employ the asymptotic approximation to

the conditional variance:

σ2 →P
v(x)

f(x)
V,

where f(·) is the marginal density of X and V is a known constant depending only on the equiv-

alent kernel (and thus Vp and Vrbc would be different); see Fan and Gijbels (1996, Theorem 3.1).

Estimating this quantity requires estimating the conditional variance function and the (inverse of

the) density at a single point, the point of interest x. If both of these are based on kernel methods

using the same kernel and bandwidth h, then Theorem S.1 allows for this choice. It is clear that the

expansion of the Studentization, Equation (S.15), will change dramatically, as will the elements of

Zi. However, the latter change will be relatively innocuous as far as the proof is concerned, because

Lemma S.9 covers the objects already. But the change to Equation (S.15) will result in additional

terms, with potentially slower rates, appearing the Edgeworth expansion. See the discussion in

Section S.2.6.

There are certainly many other options for (first-order) valid Studentization. Other population

choices include (i) using v̂(Xi) = (Yi−m̂(x))2; (ii) using local or assuming global heteroskedasticity;

(iii) using other nonparametric estimators for v(Xi), relying on new tuning parameters. None of

these can be recommended based on our results. As above, some can be accommodated into our

proof more or less directly, depending on the implementation details.

S.5 Check Function Loss

In the main text, it was pointed out that coverage error can be measured by the check function

loss:

sup
F∈FS

L
(
PF [µ(ν) ∈ I]− (1− α)

)
, L(e) = Lτ (e) = e (τ − 1{e < 0})

Using the check function loss allows the researcher, through their choice of τ , to evaluate inference

procedures according to their preferences against over- and under-coverage. Setting τ = 1/2 re-

covers the above, symmetric measure of coverage error. Guarding more against undercoverage (a

preference for conservative intervals) requires choosing a τ < 1/2. For example, setting τ = 1/3

encodes the belief that undercoverage is twice as bad as the same amount of overcoverage.

Using this loss will affect the constants of the optimal bandwidths and kernels (dependent on

how these are optimized, such as for length, coverage error, or trading these off) but the rates will

not be impacted. This is due to standard properties of the check function, which, for completeness,

we spell out in the following result.

Lemma S.11. L(e) = e (τ − 1{e < 0}) obeys:
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(a) L(ae) = aL(e) for a > 0,

(b) L(e) ≤ (τ + 1)|e|, and

(c) L(e1 + e2) ≤ L(e1) + L(e2) for a > 0.

Proof. The first property follows because L(ae) = (ae) (τ − 1{(ae) < 0}) and, as a > 0, 1{(ae) <
0} = 1{e < 0}. The second uses the obvious bounds. The third, the triangle inequality, holds as

follows.

L(e1 + e2) = (e1 + e2) (τ − 1{(e1 + e2) < 0})

= e1 (τ − 1{e1 < 0}) + e2 (τ − 1{e2 < 0})

+ e11{e1 < 0}+ e21{e2 < 0} − (e1 + e2)1{(e1 + e2) < 0}.

In the second equality, the first line is exactly L(e1)+L(e2). The second line is nonpositive. To this,

consider four cases. (1) If e1 ≥ 0 and e2 ≥ 0, then all the indicators are zero and the second line is

zero. (2) If e1 < 0 and e2 < 0, then all the indicators are one and the second line is e1 +e2−(e1 +e2)

and is again zero. (3) If e1 ≥ 0, e2 < 0, and e1 ≥ |e2|, then 1{e1 < 0} = 1{(e1 + e2) < 0} = 0, and

the second line is e2 < 0. (4) If e1 ≥ 0, e2 < 0, and e1 < |e2|, then 1{e2 < 0} = 1{(e1+e2) < 0} = 1,

and the second line is e2 − (e1 + e2) = −e1 < 0.

S.6 Simulation Results and Numerical Details

S.6.1 Simulation Study

In this section we present the complete results from our simulation study addressing the finite-

sample performance of the methods described in the main paper. All results are qualitatively

consistent with the main theoretical results of our paper.

We study model (S.1) with Xi uniformly distributed on [−1, 1], ε distributed independently

standard normal, and

µ(x) =
sin(3πx/2)

1 + 18x2(sgn(x) + 1)
,

where sgn(x)− 1, 0 or −1 according to x > 0, x = 0 or x < 0, respectively.

We consider 5, 000 simulation replications, where for each replication we generate data as i.i.d.

draws of size n = {100, 250, 500, 750, 1000, 2000}. The point of evaluation is one of six equally

spaced evaluation points x ∈ {−1,−0.6,−0.2, 0.2, 0.6, 1} using the Epanechnikov and Uniform ker-

nel, setting p = 1 (for ν = 0) and p = 2 (for ν = 1). Finally, we evaluate the performance of the

confidence intervals using several bandwidth choices. First, we use ĥrbc, a data-driven version of

the inference-optimal bandwidth hrbc. We also consider the analogous version for undersmooth-

ing confidence intervals, ĥus, and the standard choice in practice, ĥmse. In all cases, robust bias

correction is implemented using ρ = ρ∗.
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We report empirical coverage probabilities and average interval length of nominal 95% confi-

dence interval for µ(x) and µ(1)(x) based on robust bias correction and undersmoothing.

First, in Figures S.1, S.3, and S.5 we present empirical coverage probabilities for ν = 0 using

the Epanechnikov kernel for each evaluation point and choice of bandwidth selector, as a function

on the different sample sizes considered. Overall, we can see that robust bias correction yields

close to accurate coverage, improving over undersmoothing in almost every case. Performance is

highly superior at points where the functions present high curvature and also at the boundary.

Performance is never worse even when the function is quite linear. We obtain similar findings when

looking at the results for ν = 1 in Figure S.2, S.4, and S.6, where robust bias correction outperforms

undersmoothing even more.

We compare confidence interval performance in terms of length, taking coverage into account

by looking at RBC and US confidence intervals implemented with their corresponding coverage

error optimal bandwidth choices (ĥrbc and ĥus, respectively), which is when they perform best

in terms of coverage. We also include other valid, but non optimal choices Irbc(ĥmse), Irbc(ĥus).

Figures S.13 and S.14 present the results for ν = 0 and ν = 1, respectively, using the Epanechnikov

kernel. We find that, in most cases, RBC confidence intervals are, on average, not larger than US,

and sometimes even shorter. Finally, we report the average (over simulations) of the estimated

bandwidths in Figures S.17 and S.18.

All the information used to generate the plots can be found in Tables S.3 and S.4 (for coverage

probabilities), and S.5 and S.6 (for average length). We find similar results for the performance of

RBC and US confidence intervals when using the Uniform kernel, as shown in the remaining figures

and tables, corresponding exactly to those for the Epanechnikov kernel.
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Figure S.1: Empirical Coverage for 95% Confidence Intervals
Epanechnikov Kernel, ĥrbc, ν = 0
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Figure S.2: Empirical Coverage for 95% Confidence Intervals
Epanechnikov Kernel, ĥrbc, ν = 1
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Figure S.3: Empirical Coverage for 95% Confidence Intervals
Epanechnikov Kernel, ĥus, ν = 0
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Figure S.4: Empirical Coverage for 95% Confidence Intervals
Epanechnikov Kernel, ĥus, ν = 1

0.4

0.6

0.8

1.0

500 1000 1500 2000
n

(a) x = −1

0.4

0.6

0.8

1.0

500 1000 1500 2000
n

(b) x = −0.6

0.4

0.6

0.8

1.0

500 1000 1500 2000
n

(c) x = −0.2

0.4

0.6

0.8

1.0

500 1000 1500 2000
n

(d) x = 0.2

0.4

0.6

0.8

1.0

500 1000 1500 2000
n

(e) x = 0.6

0.4

0.6

0.8

1.0

500 1000 1500 2000
n

(f) x = 1

Notes: Robust Bias Correction, Undersmoothing

69



Figure S.5: Empirical Coverage for 95% Confidence Intervals
Epanechnikov Kernel, ĥmse, ν = 0
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Figure S.6: Empirical Coverage for 95% Confidence Intervals
Epanechnikov Kernel, ĥmse, ν = 1
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Figure S.7: Empirical Coverage for 95% Confidence Intervals
Uniform Kernel, ĥrbc, ν = 0
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Figure S.8: Empirical Coverage for 95% Confidence Intervals
Uniform Kernel, ĥrbc, ν = 1
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Figure S.9: Empirical Coverage for 95% Confidence Intervals
Uniform Kernel, ĥus, ν = 0
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Figure S.10: Empirical Coverage for 95% Confidence Intervals
Uniform Kernel, ĥus, ν = 1

0.6

0.8

1.0

500 1000 1500 2000
n

(a) x = −1

0.6

0.8

1.0

500 1000 1500 2000
n

(b) x = −0.6

0.6

0.8

1.0

500 1000 1500 2000
n

(c) x = −0.2

0.6

0.8

1.0

500 1000 1500 2000
n

(d) x = 0.2

0.6

0.8

1.0

500 1000 1500 2000
n

(e) x = 0.6

0.6

0.8

1.0

500 1000 1500 2000
n

(f) x = 1

Notes: Robust Bias Correction, Undersmoothing

75



Figure S.11: Empirical Coverage for 95% Confidence Intervals
Uniform Kernel, ĥmse, ν = 0
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Figure S.12: Empirical Coverage for 95% Confidence Intervals
Uniform Kernel, ĥmse, ν = 1
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Figure S.13: Average Interval Length for 95% Confidence Intervals
Epanechnikov Kernel, ν = 0
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Figure S.14: Average Interval Length for 95% Confidence Intervals
Epanechnikov Kernel, ν = 1
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Figure S.15: Average Interval Length for 95% Confidence Intervals
Uniform Kernel, ν = 0
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Figure S.16: Average Interval Length for 95% Confidence Intervals
Uniform Kernel, ν = 1
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Figure S.17: Average Estimated Bandwidths, Epanechnikov Kernel, ν = 0
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Figure S.18: Average Estimated Bandwidths, Epanechnikov Kernel, ν = 1
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Figure S.19: Average Estimated Bandwidths, Uniform Kernel, ν = 0
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Figure S.20: Average Estimated Bandwidths, Uniform Kernel, ν = 1
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Table S.3: Empirical Coverage Probabilities, 95% Confidence Intervals, ν = 0, Epanechnikov Kernel

hRBC hUS hMSE
h RBC US h RBC US h RBC US

x =-1
100 0.436 0.881 0.877 0.320 0.873 0.889 0.507 0.899 0.875
250 0.368 0.906 0.892 0.115 0.879 0.893 0.462 0.912 0.862
500 0.321 0.925 0.902 0.116 0.879 0.893 0.438 0.930 0.828
750 0.295 0.935 0.915 0.168 0.881 0.880 0.420 0.934 0.797
1000 0.280 0.941 0.908 0.205 0.887 0.860 0.404 0.930 0.769
2000 0.255 0.941 0.902 0.143 0.920 0.902 0.356 0.924 0.696

x =-0.6
100 0.335 0.922 0.898 0.255 0.919 0.909 0.356 0.929 0.897
250 0.262 0.935 0.922 0.145 0.927 0.931 0.342 0.940 0.874
500 0.221 0.941 0.927 0.104 0.942 0.941 0.316 0.944 0.869
750 0.200 0.948 0.941 0.090 0.938 0.942 0.291 0.947 0.867
1000 0.186 0.949 0.942 0.081 0.946 0.950 0.274 0.950 0.870
2000 0.158 0.947 0.936 0.063 0.946 0.941 0.235 0.944 0.868

x =-0.2
100 0.564 0.800 0.388 0.242 0.910 0.873 0.512 0.858 0.446
250 0.490 0.794 0.286 0.169 0.924 0.911 0.441 0.874 0.316
500 0.446 0.791 0.220 0.127 0.941 0.935 0.386 0.890 0.234
750 0.423 0.786 0.182 0.107 0.936 0.932 0.357 0.905 0.207
1000 0.402 0.785 0.164 0.095 0.936 0.934 0.337 0.908 0.189
2000 0.368 0.785 0.139 0.071 0.948 0.945 0.293 0.933 0.153

x =0.2
100 0.468 0.890 0.645 0.326 0.888 0.760 0.647 0.821 0.231
250 0.379 0.928 0.647 0.211 0.917 0.843 0.645 0.642 0.026
500 0.328 0.935 0.666 0.144 0.930 0.903 0.635 0.403 0.009
750 0.302 0.941 0.658 0.116 0.944 0.932 0.623 0.259 0.005
1000 0.284 0.949 0.672 0.100 0.943 0.941 0.611 0.212 0.004
2000 0.244 0.945 0.708 0.074 0.943 0.945 0.575 0.150 0.003

x =0.6
100 0.407 0.922 0.926 0.381 0.928 0.926 0.479 0.932 0.929
250 0.338 0.934 0.936 0.291 0.938 0.937 0.535 0.931 0.927
500 0.284 0.937 0.936 0.253 0.944 0.940 0.551 0.900 0.909
750 0.258 0.943 0.944 0.234 0.948 0.939 0.538 0.881 0.903
1000 0.246 0.940 0.937 0.218 0.945 0.933 0.529 0.853 0.888
2000 0.211 0.943 0.940 0.174 0.944 0.931 0.498 0.760 0.832

x =1
100 0.378 0.897 0.902 0.253 0.887 0.906 0.484 0.905 0.901
250 0.269 0.898 0.911 0.084 0.877 0.900 0.401 0.926 0.922
500 0.204 0.906 0.917 0.043 0.879 0.895 0.374 0.929 0.928
750 0.179 0.928 0.930 0.035 0.881 0.898 0.361 0.944 0.931
1000 0.165 0.925 0.938 0.036 0.880 0.892 0.350 0.948 0.942
2000 0.136 0.939 0.939 0.048 0.894 0.907 0.322 0.942 0.935
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Table S.4: Empirical Coverage Probabilities, 95% Confidence Intervals, ν = 1, Epanechnikov Kernel

hRBC hUS hMSE
h RBC US h RBC US h RBC US

x =-1
100 1.041 0.689 0.337 0.436 0.926 0.891 0.556 0.923 0.864
250 0.861 0.774 0.399 0.368 0.924 0.910 0.484 0.937 0.890
500 0.718 0.872 0.488 0.321 0.930 0.920 0.451 0.949 0.901
750 0.635 0.915 0.561 0.295 0.935 0.929 0.434 0.950 0.900
1000 0.582 0.931 0.625 0.280 0.937 0.932 0.420 0.949 0.908
2000 0.475 0.942 0.760 0.255 0.938 0.941 0.392 0.955 0.904

x =-0.6
100 0.482 0.874 0.621 0.335 0.911 0.809 0.486 0.918 0.571
250 0.360 0.936 0.654 0.262 0.940 0.876 0.475 0.933 0.229
500 0.298 0.943 0.774 0.221 0.942 0.910 0.446 0.943 0.072
750 0.268 0.948 0.815 0.200 0.943 0.925 0.424 0.942 0.043
1000 0.250 0.944 0.850 0.186 0.949 0.933 0.408 0.942 0.041
2000 0.214 0.948 0.884 0.158 0.947 0.937 0.373 0.943 0.024

x =-0.2
100 0.732 0.660 0.097 0.564 0.819 0.388 0.548 0.906 0.277
250 0.642 0.677 0.072 0.490 0.850 0.400 0.488 0.937 0.204
500 0.590 0.713 0.056 0.446 0.858 0.431 0.443 0.939 0.177
750 0.563 0.727 0.048 0.423 0.851 0.441 0.420 0.942 0.163
1000 0.539 0.743 0.049 0.402 0.864 0.459 0.403 0.942 0.167
2000 0.488 0.783 0.050 0.368 0.858 0.493 0.365 0.934 0.175

x =0.2
100 0.575 0.626 0.193 0.468 0.782 0.422 0.575 0.691 0.035
250 0.446 0.743 0.161 0.379 0.862 0.400 0.514 0.598 0.002
500 0.377 0.823 0.143 0.328 0.894 0.373 0.467 0.524 0.000
750 0.345 0.861 0.135 0.302 0.916 0.389 0.442 0.514 0.000
1000 0.323 0.875 0.141 0.284 0.921 0.402 0.425 0.483 0.000
2000 0.277 0.917 0.190 0.244 0.941 0.483 0.385 0.490 0.000

x =0.6
100 0.601 0.915 0.925 0.407 0.926 0.926 0.515 0.939 0.934
250 0.537 0.920 0.930 0.338 0.933 0.937 0.508 0.945 0.936
500 0.496 0.904 0.941 0.284 0.938 0.942 0.500 0.945 0.952
750 0.461 0.907 0.941 0.258 0.938 0.946 0.482 0.948 0.950
1000 0.431 0.904 0.944 0.246 0.945 0.949 0.468 0.942 0.945
2000 0.362 0.911 0.946 0.211 0.942 0.946 0.434 0.941 0.945

x =1
100 1.084 0.882 0.878 0.378 0.927 0.919 0.659 0.945 0.930
250 0.922 0.895 0.890 0.269 0.921 0.918 0.617 0.946 0.940
500 0.784 0.922 0.915 0.204 0.932 0.929 0.577 0.947 0.941
750 0.707 0.933 0.933 0.179 0.926 0.929 0.551 0.946 0.949
1000 0.663 0.939 0.942 0.165 0.932 0.929 0.528 0.950 0.947
2000 0.546 0.943 0.942 0.136 0.940 0.946 0.469 0.949 0.941
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Table S.5: Average Interval Length, 95% Confidence Intervals, ν = 0, Epanechnikov Kernel

hRBC hUS hMSE
h RBC US h RBC US h RBC US

x =-1
100 0.436 2.442 1.674 0.320 2.761 1.793 0.507 2.330 1.656
250 0.368 1.713 1.239 0.115 2.781 1.795 0.462 1.492 1.089
500 0.321 1.282 0.940 0.116 2.585 1.697 0.438 1.084 0.796
750 0.295 1.090 0.801 0.168 2.210 1.474 0.420 0.907 0.667
1000 0.280 0.966 0.710 0.205 1.799 1.240 0.404 0.801 0.589
2000 0.255 0.711 0.524 0.143 1.222 0.891 0.356 0.605 0.446

x =-0.6
100 0.335 1.020 0.762 0.255 1.173 0.863 0.356 0.983 0.734
250 0.262 0.715 0.537 0.145 0.985 0.739 0.342 0.633 0.473
500 0.221 0.547 0.411 0.104 0.812 0.611 0.316 0.461 0.346
750 0.200 0.467 0.352 0.090 0.706 0.531 0.291 0.390 0.293
1000 0.186 0.419 0.315 0.081 0.646 0.487 0.274 0.349 0.262
2000 0.158 0.322 0.242 0.063 0.513 0.386 0.235 0.266 0.200

x =-0.2
100 0.564 0.786 0.592 0.242 1.171 0.864 0.512 0.799 0.601
250 0.490 0.533 0.401 0.169 0.890 0.671 0.441 0.543 0.409
500 0.446 0.396 0.298 0.127 0.724 0.545 0.386 0.411 0.309
750 0.423 0.334 0.251 0.107 0.644 0.485 0.357 0.349 0.263
1000 0.402 0.297 0.223 0.095 0.592 0.446 0.337 0.312 0.234
2000 0.368 0.221 0.166 0.071 0.481 0.362 0.293 0.236 0.178

x =0.2
100 0.468 0.844 0.632 0.326 1.050 0.778 0.647 0.711 0.532
250 0.379 0.589 0.443 0.211 0.822 0.619 0.645 0.451 0.338
500 0.328 0.447 0.336 0.144 0.692 0.520 0.635 0.321 0.241
750 0.302 0.379 0.286 0.116 0.619 0.466 0.623 0.265 0.200
1000 0.284 0.339 0.255 0.100 0.575 0.433 0.611 0.232 0.174
2000 0.244 0.258 0.194 0.074 0.471 0.355 0.575 0.169 0.127

x =0.6
100 0.407 0.942 0.706 0.381 0.994 0.749 0.479 0.864 0.643
250 0.338 0.647 0.489 0.291 0.718 0.542 0.535 0.525 0.399
500 0.284 0.495 0.373 0.253 0.544 0.410 0.551 0.367 0.282
750 0.258 0.422 0.318 0.234 0.463 0.348 0.538 0.304 0.234
1000 0.246 0.375 0.283 0.218 0.414 0.311 0.529 0.266 0.205
2000 0.211 0.285 0.215 0.174 0.328 0.247 0.498 0.196 0.150

x =1
100 0.378 2.547 1.725 0.253 2.847 1.832 0.484 2.397 1.704
250 0.269 2.034 1.440 0.084 2.893 1.850 0.401 1.625 1.182
500 0.204 1.609 1.169 0.043 2.825 1.828 0.374 1.172 0.861
750 0.179 1.391 1.018 0.035 2.760 1.806 0.361 0.971 0.715
1000 0.165 1.250 0.917 0.036 2.670 1.767 0.350 0.856 0.630
2000 0.136 0.966 0.710 0.048 2.069 1.458 0.322 0.627 0.462
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Table S.6: Average Interval Length, 95% Confidence Intervals, ν = 1, Epanechnikov Kernel

hRBC hUS hMSE
h RBC US h RBC US h RBC US

x =-1
100 1.041 19.701 9.445 0.436 69.744 28.528 0.556 48.016 22.617
250 0.861 16.338 8.028 0.368 61.142 28.904 0.484 34.436 16.763
500 0.718 14.947 7.391 0.321 49.275 24.059 0.451 26.558 13.049
750 0.635 14.553 7.190 0.295 44.292 21.675 0.434 22.961 11.300
1000 0.582 14.242 7.042 0.280 40.630 19.944 0.420 20.849 10.271
2000 0.475 13.336 6.587 0.255 32.206 15.851 0.392 16.238 8.016

x =-0.6
100 0.482 6.098 3.158 0.335 9.635 4.835 0.486 5.571 2.846
250 0.360 5.109 2.557 0.262 8.041 4.096 0.475 3.562 1.750
500 0.298 4.512 2.289 0.221 7.088 3.612 0.446 2.666 1.273
750 0.268 4.255 2.165 0.200 6.681 3.405 0.424 2.287 1.096
1000 0.250 4.084 2.079 0.186 6.358 3.243 0.408 2.055 0.997
2000 0.214 3.627 1.846 0.158 5.737 2.921 0.373 1.597 0.804

x =-0.2
100 0.732 3.023 1.531 0.564 4.600 2.343 0.548 4.033 2.033
250 0.642 2.216 1.127 0.490 3.476 1.775 0.488 2.994 1.513
500 0.590 1.757 0.896 0.446 2.832 1.443 0.443 2.428 1.231
750 0.563 1.535 0.781 0.423 2.541 1.294 0.420 2.153 1.091
1000 0.539 1.407 0.716 0.402 2.364 1.204 0.403 1.977 1.004
2000 0.488 1.156 0.588 0.368 1.971 1.004 0.365 1.617 0.822

x =0.2
100 0.575 3.998 2.031 0.468 5.462 2.765 0.575 3.747 1.885
250 0.446 3.521 1.783 0.379 4.477 2.277 0.514 2.765 1.396
500 0.377 3.133 1.591 0.328 3.853 1.962 0.467 2.244 1.137
750 0.345 2.909 1.478 0.302 3.554 1.813 0.442 1.988 1.009
1000 0.323 2.770 1.408 0.284 3.362 1.713 0.425 1.827 0.929
2000 0.277 2.456 1.250 0.244 2.973 1.515 0.385 1.493 0.760

x =0.6
100 0.601 4.652 2.707 0.407 7.736 3.930 0.515 5.184 2.714
250 0.537 3.328 1.792 0.338 6.157 3.165 0.508 3.305 1.709
500 0.496 2.585 1.354 0.284 5.415 2.762 0.500 2.348 1.187
750 0.461 2.313 1.196 0.258 4.969 2.534 0.482 2.000 0.994
1000 0.431 2.179 1.124 0.246 4.692 2.396 0.468 1.791 0.883
2000 0.362 1.953 1.001 0.211 4.095 2.087 0.434 1.377 0.680

x =1
100 1.084 18.377 8.838 0.378 77.836 31.082 0.659 36.723 17.371
250 0.922 14.556 7.134 0.269 102.575 46.277 0.617 24.053 11.744
500 0.784 12.866 6.341 0.204 99.887 47.579 0.577 18.347 9.047
750 0.707 12.195 6.022 0.179 96.458 46.670 0.551 15.971 7.885
1000 0.663 11.490 5.680 0.165 91.635 44.564 0.528 14.687 7.261
2000 0.546 10.592 5.232 0.136 82.575 40.567 0.469 12.323 6.085
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Table S.7: Empirical Coverage Probabilities, 95% Confidence Intervals, ν = 0, Uniform Kernel

hRBC hUS hMSE
h RBC US h RBC US h RBC US

x =-1
100 0.372 0.901 0.876 0.286 0.893 0.888 0.462 0.903 0.877
250 0.319 0.910 0.899 0.122 0.888 0.909 0.397 0.919 0.881
500 0.277 0.925 0.905 0.105 0.889 0.901 0.372 0.934 0.852
750 0.256 0.930 0.917 0.117 0.897 0.892 0.352 0.940 0.827
1000 0.242 0.938 0.906 0.126 0.893 0.873 0.326 0.945 0.812
2000 0.221 0.941 0.900 0.156 0.894 0.809 0.247 0.942 0.854

x =-0.6
100 0.297 0.925 0.890 0.175 0.919 0.918 0.364 0.930 0.841
250 0.224 0.937 0.910 0.106 0.921 0.927 0.319 0.936 0.794
500 0.184 0.947 0.924 0.080 0.932 0.940 0.278 0.942 0.778
750 0.167 0.949 0.932 0.069 0.938 0.942 0.256 0.951 0.768
1000 0.155 0.947 0.936 0.062 0.939 0.944 0.240 0.949 0.779
2000 0.131 0.946 0.934 0.050 0.948 0.941 0.207 0.945 0.770

x =-0.2
100 0.466 0.863 0.330 0.205 0.920 0.841 0.455 0.894 0.287
250 0.411 0.852 0.237 0.140 0.924 0.903 0.396 0.899 0.153
500 0.377 0.846 0.180 0.103 0.939 0.933 0.348 0.912 0.094
750 0.355 0.841 0.155 0.087 0.937 0.935 0.322 0.927 0.066
1000 0.339 0.843 0.144 0.076 0.938 0.934 0.303 0.931 0.066
2000 0.309 0.836 0.128 0.057 0.945 0.946 0.263 0.941 0.050

x =0.2
100 0.381 0.910 0.606 0.281 0.904 0.743 0.477 0.933 0.271
250 0.302 0.938 0.623 0.188 0.928 0.831 0.428 0.940 0.090
500 0.255 0.939 0.671 0.132 0.932 0.892 0.388 0.939 0.042
750 0.232 0.942 0.669 0.105 0.937 0.922 0.365 0.940 0.028
1000 0.217 0.948 0.703 0.089 0.942 0.933 0.348 0.941 0.026
2000 0.185 0.945 0.748 0.063 0.943 0.944 0.313 0.926 0.019

x =0.6
100 0.348 0.928 0.923 0.271 0.932 0.931 0.427 0.937 0.925
250 0.304 0.934 0.935 0.206 0.939 0.937 0.391 0.945 0.924
500 0.273 0.935 0.935 0.179 0.946 0.942 0.352 0.945 0.920
750 0.256 0.938 0.933 0.173 0.951 0.949 0.330 0.949 0.912
1000 0.244 0.935 0.934 0.166 0.946 0.944 0.315 0.944 0.911
2000 0.209 0.935 0.927 0.150 0.950 0.932 0.279 0.948 0.880

x =1
100 0.323 0.907 0.917 0.266 0.907 0.919 0.464 0.909 0.918
250 0.230 0.901 0.919 0.089 0.894 0.919 0.393 0.922 0.930
500 0.175 0.910 0.922 0.051 0.893 0.907 0.357 0.934 0.940
750 0.154 0.921 0.937 0.041 0.897 0.915 0.334 0.940 0.939
1000 0.139 0.922 0.939 0.038 0.894 0.918 0.316 0.948 0.944
2000 0.115 0.938 0.935 0.045 0.900 0.918 0.287 0.937 0.937
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Table S.8: Empirical Coverage Probabilities, 95% Confidence Intervals, ν = 1, Uniform Kernel

hRBC hUS hMSE
h RBC US h RBC US h RBC US

x =-1
100 0.878 0.835 0.413 0.372 0.928 0.907 0.525 0.924 0.856
250 0.720 0.883 0.476 0.319 0.934 0.917 0.449 0.936 0.878
500 0.588 0.930 0.605 0.277 0.937 0.923 0.409 0.940 0.900
750 0.517 0.935 0.677 0.256 0.939 0.935 0.393 0.946 0.899
1000 0.473 0.943 0.739 0.242 0.941 0.934 0.382 0.947 0.910
2000 0.382 0.942 0.851 0.221 0.943 0.941 0.357 0.948 0.898

x =-0.6
100 0.418 0.899 0.592 0.297 0.919 0.792 0.458 0.927 0.420
250 0.305 0.935 0.680 0.224 0.932 0.873 0.426 0.937 0.129
500 0.251 0.946 0.797 0.184 0.944 0.915 0.394 0.947 0.064
750 0.227 0.948 0.831 0.167 0.943 0.926 0.375 0.943 0.044
1000 0.212 0.948 0.867 0.155 0.947 0.933 0.361 0.949 0.042
2000 0.181 0.950 0.891 0.131 0.944 0.945 0.331 0.947 0.027

x =-0.2
100 0.630 0.782 0.100 0.466 0.879 0.437 0.512 0.921 0.135
250 0.558 0.809 0.064 0.411 0.883 0.470 0.457 0.946 0.067
500 0.512 0.829 0.049 0.377 0.886 0.506 0.414 0.941 0.052
750 0.485 0.849 0.046 0.355 0.882 0.516 0.392 0.947 0.036
1000 0.467 0.843 0.048 0.339 0.886 0.535 0.376 0.941 0.038
2000 0.420 0.869 0.054 0.309 0.884 0.562 0.341 0.944 0.041

x =0.2
100 0.491 0.785 0.200 0.381 0.866 0.502 0.513 0.818 0.048
250 0.379 0.875 0.172 0.302 0.923 0.526 0.456 0.785 0.004
500 0.321 0.907 0.150 0.255 0.938 0.552 0.414 0.759 0.000
750 0.294 0.928 0.150 0.232 0.947 0.600 0.392 0.773 0.000
1000 0.274 0.933 0.154 0.217 0.947 0.623 0.376 0.758 0.000
2000 0.234 0.948 0.218 0.185 0.948 0.713 0.340 0.778 0.000

x =0.6
100 0.516 0.928 0.928 0.348 0.932 0.917 0.470 0.935 0.935
250 0.446 0.934 0.925 0.304 0.929 0.933 0.442 0.943 0.934
500 0.393 0.932 0.936 0.273 0.927 0.944 0.415 0.948 0.949
750 0.356 0.931 0.939 0.256 0.938 0.946 0.399 0.952 0.950
1000 0.338 0.934 0.943 0.244 0.938 0.946 0.388 0.950 0.945
2000 0.287 0.928 0.937 0.209 0.934 0.950 0.359 0.950 0.943

x =1
100 0.901 0.922 0.886 0.323 0.932 0.926 0.555 0.935 0.932
250 0.757 0.926 0.903 0.230 0.926 0.918 0.502 0.933 0.937
500 0.633 0.938 0.920 0.175 0.930 0.931 0.454 0.940 0.941
750 0.569 0.943 0.943 0.154 0.932 0.935 0.429 0.945 0.950
1000 0.532 0.948 0.944 0.139 0.935 0.935 0.413 0.950 0.948
2000 0.442 0.944 0.941 0.115 0.941 0.940 0.384 0.945 0.943

91



Table S.9: Average Interval Length, 95% Confidence Intervals, ν = 0, Uniform Kernel

hRBC hUS hMSE
h RBC US h RBC US h RBC US

x =-1
100 0.372 2.561 1.638 0.286 2.649 1.688 0.462 2.566 1.636
250 0.319 1.948 1.274 0.122 2.593 1.656 0.397 1.694 1.116
500 0.277 1.457 0.965 0.105 2.453 1.573 0.372 1.230 0.816
750 0.256 1.231 0.818 0.117 2.266 1.453 0.352 1.034 0.688
1000 0.242 1.092 0.725 0.126 2.106 1.347 0.326 0.931 0.620
2000 0.221 0.798 0.532 0.156 1.507 0.982 0.247 0.753 0.502

x =-0.6
100 0.297 1.107 0.741 0.175 1.260 0.844 0.364 1.026 0.690
250 0.224 0.802 0.535 0.106 1.169 0.779 0.319 0.682 0.455
500 0.184 0.619 0.413 0.080 0.964 0.643 0.278 0.513 0.342
750 0.167 0.528 0.352 0.069 0.836 0.557 0.256 0.434 0.290
1000 0.155 0.474 0.316 0.062 0.762 0.509 0.240 0.389 0.259
2000 0.131 0.364 0.243 0.050 0.597 0.398 0.207 0.296 0.197

x =-0.2
100 0.466 0.894 0.598 0.205 1.234 0.822 0.455 0.879 0.585
250 0.411 0.604 0.404 0.140 1.020 0.682 0.396 0.594 0.395
500 0.377 0.449 0.300 0.103 0.836 0.558 0.348 0.447 0.298
750 0.355 0.380 0.254 0.087 0.744 0.495 0.322 0.381 0.254
1000 0.339 0.338 0.225 0.076 0.683 0.457 0.303 0.340 0.226
2000 0.309 0.252 0.168 0.057 0.555 0.370 0.263 0.258 0.172

x =0.2
100 0.381 0.972 0.646 0.281 1.132 0.754 0.477 0.863 0.572
250 0.302 0.684 0.457 0.188 0.914 0.611 0.428 0.573 0.381
500 0.255 0.524 0.349 0.132 0.762 0.508 0.388 0.425 0.283
750 0.232 0.446 0.298 0.105 0.684 0.456 0.365 0.358 0.239
1000 0.217 0.401 0.267 0.089 0.637 0.426 0.348 0.318 0.212
2000 0.185 0.306 0.204 0.063 0.529 0.353 0.313 0.238 0.159

x =0.6
100 0.348 1.045 0.702 0.271 1.150 0.772 0.427 0.936 0.635
250 0.304 0.710 0.477 0.206 0.879 0.590 0.391 0.611 0.411
500 0.273 0.527 0.354 0.179 0.668 0.447 0.352 0.454 0.304
750 0.256 0.446 0.299 0.173 0.561 0.374 0.330 0.383 0.256
1000 0.244 0.395 0.265 0.166 0.492 0.329 0.315 0.339 0.227
2000 0.209 0.301 0.201 0.150 0.368 0.245 0.279 0.257 0.171

x =1
100 0.323 2.608 1.664 0.266 2.666 1.696 0.464 2.555 1.631
250 0.230 2.307 1.477 0.089 2.702 1.707 0.393 1.733 1.136
500 0.175 1.838 1.206 0.051 2.632 1.679 0.357 1.263 0.838
750 0.154 1.578 1.044 0.041 2.568 1.656 0.334 1.059 0.705
1000 0.139 1.427 0.946 0.038 2.547 1.636 0.316 0.943 0.628
2000 0.115 1.101 0.733 0.045 2.171 1.410 0.287 0.694 0.463
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Table S.10: Average Interval Length, 95% Confidence Intervals, ν = 1, Uniform Kernel

hRBC hUS hMSE
h RBC US h RBC US h RBC US

x =-1
100 0.878 28.499 11.007 0.372 74.089 26.860 0.525 58.507 21.792
250 0.720 23.646 9.391 0.319 85.698 32.415 0.449 42.941 16.854
500 0.588 22.170 8.862 0.277 69.500 27.253 0.409 33.847 13.454
750 0.517 21.707 8.686 0.256 61.629 24.361 0.393 29.132 11.609
1000 0.473 21.202 8.489 0.242 56.624 22.424 0.382 26.357 10.515
2000 0.382 20.050 8.033 0.221 44.037 17.519 0.357 20.483 8.194

x =-0.6
100 0.418 7.793 3.196 0.297 11.921 4.762 0.458 6.335 2.673
250 0.305 6.840 2.707 0.224 11.095 4.415 0.426 4.159 1.683
500 0.251 6.225 2.472 0.184 10.016 4.010 0.394 3.181 1.265
750 0.227 5.844 2.334 0.167 9.395 3.760 0.375 2.752 1.095
1000 0.212 5.596 2.236 0.155 8.965 3.589 0.361 2.509 0.998
2000 0.181 4.983 1.991 0.131 8.115 3.242 0.331 2.022 0.807

x =-0.2
100 0.630 3.974 1.598 0.466 6.568 2.636 0.512 4.846 1.878
250 0.558 2.909 1.166 0.411 4.975 1.994 0.457 3.552 1.399
500 0.512 2.315 0.930 0.377 4.070 1.629 0.414 2.876 1.144
750 0.485 2.045 0.818 0.355 3.667 1.469 0.392 2.543 1.011
1000 0.467 1.873 0.750 0.339 3.431 1.373 0.376 2.336 0.931
2000 0.420 1.551 0.621 0.309 2.908 1.162 0.341 1.910 0.763

x =0.2
100 0.491 5.462 2.151 0.381 8.147 3.229 0.513 4.813 1.859
250 0.379 4.802 1.897 0.302 6.861 2.742 0.456 3.550 1.395
500 0.321 4.238 1.686 0.255 6.070 2.417 0.414 2.874 1.141
750 0.294 3.947 1.572 0.232 5.664 2.267 0.392 2.548 1.014
1000 0.274 3.766 1.502 0.217 5.400 2.160 0.376 2.342 0.934
2000 0.234 3.362 1.342 0.185 4.837 1.935 0.340 1.914 0.766

x =0.6
100 0.516 5.937 2.723 0.348 10.278 4.159 0.470 6.156 2.648
250 0.446 4.422 1.876 0.304 8.031 3.244 0.442 4.028 1.669
500 0.393 3.684 1.516 0.273 6.540 2.629 0.415 3.008 1.218
750 0.356 3.405 1.382 0.256 5.857 2.359 0.399 2.565 1.034
1000 0.338 3.188 1.292 0.244 5.466 2.202 0.388 2.313 0.933
2000 0.287 2.833 1.137 0.209 4.776 1.918 0.359 1.842 0.740

x =1
100 0.901 27.285 10.546 0.323 77.275 28.086 0.555 53.679 20.014
250 0.757 21.694 8.600 0.230 136.702 50.383 0.502 36.186 14.246
500 0.633 19.479 7.765 0.175 139.797 53.718 0.454 28.845 11.503
750 0.569 18.470 7.391 0.154 132.358 51.889 0.429 25.410 10.147
1000 0.532 17.516 7.020 0.139 129.817 50.990 0.413 23.265 9.305
2000 0.442 15.794 6.319 0.115 117.431 46.691 0.384 18.243 7.290
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S.6.2 Numerical Computations

In the main text we discussed the optimization of ρ by minimizing the L2 distance to the known

optimal kernel shape in various contexts. These optimal kernel shapes are shown in the figures

below for both the Triangular and Epanechnikov kernels, at interior and boundary points, for

levels and derivatives. In each case the black line shows K∗p+1(u) while the dash-dotted red line is

Krbc(u;K, ρ∗, ν).
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Figure S.21: K∗p+1(u) vs. Krbc(u;K, ρ∗, ν), ν = 0

(a) Triangular Kernel, Boundary Point
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Figure S.22: K∗p+1(u) vs. Krbc(u;K, ρ∗, ν), ν = 1

(a) Triangular Kernel, Boundary Point
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S.7 List of Notation

Below is a (hopefully) complete list of the notation used in this Part, group by Section, roughly in

order of introduction. This is intended only as a reference. Each object is redefined below when it

is needed.

Asymptotic orders and their in-probability versions hold uniformly in FS , as required by our

framework; e.g., An = oP(an) means supF∈FS
PF [|An/an| > ε] = o(1) for every ε > 0.

Local Polynomial Regression, t-Statistics, and Confidence Intervals

• {(Y1, X1), . . . , (Yn, Xn)} is a random sample distributed according to F , the data-generating

process. F is assumed to belong to a class FS

• µ(ν) = µ
(ν)
F (x) := ∂ν

∂xνEF [Y | X=x]
∣∣
x=x

, where ν ≤ S, where µ(·) possess at least S deriva-

tives.

• µF (x) = µ
(0)
F (x) = EF [Y | X=x]

• Where it causes no confusion the point of evaluation x will be omitted as an argument, so

that for a function g(·) we will write g := g(x)

• µ̂(ν) = ν!e′νβ̂p = 1
nhν ν!e′νΓ

−1ΩY

• β̂p = arg minβ∈Rp+1

∑n
i=1(Yi − rp(Xi − x)′β)2K (Xh,i)

• β̂p+1 = arg minβ∈R(p+1)+1

∑n
i=1(Yi − rp+1(Xi − x)′β)2K (Xb,i)

• ek is a conformable zero vector with a one in the (k + 1) position, for example eν is the

(p+ 1)-vector with a one in the νth position and zeros in the rest

• h is a bandwidth sequence that vanishes as n diverges

• p is an integer greater than ν, with p− ν odd

• rp(u) = (1, u, u2, . . . , up)′

• Xh,i = (Xi − x)/h, for a bandwidth h and point of interest x

• to save space, products of functions will often be written together, with only one argument,

for example

(Krpr
′
p)(Xh,i) := K(Xh,i)rp(Xh,i)rp(Xh,i)

′ = K

(
Xi − x

h

)
rp

(
Xi − x

h

)
rp

(
Xi − x

h

)′
,

• Γ = 1
nh

∑n
i=1(Krpr

′
p)(Xh,i) = (Ř′WŘ)/n

• Ω = [(Krp)(Xh,1), (Krp)(Xh,2), . . . , (Krp)(Xh,n)] = Ř′W

• Y = (Y1, . . . , Yn)′

• R = [rp(X1 − x), · · · , rp(Xn − x)]′

• W = diag
(
h−1K(Xh,i) : i = 1, . . . , n

)
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• H = diag
(
1, h, h2, . . . , hp

)
• Ř = RH−1 = [rp(Xh,1), · · · , rp(Xh,n)]′

• diag(ai : i = 1, . . . , k) denote the k × k diagonal matrix constructed using the elements

a1, a2, · · · , ak

• Λk = Ω
[
Xp+k
h,1 , . . . , Xp+k

h,n

]′
/n, where, in particular Λ1 was denoted Λ in the main text

• b is a bandwidth sequence that vanishes as n diverges

• Xb,i = (Xi − x)/b, for a bandwidth b and point of interest x, exactly like Xh,i but with b in

place of h

• Ω̄ = [(Krp+1)(Xb,1), (Krp+1)(Xb,2), . . . , (Krp+1)(Xb,n)], exactly like Ω but with b in place of

h and p+ 1 in place of p

• Γ̄ = 1
nb

∑n
i=1(Krp+1r

′
p+1)(Xb,i), exactly like Γ but with b in place of h and p+ 1 in place of

p, and

• Λ̄k = Ω̄
[
Xp+1+k
b,1 , . . . , Xp+1+k

b,n

]′
/n, exactly like Λk but with b in place of h and p+ 1 in place

of p (implying Ω̄ in place of Ω)

• µ̂(ν) = 1
nhν ν!e′νΓ

−1ΩY

θ̂rbc = µ̂(ν) − hp+1−νν!e′νΓ
−1Λ1

µ̂(p+1)

(p+1)! = 1
nhν ν!e′νΓ

−1ΩrbcY

• Ωrbc = Ω− ρp+1Λ1e
′
p+1Γ̄

−1Ω̄

• ρ = h/b, the ratio of the two bandwidth sequences

• Σ = diag(v(Xi) : i = 1, . . . , n), with v(x) = V[Y |X = x]

• σ2
p = ν!2e′νΓ

−1(hΩΣΩ′/n)Γ−1eν

σ2
rbc = ν!2e′νΓ

−1(hΩrbcΣΩ′rbc/n)Γ−1eν

• σ̂2
p = ν!2e′νΓ

−1(hΩΣ̂pΩ
′/n)Γ−1eν

σ̂2
rbc = ν!2e′νΓ

−1(hΩrbcΣ̂rbcΩ
′
rbc/n)Γ−1eν

• Σ̂p = diag(v̂(Xi) : i = 1, . . . , n), with v̂(Xi) = (Yi−rp(Xi−x)′β̂p)
2 for β̂p defined in Equation

(S.6), and

• Σ̂rbc = diag(v̂(Xi) : i = 1, . . . , n), with v̂(Xi) = (Yi − rp+1(Xi − x)′β̂p+1)2 for β̂p+1 defined

exactly as in Equation (S.6) but with p+ 1 in place of p and b in place of h.

• Tp =

√
nh1+2ν(µ̂

(ν)
p − µ(ν))

σ̂p

Trbc =
(θ̂rbc − µ(ν))

ϑ̂rbc
=

√
nh1+2ν(θ̂rbc − µ(ν))

σ̂rbc

• Ip =
[
µ̂

(ν)
p − zuσ̂p

/√
nh1+2ν , µ̂

(ν)
p − zlσ̂p

/√
nh1+2ν

]
Irbc =

[
θ̂rbc − zuϑ̂rbc , θ̂rbc − zlϑ̂rbc

]
=
[
θ̂rbc − zuσ̂rbc

/√
nh1+2ν , θ̂rbc − zlσ̂rbc

/√
nh1+2ν

]
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Main Results and Proofs

• See Section S.2.6 for definitions of all terms in the Edgeworth expansion.

• Φ(z) is the Normal distribution function.

• C shall be a generic conformable constant that may take different values in different places.

Note that C may be a vector or matrix but will generally not be denoted by a bold symbol.

If more than one constant is needed, C1, C2, . . . , will be used.

• Norms. Unless explicitly noted otherwise, | · | will be the Euclidean/Frobenius norm: for

a scalar c ∈ R1, |c| is the absolute value; for a vector c, |c| =
√
c′c; for a matrix C,

|C| =
√

trace(C ′C).

• sn =
√
nh.

• rT,F = max{s−2
n ,Ψ2

T,F , s
−1
n ΨT,F }, i.e. the slowest vanishing of the rates, and

• rn as a generic sequence that obeys rn = o(rT,F ).

Bias and the Role of Smoothness

• βk (usually k = p or k = p + 1) as the k + 1 vector with (j + 1) element equal to µ(j)(x)/j!

for j = 0, 1, . . . , k as long as j ≤ S, and zero otherwise

• Bk as the n-vector with ith entry [µ(Xi)− rk(Xi − x)′βk]

• M = [µ(X1), . . . , µ(Xn)]′

• ρ = h/b, the ratio of the two bandwidth sequences

• Γ̃ = E[Γ], ˜̄Γ = E[Γ̄], Λ̃k = E[Λk],
˜̄Λk = E[Λ̄k], and so forth. A tilde always denotes a fixed-n

expectation, and all expectations are fixed-n calculations unless explicitly denoted otherwise.

The dependence on FS is suppressed notationally.

• ΨT,F = ΨI,F , the fixed-n bias for interval I or t-statistic T . They are identical for all I and

F , e.g., Ψrbc,F = ΨIrbc,F = ΨTrbc,F . See Equation (S.38)

• ψT,F = ψI,F , the constant portion of the fixed-n bias for interval I or t-statistic T . They are

identical for all I and F , e.g., ψrbc,F = ψIrbc,F = ψTrbc,F . See Tables S.1 and S.2
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