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Part S.I

Kernel Density Estimation and Inference

S.I.1 Notation

Here we collect notation to be used throughout this section, even if it is restated later. Throughout

this supplement, let Xh,i = (x−Xi)/h and similarly for Xb,i. The evaluation point is implicit here.

In the course of proofs we will frequently write s =
√
nh.

S.I.1.1 Estimators, Variances, and Studentized Statistics

To begin, recall that the original and bias-corrected density estimators are

f̂(x) =
1

nh

n∑
i=1

K (Xh,i)

and

f̂ − B̂f =
1

nh

n∑
i=1

M (Xh,i) , M(u) := K(u)− ρ1+kL(k)(ρu)µK,k, (S.I.1)

for symmetric kernel functions K(·) and L(·) that integrate to one on their compact support, h and

b are bandwidth sequences that vanish as n→∞, and where

ρ = h/b, B̂f = hkf̂ (k)(x)µK,k, f̂ (k)(x) =
1

nb1+k

n∑
i=1

L(k) (Xb,i) ,

and integrals of the kernel are denoted

µK,k =
(−1)k

k!

∫
ukK(u)du, and ϑK,k =

∫
K(u)kdu.

The three statistics Tus, Tbc, and Trbc share a common structure that is exploited to give a

unified theorem statement and proof. For v ∈ {1, 2}, define

f̂v =
1

nh

n∑
i=1

Nv (Xh,i) , where N1(u) = K(u) and N2(u) = M(u),

and M is given in Eqn. (S.I.1). Thus, f̂1 = f̂ and f̂2 = f̂ − B̂f . In exactly the same way, define

σ2
v := nhV[f̂v] =

1

h

{
E
[
Nv (Xh,i)

2
]
− E [Nv (Xh,i)]

2
}
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and the estimator

σ̂2
v =

1

h

 1

n

n∑
i=1

[
Nv (Xh,i)

2
]
−

[
1

n

n∑
i=1

Nv (Xh,i)

]2
 .

The statistic of interest for the generic Edgeworth expansion is, for 1 ≤ w ≤ v ≤ 2,

Tv,w :=

√
nh(f̂v − f)

σ̂w
.

In this notation,

Tus = T1,1, Tbc = T2,1, and Trbc = T2,2.

S.I.1.2 Edgeworth Expansion Terms

The scaled bias is ηv =
√
nh(E[f̂v]− f). The Standard Normal distribution and density functions

are Φ(z) and φ(z), respectively.

The Edgeworth expansion for the distribution of Tv,w will consist of polynomials with coefficients

that depend on moments of the kernel(s). To this end, continuing with the generic notation, for

nonnegative integers j, k, p, define

γv,p = h−1E [Nv (Xh,i)
p] , ∆v,j =

1

s

n∑
i=1

{
Nv (Xh,i)

j − E
[
Nv (Xh,i)

j
]}

,

and

νv,w(j, k, p) =
1

h
E
[
(Nv (Xh,i)− E [Nv (Xh,i)])

j (Nw (Xh,i)
p − E [Nw (Xh,i)

p])k
]
.

We abbreviate νv,w(j, 0, p) = νv(j).

To expand the distribution function, additional polynomials are needed beyond those used in

the main text for coverage error. These are

p(1)
v,w(z) = φ(z)σ−3

w [νv,w(1, 1, 2)z2/2− νv(3)(z2 − 1)/6],

p(2)
v,w(z) = −φ(z)σ−3

w E[f̂w]νv,w(1, 1, 1)z2, and p(3)
v,w(z) = φ(z)σ−1

w .

Next, recall from the main text the polynomials used in coverage error expansions, here with an

explicit argument for a generic quantile z rather than the specific zα/2:

q1(z;K) = ϑ−2
K,2ϑK,4(z3 − 3z)/6− ϑ−3

K,2ϑ
2
K,3[2z3/3 + (z5 − 10z3 + 15z)/9],

q2(z;K) = −ϑ−1
K,2(z), and q3(z;K) = ϑ−2

K,2ϑK,3(2z3/3).
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The corresponding polynomials for expansions of the distribution function are

q(k)
v,w(z) =

1

2

φ(z)

f
qk(z;Nw), k = 1, 2, 3.

Finally, the precise forms of Ω1 and Ω2 are:

Ω1 = −2
µK,k
ν1(2)

{∫
f(x− uh)K(u)L(k)(uρ)du− b

∫
f(x− uh)K(u)du

∫
f(x− ub)L(k)(u)du

}
and Ω2 = µ2

K,kϑ
−2
K,2ϑL(k),2. These only appear for Tbc, and so are not indexed by {v, w}.

All these are discussed in Section S.I.6.

S.I.2 Details of practical implementation

We maintain ` = 2 and recommend k = 2. For the kernels K and L, we recommend either the

second order minimum variance (to minimize interval length) or the MSE-optimal kernels; see

Sections S.I.2.3 and S.I.4.2. In the next two subsections we discuss choice of h and ρ.

As argued below in Section S.I.2.3, we shall maintain ρ = 1. In the main text we give a direct

plug-in (DPI) rule to implement the coverage-error optimal bandwidth. Here we we give complete

details for this procedure as well as document a second practical choice, based on a rule-of-thumb

(ROT) strategy. Both choices yield the optimal coverage error decay rate of n−(k+2)/(1+(k+2)).

All our methods are implemented in R and STATA via the nprobust package, available from

http://sites.google.com/site/nppackages/nprobust (see also http://cran.r-project.org/

package=nprobust). See Calonico et al. (2017) for a complete description.

Remark S.I.1 (Undercoverage of Ius(h
∗
mse)). It is possible not only to show that Ius(h

∗
mse) asymp-

totically undercovers (see Hall and Horowitz (2013) for discussion in the regression context) but

also to quantify precisely the coverage. To do so, write Tus =
√
nh(f̂ − E[f̂ ])/σ̂us + ηus/σ̂us, where

the first term will be asymptotically standard Normal and the second will be a nonrandom, non-

vanishing bias when h∗mse is used.

To characterize this second term, first we define h∗mse in in our notation. Recall from Eqn. (S.I.2)

and Section S.I.1 that the mean-square error of f̂ can be written as (nh)−1σ2
us + (nh)−1η2

us. Define

η̃us to be the leading constant of the bias, so that ηus =
√
nhhk[η̃us + o(1)] and the MSE becomes

(nh)−1σ2
us + h2kη̃2

us. Then optimizing the MSE yields, in this notation,

h∗mse = n
− 1

2k+1

(
σ2
us

2kη̃2
us

)− 1
2k+1

.

Therefore, the second term of Tus(h
∗
mse) will be

ηus
σ̂us

=

√
nh∗mse(h

∗
mse)

k[η̃us + o(1)]

σ̂us
=
(
n(h∗mse)

2k+1
)1/2 η̃us

σ̂us
=

(
σ2
us

2kη̃2
us

)1/2
η̃us
σ̂us

=

(
1

2k

)1/2

[1+op(1)],
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using consistency of σ̂us (or if a feasible h∗mse is used, it is the bias estimate that must be consistent).

Hence Tus(h
∗
mse)→d N

(
(2k)−1/2, 1

)
.

The most common empirical case would be k = 2 and α = 0.05, and so Tus →d N(1/2, 1) and

P[f ∈ Ius(h∗mse)] ≈ 0.92. �

S.I.2.1 Bandwidth Choice: Rule-of-Thumb (ROT)

Motivated by the fact that estimating Ĥdpi might be difficult in practice, while data-driven MSE-

optimal bandwidth selectors are readily-available, the ROT bandwidth choice is to simply rescale

any feasible MSE-optimal bandwidth ĥmse to yield optimal coverage error decay rates (but sub-

optimal constants):

ĥrot = ĥmse n
−(k−2)/((1+2k)(k+3)).

When k = 2, ĥrot = ĥmse, which is optimal (in rates) as discussed previously.

Remark S.I.2 (Integrated Coverage Error). A closer analogue of the Silverman (1986) rule of

thumb, which uses the integrated MSE, would be to integrate the coverage error over the point

of evaluation x. For point estimation, this approach has some practical benefits. However, in the

present setting note that
∫
f (k)(x)dx = 0, removing the third term (of order hk) entirely and thus,

for any given point x, yields a lower quality approximation. �

S.I.2.2 Bandwidth Choice: Direct Plug-In (DPI)

To detail the direct plug-in (DPI) rule from the main text, it is useful to first simplify the problem.

Recall from the main text that the optimal choice is h∗rbc = H∗rbc(ρ)n−1/(k+3), where

H∗rbc(K,L, ρ̄) = arg min
H

∣∣H−1q1(Mρ̄) +H1+2(k+2)(f (k+2))2
(
µK,k+2 − ρ̄−2µK,kµL,2

)2
q2(Mρ̄)

+Hk+2f (k+2)
(
µK,k+2 − ρ̄−2µK,kµL,2

)
q3(Mρ̄)

∣∣.
With ` = 2 and ρ = 1, and using the definitions of qk(M1), k = 1, 2, 3, from the main text or

Section S.I.1.2, this simplifies to:

H∗rbc(K,L, 1) = arg min
H

∣∣∣∣∣H−1

{
ϑM,4

z2 − 3

6
− ϑ2

M,3

z4 − 4z2 + 15

9

}
−H1+2(k+2)

{
(f (k+2))2 (µK,k+2 − µK,kµL,2)2 ϑM,2

}
+Hk+2

{
f (k+2) (µK,k+2 − µK,kµL,2)ϑM,3

2z2

3

}∣∣∣∣∣,
where z = zα/2 the appropriate upper quantile of the Normal distribution. However, H∗rbc(ρ) still

depends on the unknown density through f (k+2).
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Our recommendation is a DPI rule of order one, which uses a pilot bandwidth to estimate f (k+2)

consistently. A simple and easy to implement choice is the MSE-optimal bandwidth appropriate

to estimating f (k+2), say h∗k+2,mse, which is different from h∗mse for the level of the function; see e.g.,

Wand and Jones (1995). Let us denote a feasible MSE-optimal pilot bandwidth by ĥk+2,mse. Then

we have:

Ĥdpi(K,L, 1) = arg min
H

∣∣∣∣∣H−1

{
ϑM,4

z2 − 3

6
− ϑ2

M,3

z4 − 4z2 + 15

9

}
−H1+2(k+2)

{
f̂ (k+2)(x; ĥk+2,mse)

2 (µK,k+2 − µK,kµL,2)2 ϑM,2

}
+Hk+2

{
f̂ (k+2)(x; ĥk+2,mse) (µK,k+2 − µK,kµL,2)ϑM,3

2z2

3

}∣∣∣∣∣.
This is now easily solved numerically (see note below). Further, if k = 2, the most common case in

practice, and K and L are either the respective second order minimum variance or MSE-optimal

kernels (Sections S.I.2.3 and S.I.4.2), then the above may be simplified to:

Ĥdpi(M, 1) = arg min
H

∣∣∣∣∣H−1

{
ϑM,4

z2 − 3

6
− ϑ2

M,3

z4 − 4z2 + 15

9

}
−H9

{
f̂ (4)(x; ĥk+2,mse)

2µ2
M,4ϑM,2

}
+H4

{
f̂ (4)(x; ĥk+2,mse)µM,4ϑM,3

2z2

3

}∣∣∣∣∣.
Continuing with k = 2, a second option is a DPI rule of order zero, which uses a reference model

to build the rule of thumb, more akin to Silverman (1986). Using the Normal distribution, so that

f(x) = φ(x) and derivatives have known form, we obtain:

Ĥdpi(M, 1) = arg min
H

∣∣∣∣H−1

{
ϑM,4

z2 − 3

6
− ϑ2

M,3

z4 − 4z2 + 15

9

}
−H9

{[(
x̃4 − 6x̃2 + 3

)
φ(x̃)

]2
µ2
M,4ϑM,2

}
+H4

{(
x̃4 − 6x̃2 + 3

)
φ(x̃)µM,4ϑM,3

2z2

3

}∣∣∣∣
where x̃ = (x− µ̂)/σ̂X is the point of interest centered and scaled.

Remark S.I.3 (Notes on computation). When numerically solving the above minimization prob-

lems, computation will be greatly sped up by squaring the objective function. �

S.I.2.3 Choice of ρ

First, we expand on the argument that ρ should be bounded and positive. Intuitively, the standard

errors σ̂2
rbc control variance up to order (nh)−1, while letting b→ 0 faster removes more bias. If b
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vanishes too fast, the variance is no longer controlled. Setting ρ̄ ∈ (0,∞) balances these two. Let

us simplify the discussion by taking ` = 2, reflecting the widespread use of symmetric kernels. This

does not affect the conclusions in any conceptual way, but considerably simplifies the notation.

With this choice, Eqn. (S.I.1) yields the tidy expression

ηbc =
√
nhhk+2f (k+2)

(
µK,k+2 − ρ−2µK,kµL,2

)
{1 + o(1)}.

Choice of ` and b (or ρ) cannot reduce the first term, which represents E[f̂ ]− f −Bf , and further,

if ρ̄ = ∞, the bias rate is not improved, but the variance is inflated beyond order (nh)−1. On

the other hand, if ρ̄ = 0, then not only is a delicate choice of b needed, but ` > 2 is required,

else the second term above dominates ηbc, and the full power of the variance correction is not

exploited; that is, more bias may be removed without inflating the variance rate. Hall (1992b, p.

682) remarked that if E[f̂ ]−f −Bf is (part of) the leading bias term, then “explicit bias correction

[. . . ] is even less attractive relative to undersmoothing.” We show that, on the contrary, when

using our proposed Studentization, it is optimal that E[f̂ ]− f −Bf is (part of) the dominant bias

term. This reasoning is not an artifact of choosing k even and ` = 2, but in other cases ρ→ 0 can

be optimal if the convergence is sufficiently slow to equalize the two bias terms.

The following result which makes the above intuition precise.

Corollary S.I.1 (Robust bias correction: ρ → 0). Let the conditions of Theorem S.I.1(c) hold,

with ρ̄ = 0, and fix ` = 2 and k ≤ S − 2. Then

P[f ∈ Irbc] = 1− α+

{
1

nh
q1(K) + nh1+2(k+2)(f (k+2))2

(
µ2
K,k+2 + ρ−4µ2

K,kµ
2
L,2

)
q2(K)

+ hk+2f (k+2)
(
µK,k+2 − ρ−2µK,kµL,2

)
q3(K)

}
φ(zα

2
)

f
{1 + o(1)}

By virtue of our new studentization, the leading variance remains order (nh)−1 and the prob-

lematic correlation terms are absent, however by forcing ρ→ 0, the ρ−2 terms of ηbc are dominant

(the bias of B̂f ), and in light of our results, unnecessarily inflated. This verifies that ρ̄ = 0 or ∞
will be suboptimal.

We thus restrict to bounded and positive, ρ. Therefore, ρ impacts only the shape of the “kernel”

Mρ(u) = K(u)− ρ1+kL(k)(ρu)µK,k, and hence the choice of ρ depends on what properties the user

desires for the kernel. It happens that ρ = 1 has good theoretical properties and performs very

well numerically (see Section S.I.8). As a result, from the practitioner’s point of view, choice of ρ

(or b) is completely automatic.

To see the optimality of ρ = 1, consider two cogent and well-studied possibilities: finding the

kernel shape to minimize (i) interval length and (ii) MSE. The following optimal shapes are derived

by Gasser et al. (1985) and references therein. Given the above results, we set k = 2. Indeed, the

optimality properties here do not extend to higher order kernels.

Minimizing interval length is (asymptotically) equivalent to finding the minimum variance

7



fourth-order kernel, as σ2
rbc → fϑM,2. Perhaps surprisingly, choosing K and L(2) to be the second-

order minimum variance kernels for estimating f and f (2) respectively, yields an M1(u) that is

exactly the minimum variance kernel. The fourth order minimum variance kernel for estimating

f is Kmv(u) = (3/8)(−5u2 + 3), which is identical to M1(u) when K is the uniform kernel and

L(2) = (15/4)(3u2 − 1), the minimum variance kernels for f and f (2) respectively.

The result is similar for minimizing MSE: choosing K and L(2) to be the MSE-optimal kernels

for their respective point estimation problems yields an MSE-optimal M1(u). The optimal fourth

order kernel is Kmse(u) = (15/32)(7u4 − 10u2 + 3), and the respective second-order MSE optimal

kernels are K(u) = (3/4)(1 − u2) and L(2)(u) = (105/16)(6u2 − 5u4 − 1). A practitioner might

use the MSE-optimal kernels (along with h∗mse) to obtain the best possible point estimate. Our

results then give an accompanying measure of uncertainty that both has correct coverage and the

attractive feature of using the same effective sample.

In Section S.I.4.2 we numerically compare several kernel shapes, focusing on: (i) interval length,

measured by ϑM,2, (ii) bias, given by µ̃M,4, and (iii) the associated MSE, given by (ϑ8
M,2µ̃

2
M,4)1/9.

These results, and the discussion above, give the foundations for our recommendation of ρ = 1,

which delivers an easy-to-implement, fully automatic choice for implementing robust bias-correction

that performs well numerically, as in Section S.I.8.

Remark S.I.4 (Coverage Error Optimal Kernels). Our results hint at a third notion of optimal

kernel shape: minimizing coverage error. This kernel, for a fixed order k, would minimize the

constants in Corollary 1 of the main text. In that result, h is chosen to optimize the rate and the

constant H∗us gives the minimum for a fixed kernel K. A step further would be to view H∗us as a

function of K, and optimizing. To our knowledge, such a derivation has not been done and may

be of interest. �

S.I.3 Assumptions

The following assumptions are sufficient for our results. The first two are copied directly from the

main text (see discussion there) and the third is the appropriate Cramér’s condition.

Assumption S.I.1 (Data-generating process). {X1, . . . , Xn} is a random sample with an abso-

lutely continuous distribution with Lebesgue density f . In a neighborhood of x, f > 0, f is S-times

continuously differentiable with bounded derivatives f (s), s = 1, 2, · · · , S, and f (S) is Hölder con-

tinuous with exponent ς.

Assumption S.I.2 (Kernels). The kernels K and L are bounded, even functions with support

[−1, 1], and are of order k ≥ 2 and ` ≥ 2, respectively, where k and ` are even integers. That is,

µK,0 = 1, µK,k = 0 for 1 ≤ k < k, and µK,k 6= 0 and bounded, and similarly for µL,k with ` in

place of k. Further, L is k-times continuously differentiable. For all integers k and l such that

k + l = k − 1, f (k)(x0)L(l)((x0 − x)/b) = 0 for x0 in the boundary of the support.

8



It will cause no confusion (as the notations never occur in the same place), but in the course of

proofs we will frequently write s =
√
nh.

Assumption S.I.3 (Cramér’s Condition). For each ξ > 0 and all sufficiently small h

sup
t∈R2, t21+t22>ξ

∣∣∣∣∫ exp{i(t1M(u) + t2M(u)2)}f(x− uh)du

∣∣∣∣ ≤ 1− C(x, ξ)h,

where C(x, ξ) > 0 is a fixed constant and i =
√
−1.

Remark S.I.5 (Sufficient Conditions for Cramér’s Condition). Assumption S.I.3 is a high level

condition, but one that is fairly mild. Hall (1991) provides a primitive condition for Assumption

S.I.3 and Lemma 4.1 in that paper verifies that Assumption S.I.3 is implied. Hall (1992a) and

Hall (1992b) assume the same primitive condition. This condition is as follows. On their compact

support, assumed here to be [−1, 1], there exists a partition −1 = a0 < a1 < · · · < am = 1, such

that on each (aj−1, aj), K and M are differentiable, with bounded, strictly monotone derivatives.

This condition is met for many kernels, with perhaps the only exception of practical importance

being the uniform kernel. As Hall (1991) describes, it is possible to prove the Edgeworth expansion

for the uniform kernel using different methods than we use in below. The uniform kernel is also

ruled out for local polynomial regression, see Section S.II.3. �

S.I.4 Bias

This section accomplishes three things. First, we first carefully derive the bias of the initial estimator

and the bias correction. Second, we explicate the properties of the induced kernel Mρ in terms of

bias reduction and how exactly this kernel is “higher-order”. Finally, we examine two other methods

of bias reduction: (i) estimating the derivatives without using derivatives of kernels (Singh, 1977),

and (ii) the generalized jackknife approach (Schucany and Sommers, 1977). Further methods are

discussed and compared by Jones and Signorini (1997). The message from both alternative methods

echoes our main message: it is important to account for any bias correction when doing inference,

i.e., to avoid the mismatch present in Tbc.

S.I.4.1 Precise Bias Calculations

Recall that the biases of the two estimators are as follows:

E[f̂ ]− f =


hkf (k)µK,k + hk+2f (k+2)µK,k+2 + o(hk+2) if k ≤ S − 2

hkf (k)µK,k +O(hS+ς) if k ∈ {S − 1, S}

0 +O(hS+ς) if k > S

(S.I.2)
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and

E[f̂ − B̂f ]− f =



hk+2f (k+2)µK,k+2 − hkb`f (k+`)µK,kµL,` + o(hk+2 + hkb`) if k + ` ≤ S

hk+2f (k+2)µK,k+2 +O(hkbS−k+ς) + o(hk+2) if 2 ≤ S − k < `

O(hS+ς) +O(hkbS−k+ς) if k ∈ {S − 1, S}

O(hS+ς) +O(hkbS−k) if k > S.

(S.I.3)

The following Lemma gives a rigorous proof of these statements.

Lemma S.I.1. Under Assumptions S.I.1 and S.I.2, Equations (S.I.2) and (S.I.3) hold.

Proof. To show Eqn. (S.I.2), begin with the change of variables and the Taylor expansion

E[f̂ ] = h−1

∫
K (Xh,i) f(Xi)dXi =

∫
K(u)f(x− uh)du

=
S∑
k=0

{
(−h)kf (k)(x)

∫
ukK(u)du/k!

}
+ (−h)S

∫
uSK(u)

(
f (S)(x̄)− f (S)(x)

)
du.

where x̄ ∈ [x, x − uh]. By the Hölder condition of Assumption S.I.1, the final term is O(hS+ς). If

k > S, then all
∫
ukK(u)du = 0, and only this remainder is left. In all other cases, hkf (k)(x)µK,k

is the first nonzero term of the summation, and hence the leading bias term. Further, by virtue

of k being even and K symmetric,
∫
uk+1K(u)du = 0, leaving only O(hS+ς) when k = S − 1, and

otherwise, when k ≤ S − 2, leaving hk+2f (k+2)(x)µK,k+2 + o(hk+2). This completes the proof of

Eqn. (S.I.2).

To establish Eqn. (S.I.3), first write

E[f̂ − B̂f ]− f = E[f̂ − f −Bf ] + E[Bf − B̂f ],

where Bf follows the convention of being identically zero if k > S. The first portion is characterized

by rearranging Eqn. (S.I.2), so it remains to examine the second term. Let k̃ = k ∨S. By repeated

integration by parts, using the boundary conditions of Assumption S.I.2:

E[f̂ (k)] =
1

b1+k

∫
L(k) (Xb,i) f(Xi)dXi

= − 1

b1+(k−1)
L(k−1) (Xb,i) f(Xi)

∣∣∣∣
X

+
1

b1+(k−1)

∫
L(k−1) (Xb,i) f

(1)(Xi)dXi

= 0 +
1

b1+(k−1)

∫
L(k−1) (Xb,i) f

(1)(Xi)dXi

= − 1

b1+(k−2)
L(k−2) (Xb,i) f

(1)(Xi) +
1

b1+(k−2)

∫
L(k−2) (Xb,i) f

(2)(Xi)dXi

...
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=
1

b1+(k−k̃)

∫
L(k−k̃) (Xb,i) f

(k̃)(Xi)dXi

=
1

bk−k̃

∫
L(k−k̃)(u)f (k̃)(x− ub)du,

where the last line follows by a change of variables. We now proceed separately for each case

delineated in (S.I.3), from top to bottom. For k > S, no reduction is possible, and the final line

above is O(bS−k), and with Bf = 0, we have E[Bf − B̂f ] = 0 − hkµK,kE[f̂ (k)] = O(hkbS−k), as

shown. For k ≤ S, by a Taylor expansion, the final line displayed above becomes

S∑
k=k

{
bk−kf (k)(x)µL,k−k

}
+ bS−k

∫
uS−kL(u)

(
f (S)(x̄)− f (S)(x)

)
du.

The second term above is O(bS−k+ς) in all cases, and µL,0 = 1, which yields E[f̂ (k)] = f (k) +

O(bS−k+ς) for k ∈ {S − 1, S}, using µL,1 = 0 in the former case. Next, if k + ` ≤ S, the above

becomes E[f̂ (k)] = f (k) + b`f (k+`)µL,` + o(b`), as µL,k = 0 for 1 < k < `, whereas if k + ` > S, the

remainder terms can not be characterized, leaving E[f̂ (k)] = f (k)+O(bS−k+ς). Plugging any of these

results into E[Bf − B̂f ] = hkµK,k(f (k) − E[f̂ (k)]) completes the demonstration of Eqn. (S.I.3).

S.I.4.2 Properties of the kernel Mρ(·)

As made precise below, Mρ is a higher-order kernel. The choices of K, L, and ρ determine the shape

of Mρ, which in turn effects the variance and bias constants. In standard kernel analyses, these

constants are used to determine optimal kernel shapes for certain problems (see Gasser et al. (1985)

and references therein). For several choices of K, L, and ρ, Table S.I.1 shows numerical results for

the various constants of the induced kernel Mρ. The table includes (i) the variance, given by ϑM,2

and relevant for interval length, (ii) a measure of bias given by µ̃M,4, and finally (iii) the resulting

mean square error constant, [ϑ8
M,2µ̃

2
M,4]1/9 (µ̃M,4 = (k!)(−1)kµM,4). These specific constants are

due to Mρ being a fourth order kernel, as discussed next, and would otherwise remain conceptually

the same but rely on different moments. A more general, but more cumbersome procedure would

be to choose ρ numerically to minimize some notation of distance (e.g., L2) between the resulting

kernel Mρ and the optimal kernel shape already available in the literature. However, using ρ = 1

as a simple rule-of-thumb exhibits very little lost performance, as shown in the Table and discussed

in the paper.

It is worthwhile to make precise the sense in which the n-varying “kernel” Mρ(·) of Eqn. (S.I.1)

is a higher-order kernel. Comparing Equations (S.I.2) and (S.I.3) shows exactly what is meant by

this statement: the bias rate attained agrees with a standard estimate using a kernel of order k+ 2

(if ρ̄ > 0), as ` ≥ 2. For example, if k = ` = 2 and ρ̄ > 0, then Mρ̄(·) behaves as a fourth-order

kernel in terms of bias reduction.

However, it is not true in general that M(·) is a higher-order kernel in the sense that its moments
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below k + 2 are zero. That is, for any k < k, by the change of variables w = ρu,∫ 1

−1
ukM(u)du =

∫ 1

−1
ukK(u)du− ρ1+kµK,k

∫ 1

−1
ukL(k)(ρu)du

= 0− ρ1+kµK,kρ
−1−k

∫ ρ

−ρ
wkL(k)(w)du

= 0− ρk−kµK,k
∫ ρ

−ρ
wkL(k)(w)du.

Now, L(u) = L(−u) implies that L(k)(u) = (−1)kL(k)(−u). Since k is even, L(k)(w) is symmetric,

therefore if k is odd 0 =
∫ ρ
−ρw

kL(k)(w)du for any ρ. But this fails for k even, even for ρ = 1, and

hence
∫ 1
−1 u

kM(u)du 6= 0. For example, in the leading case of k = ` = 2,
∫ 1
−1 u

2M(u)du 6= 0 in

general, and so M(·) is not a fourth-order kernel in the traditional sense.

Instead, the bias reduction is achieved differently. The proof of Lemma S.I.1 makes explicit

use of the structure imposed by estimating f (k) using the derivative of the kernel L(·). From a

technical standpoint, an integration by parts argument shows how the properties of the kernel L(·)
(not the function L(k)(·)) are used to reduce bias. This argument precedes the Taylor expansion of

f , and thus moments of M are never encountered and there is no requirement that they be zero.

This approach is simple, intuitive, and leads to natural restrictions on the kernel L, and for this

reason it is commonly employed in the literature and in practice (Hall, 1992b).

S.I.4.3 Other Bias Reduction Methods

We now examine two other methods of bias reduction: (i) estimating the derivatives without using

derivatives of kernels (Singh, 1977), and (ii) the generalized jackknife approach (Schucany and

Sommers, 1977). Further methods are discussed and compared by Jones and Signorini (1997).

Both methods are shown to be tightly connected to our results. Further, a more general message

is that it is important to account for any bias correction when doing inference, i.e., to avoid the

mismatch present in Tbc.

The first method, which dates at least to Singh (1977), is to introduce a class of kernel functions

directly for derivative estimation, more closely following the standard notion of a higher-order

kernel rather than using the derivative of a kernel to estimate the density derivative and proving

bias reduction via integration by parts. Jones (1994) expands on this method and gives further

references. This class of kernels is used in the derivation of optimal kernel shapes (for derivative

estimation) by Gasser et al. (1985). It is worthwhile to show how this class of kernel achieves bias

correction and how this approach fits into our Edgeworth expansions.

Consider estimating f (k) with

f̃ (k)(x) =
1

nb1+k

n∑
i=1

J (Xb,i) ,

for some kernel function J(·). Note well that J is generic, it need not itself be a derivative, but

13



this is the only difference here. A direct Taylor expansion (i.e. without first integrating by parts)

then gives

E[f̃ (k)] = b−k
S∑
k=0

bkµJ,kf
(k) +O(bS+ς).

Thus, if J satisfies µJ,k = 0 for k = 0, 1, . . . , k − 1, k + 1, k + 2, . . . , k + (` − 1), µJ,k = 1, and

µJ,k+` 6= 0, and S is large enough then

E[f̃ (k)] = f (k) + b`f (k+`)µJ,k+` + o(b`),

just as achieved by f̂ (k) and exactly matching Eqn. (S.I.2). Note that µJ,0 = 0, that is, the kernel

J does not integrate to one. In the language of Gasser et al. (1985), J is a kernel of order (k, k+ `).

Given this result, bias correction can of course be performed using f̃ (k)(x) (based on J) rather

than f̂ (k) (based on L(k)). Much will be the same: the structure of Eqn. (S.I.1) will hold with J in

place of L(k) and the results in Eqn. (S.I.3) are achieved with modifications to the constants (e.g.,

in the first line, µJ,k+` appears in place of µL,`). In either case, the same bias rates are attained.

Our Edgeworth expansions will hold for this class under the obvious modifications to the notation

and assumptions, and all the same conclusions are obtained.

When studying optimal kernel shapes, Gasser et al. (1985) actually further restrict the class,

by placing a limit on the number of sign changes over the support of the kernel, which ensures

that the MSE and variance minimization problems have well-defined solutions. Collectively, these

differences in the kernel classes explain why it is possible to demonstrate “super-optimal” MSE and

variance performance for certain choices of K, L(k), and ρ, as in Table S.I.1.

A second alternative is the generalized jackknife method of Schucany and Sommers (1977),

and expanded upon by Jones and Foster (1993). To simplify the notation and ease exposition, we

describe this approach for second order kernels (k = 2), but the method, and all the conclusions

below, generalize fully. We thank an anonymous reviewer for encouraging us to include these

details.

Begin with two estimators f̂1 and f̂2, with (possibly different) bandwidths and second-order

kernels hj and Kj , j = 1, 2; thus Eqn. (S.I.2) gives

E[f̂j ]− f(x) = h2
jf

(2)µKj ,2 + o(h2
j ), j = 1, 2.

Schucany and Sommers (1977) propose to estimate f with f̂GJ,R := (f̂1 −Rf̂2)/(1−R), the bias of

which is

E[f̂GJ,R − f ] =
f (2)

1−R
(
h2

1µK1,2 −Rh2
2µK2,2

)
+ o(h2

1 + h2
2).

Hence, setting R = (h2
1µK1,2)/(h2

2µK2,2) renders the leading bias exactly zero. Moreover, if S ≥ 4,

f̂GJ,R has bias O(h4
1 + h4

2); behaving as a single estimator with k = 4. To put this in context of our
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results, observe that with this choice of R, if we let ρ̃ = h1/h2, then

f̂GJ,R =
1

nh1

n∑
i=1

M̃

(
Xi − x
h1

)
, M(u) = K1(u)− ρ̃1+2

{
K2(ρ̃u)− ρ̃−1K1(u)

µK2,2(1−R)

}
µK1,2,

exactly matching Eqn. (S.I.1). Or equivalently, f̂GJ,R = f̂1−h2
1f̃

(2)µK1,2, for the derivative estimator

f̃ (2) =
1

nh1+2
2

n∑
i=1

L̃

(
Xi − x
h2

)
, L̃(u) =

K2(u)− ρ̃−1K1(ρ̃−1u)

µK2,2(1−R)
.

Therefore, we can view f̂GJ,R as a change in the kernel M(·) or an explicit bias estimation described

directly above with a specific choice of J(·) (depending on ρ̃ in either case). Again, Eqn. (S.I.1)

holds exactly. Thus, our results cover the generalized jackknife method as well, and the same

lessons apply.

Finally, we note that these bias correction methods can be applied to nonparametric regression

as well, and local polynomial regression in particular, and that the same conclusions are found. We

will not repeat this discussion however.

S.I.5 First Order Properties

Here we briefly state the first-order properties of Tus, Tbc, and Trbc, using the common notation

Tv,w defined in Section S.I.1. Recall that ηv =
√
nh(E[f̂v] − f) is the scaled bias in either case.

With this notation, we have the following result.

Lemma S.I.2. Let Assumptions S.I.1 and S.I.2 hold. Then if nh → ∞, ηv → 0, and if v = 2,

ρ→ 0 + ρ̄1{v = w} <∞, it holds that Tv,w →d N(0, 1).

The conditions on h and b behind the generic assumption that the scaled bias vanishes can

be read off of (S.I.2) and (S.I.3): Tus requires
√
nhhk → 0 whereas Tbc and Trbc require only√

nhhk(h2 ∨ b`) → 0, and thus accommodate
√
nhhk 6→ 0 or b 6→ 0 (but not both). However, bias

correction requires a choice of ρ = h/b. One easily finds that V[
√
nhB̂f ] = O(ρ1+2k), whence ρ→ 0

is required for Tbc. But Trbc does not suffer from this requirement because of our proposed, new

Studentization. From a first-order point of view, traditional bias correction allows for a larger class

of sequences h, but requires a delicate choice of ρ (or b), and Hall (1992b) shows that this constraint

prevents Tbc from improving inference. Our novel standard errors remove these constraints, allowing

for improvements in bias to carry over to improvements in inference. The fact that a wider range

of bandwidths is allowed hints at the robustness to tuning parameter choice discussed above and

formalized by our Edgeworth expansions.

Remark S.I.6 (ρ → ∞). Trbc →d N(0, 1) will hold even for ρ̄ = ∞, under the even weaker bias

rate restriction that ηbc = o(ρ1/2+k), provided nb → ∞. In this case B̂f dominates the first-

order approximation, but σ2
rbc still accounts for the total variability. However there is no gain for
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inference: the bias properties can not be improved due to the second bias term (E[f̂ ] − f − Bf ),

while variance can only be inflated. Thus, we restrict to bounded ρ̄. Section S.I.2.3 has more

discussion on the choice of ρ. �

S.I.6 Main Result: Edgeworth Expansion

Recall the generic notation:

Tv,w :=

√
nh(f̂v − f)

σ̂w
,

for 1 ≤ w ≤ v ≤ 2. The Edgeworth expansion for the distribution of Tv,w will consist of polynomials

with coefficients that depend on moments of the kernel(s). Additional polynomials are needed

beyond those used in the main text for coverage error. These are:

p(1)
v,w(z) = φ(z)σ−3

w [νv,w(1, 1, 2)z2/2− νv(3)(z2 − 1)/6],

p(2)
v,w(z) = −φ(z)σ−3

w E[f̂w]νv,w(1, 1, 1)z2, and p(3)
v,w(z) = φ(z)σ−1

w .

The polynomials p
(k)
v,w are even, and hence cancel out of coverage probability expansions, but are

used in the expansion of the distribution function itself (or equivalently, the coverage of a one-sided

confidence interval).

Next, recall from the main text the polynomials used in coverage error expansions:

q1(z;K) = ϑ−2
K,2ϑK,4(z3 − 3z)/6− ϑ−3

K,2ϑ
2
K,3[2z3/3 + (z5 − 10z3 + 15z)/9],

q2(z;K) = −ϑ−1
K,2(z), and q3(z;K) = ϑ−2

K,2ϑK,3(2z3/3).

The corresponding polynomials for expansions of the distribution function are

q(k)
v,w(z) =

1

2

φ(z)

f
qk(z;Nw), k = 1, 2, 3.

As before, the q
(k)
v,w are odd and hence do not cancel when computing coverage: the qk(z;Nw) in

the main text are doubled for just this reason.

Note that, despite the notation, q
(k)
v,w(z) depends only on the “denominator” kernel Nw. The

notation comes from the fact that when first computed, the terms which enter into the q
(k)
v,w(z)

depend on both kernels, but the simplifications in Eqn. (S.I.8) reduce the dependence to Nw. This

is because for undersmoothing and robust bias correction, v = w, and for traditional bias correction

N2 = M = K + o(1) = N1 + o(1), as ρ → 0 is assumed. Thus, when computing ϑM,q the terms

with the lowest powers of ρ will be retained. These can be found by expanding

ϑM,q =

∫ (
K(u)− ρ1+kµK,kL

(k)(u)
)q
du =

q∑
j=0

(
q

j

)(
−µK,kρ1+k

)q−j ∫
K(u)jL(k)(ρu)q−jdu,
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and hence we can write ϑM,q = ϑK,q − ρ1+kqµK,kL
(k)(0)ϑK,q−1 + O(h + ρ2+k). We can thus write

qj(z;M) = qj(z;K) + o(1) in this case. If the expansions were carried out beyond terms of order

(nh)−1 + (nh)−1/2ηv + η2
v + 1{v 6=w}ρ1+2k this would not be the case.

Finally, for traditional bias correction, there are additional terms in the expansion (see discussion

in the main text) representing the covariance of f̂ and B̂f (denoted by Ω1) and the variance of B̂f

(Ω2). We now state their precise forms. These arise from the mismatch between the variance of

the numerator of Tbc and the standardization used, σ2
us, that is σ2

rbc/σ
2
us is given by

nhV[f̂ − B̂f ]

nhV[f̂ ]
=
nhV[f̂ ]− 2nhC[f̂ , B̂f ] + nhV[B̂f ]

nhV[f̂ ]
= 1− 2

nhC[f̂ , B̂f ]

nhV[f̂ ]
+
nhV[B̂f ]

nhV[f̂ ]
.

This makes clear that Ω1 and Ω2 are the constant portions of the last two terms. We have

−2
nhC[f̂ , B̂f ]

nhV[f̂ ]
= ρ1+kΩ1,

where

Ω1 = −2
µK,k
ν1(2)

{∫
f(x− uh)K(u)L(k)(uρ)du− b

∫
f(x− uh)K(u)du

∫
f(x− ub)L(k)(u)du

}
.

Note ν1(2) = σ2
us. Turning to Ω2, using the calculations in Section S.I.4.1 (recall k̃ = k ∨ S), we

find that

nhV[B̂f ]

nhV[f̂ ]
= ρ1+2kΩ2 where Ω2 =

µ2
K,k

ν1(2)

{∫
f(x− ub)L(k)(u)2du− b1+2k̃

(∫
L(k−k̃)(u)f (k̃)(x− ub)du

)2
}
.

Fully simplifying would yield

Ω2 = µ2
K,kϑ

−2
K,2ϑL(k),2,

which can be used in Theorem S.I.1.

As a last piece of notation, define the scaled bias as ηv =
√
nh(E[f̂v]− f).

We can now state our generic Edgeworth expansion, from whence the coverage probability

expansion results follow immediately.

Theorem S.I.1. Suppose Assumptions S.I.1, S.I.2, and S.I.3 hold, nh/ log(n)→∞, ηv → 0, and

if v = 2, ρ→ 0 + ρ̄1{v = w}. Then for

Fv,w(z) = Φ(z) +
1√
nh
p(1)
v,w(z) +

√
h

n
p(2)
v,w(z) + ηvp

(3)
v,w(z) +

1

nh
q(1)
v,w(z) + η2

vq
(2)
v,w(z) +

ηv√
nh
q(3)
v,w(z)

− 1{v 6=w}ρ1+k(Ω1 + ρkΩ2)
φ(z)

2
z,
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we have

sup
z∈R
|P[Tv,w < z]− Fv,w(z)| = o

(
(nh)−1 + (nh)−1/2ηv + η2

v + 1{v 6=w}ρ1+2k
)
.

To use this result to find the expansion of the error in coverage probability of the Normal-based

confidence interval, the function Fv,w(z) is simply evaluated at the two endpoints of the interval.

(Note: if the confidence interval were instead constructed with the bootstrap, a few additional steps

are needed, but these do not alter any conclusions or results outside of constant terms.)

S.I.6.1 Undersmoothing vs. Bias-Correction Exhausting all Smoothness

In general, we have assumed that the level of smoothness was large enough to be inconsequential

in the analysis, and in particular this allowed for characterization of optimal bandwidth choices. In

this section, in contrast, we take the level of smoothness to be binding, so that we can fully utilize

the S derivatives and the Hölder condition to obtain the best possible rates of decay in coverage

error for both undersmoothing and robust bias correction, but at the price of implementability: the

leading bias constants can not be characterized, and hence feasible “optimal” bandwidths are not

available.

For undersmoothing, the lowest bias is attained by setting k > S (see Eqn. (S.I.2)), in which

case the bias is only known to satisfy E[f̂ ]−f = O(hS+ς) (i.e., Bf is identically zero) and bandwidth

selection is not feasible. Note that this approach allows for
√
nhhS 6→ 0, as ηus = O(

√
nhhS+ς).

Robust bias correction has several interesting features here. If k ≤ S − 2 (the top two cases

in Eqn. (S.I.3)), then the bias from approximating E[f̂ ] − f by Bf , that is not targeted by bias

correction, dominates ηbc and prevents robust bias correction from performing as well as the best

possible infeasible (i.e., oracle) undersmoothing approach. That is, even bias correction requires a

sufficiently large choice of k in order to ensure the fastest possible rate of decay in coverage error: if

k ≥ S−1, robust bias correction can attain error decay rate as the best undersmoothing approach,

and allow
√
nhhS 6→ 0.

Within k ≥ S − 1, two cases emerge. On the one hand, if k = S − 1 or S, then Bf is nonzero

and f (k) must be consistently estimated to attain the best rate. Indeed, more is required. From

Eqn. (S.I.3), we will need a bounded, positive ρ to equalize the bias terms. This (again) highlights

the advantage of robust bias correction, as the classical procedure would enforce ρ → 0, and thus

underperform. On the other hand, ρ → 0 will be required if k > S because (from the final case

of (S.I.3)) we require ρk−S = O(hς) to attain the same rate as undersmoothing. Note that we can

accommodate b 6→ 0 (but bounded). Interestingly, Bf is identically zero and B̂f merely adds noise

to the problem, but this noise is fully accounted for by the robust standard errors, and hence does

not affect the rates of coverage error (though the constants of course change). The f̂ (k) in B̂f is

inconsistent (f (k) does not exist), but the nonvanishing bias of f̂ (k) is dominated by hk.

This discussion is summarized by the following result:

Corollary S.I.2. Let the conditions of Theorem S.I.1 hold.
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(a) If k > S, then

P[f ∈ Ius] = 1− α+
1

nh

φ(zα
2
)

f
q1(K) {1 + o(1)}+O

(
nh1+2S+2ς + hS+ς

)
.

(b) If k ≥ S − 1, then

P[f ∈ Irbc] = 1− α+
1

nh

φ(zα
2
)

f
q1(M) {1 + o(1)}

+O
(
nh(hS+ς ∨ hkbS−k+ς1{k≤S})2 + (hS+ς ∨ hkbS−k+ς1{k≤S})

)
.

S.I.6.2 Multivariate Densities and Derivative Estimation

We now briefly present state analogues of our results, both for distributional convergence and

Edgeworth expansions, that cover multivariate data and derivative estimation. The conceptual

discussion and implications are similar to those in the main text, once adjusted notationally to the

present setting, and are hence omitted.

For a nonnegative integral d-vector q we adopt the notation that: (i) [q] = q1 + · · · + qd, (ii)

g(q)(x) = ∂[q]g(x)/(∂q1x1 · · · ∂qdxd), (iii) k! = q1! · · · qd!, and (iv)
∑

[q]=Q for some integer Q ≥ 0

denotes the sum over all indexes in the set {q : [q] = Q}.
The parameter of interest is f (q)(x), for x ∈ Rd and [q] ≤ S. The estimator is

f̂ (q)(x) =
1

nhd+[q]

n∑
i=1

K(q) (Xh,i) .

Note that here, and below for bias correction, we use a constant, diagonal bandwidth matrix, e.g.

h× Id. This is for simplicity and comparability, and could be relaxed at notational expense.

The bias, for a given kernel of order k ≤ S − [q] (we restrict attention to the case where S is

large enough), is

hk
∑

k:[k+q]=k

µK,kf
(q+k)(x) + o(hk),

exactly mirroring Eqn. (S.I.2), where now µK,k represents a d-dimensional integral. Bias estimation

is straightforward, relying on estimates f̂ (q+k)(x), for all [k] = k − [q]. The form of f̂
(q)
2 (x) =

f̂ (q)(x)− B̂f (q)(x) is now given by

f̂
(q)
2 (x) =

1

nhd+[q]

n∑
i=1

M(q) (Xh,i) where M(q)(u) = K(q)(u)− (ρ)d+[q]+k
∑
[k]=k

µK,kL
(q+k)(u),

exactly analogous to Eqn. (S.I.1).

With these changes in notation out of the way, we can (re-)define the generic framework for

both estimators exactly as above. Dropping the point of evaluation x, for v ∈ {1, 2}, define the
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estimator as

f̂ (q)
v =

1

nhd+[q]

n∑
i=1

Nv (Xh,i) , where N1(u) = K(q)(u) and N2(u) = M(q)(u);

the variance

σ2
v := nhd+[q]V[f̂ (q)

v ] =
1

hd

{
E
[
Nv (Xh,i)

2
]
− E [Nv (Xh,i)]

2
}

and its estimator as

σ̂2
v =

1

hd

 1

n

n∑
i=1

[
Nv (Xh,i)

2
]
−

[
1

n

n∑
i=1

Nv (Xh,i)

]2
 ;

and the t-statistics, for 1 ≤ w ≤ v ≤ 2, as,

Tv,w :=

√
nhd+2[q]

(
f̂

(q)
v − f (q)

)
σ̂w

.

As before, Tus = T1,1, Tbc = T2,1, and Trbc = T2,2.

The scaled bias ηv has the same general definition as well: the bias of the numerator of the

Tv,w. In this case, given by

ηv =
√
nhd+2[q]

(
E
[
f̂ (q)
v

]
− f (q)(x)

)
.

The asymptotic order of ηv for different settings can be obtained straightforwardly via the obvious

multivariate extensions of Equation (S.I.3) and the corresponding conclusion of Lemma S.I.1.

First-order convergence is now given by the following result. the proof of which is standard.

Lemma S.I.3. Suppose appropriate multivariate versions of Assumptions S.I.1 and S.I.2 hold,

nhd+2[q] →∞, ηv → 0, and if v = 2, ρ→ 0 + ρ̄1{v = w}. Then Tv,w →d N(0, 1).

For the Edgeworth expansion, redefine

νv,w(j, k, p) =
1

hd+[q]1{j+pk=1}E
[
(Nv(ui)− E[Nv(ui)])

j (Nw(ui)
p − E[Nv(ui)

p])k
]
,

where ui = (x − Xi)/h. The polynomials p
(k)
v,w(z) and q

(k)
v,w(z) are as given above, but using mul-

tivariate moments. The analogue of Theorem S.I.1 is given by the following result, which can be

proven following the same steps as in Section S.I.7.

Theorem S.I.2. Suppose appropriate multivariate versions of Assumptions S.I.1, S.I.2, and S.I.3

hold, nhd+2[q]/ log(n)→∞, ηv → 0, and if v = 2, ρ→ 0 + ρ̄1{v = w}. Then for

Fv,w(z) = Φ(z) +
1√
nhd

p(1)
v,w(z) +

√
hd+2[q]

n
p(2)
v,w(z) + ηvp

(3)
v,w(z) +

1

nhd
q(1)
v,w(z) + η2

vq
(2)
v,w(z) +

ηv√
nhd

q(3)
v,w(z)
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+ 1{v 6=w}ρd+k+[q](Ω1 + ρk+[q]Ω2)
φ(z)

2
z,

we have

sup
z∈R
|P[Tv,w < z]− Fv,w(z)| = o

(
((nhd)−1/2 + ηv)

2 + 1{v 6=w}ρd+2(k+[q])
)
.

The same conclusions reached in the main text continue to hold for multivariate and/or deriva-

tive estimation, both in terms of comparing undersmoothing, bias correction, and robust bias

correction, as well as for inference-optimal bandwidth choices. In particular, it is straightforward

that the MSE optimal bandwidth in general has the rate n−1/(d+2k+2[q]), whereas the coverage error

optimal choice is of order n−1/(d+k+[q]). Note that these two fit the same patter as in the univariate,

level case, with k + [q] in place of k and d in place of one. One intuitive reason for the similarity is

that the number of derivatives in question does not impact that variance or higher order moment

terms of the expansion, once the scaling is accounted for. That is, for all averages beyond the first,

for example of the kernel squared,
√
nhd can be thought of as the effective sample size, since that

is the multiplier which stabilizes averages.

S.I.7 Proof of Main Result

Throughout C shall be a generic constant that may take different values in different uses. If more

than one constant is needed, C1, C2, . . . , will be used. It will cause no confusion (as the notations

never occur in the same place), but in the course of proofs we will frequently write s =
√
nh, which

overlaps with the order of the kernel L.

The first step is to write Tv,w as a smooth function of sums of i.i.d. random variables plus a

remainder term that is shown to be of higher order. In addition to the notation above, define

γv,p = h−1E [Nv (Xh,i)
p] and ∆v,j =

1

s

n∑
i=1

{
Nv (Xh,i)

j − E
[
Nv (Xh,i)

j
]}

.

With this notation f̂v − E[f̂v] = s−1∆v,1, σ2
w = E[∆2

w,1] = γw,2 − hγ2
w,1 and

σ̂2
w − σ2

w = s−1∆w,2 − h2γw,1s
−1∆w,1 − hs−2∆2

w,1. (S.I.4)

By a change of variables

γv,p = h−1

∫
Nv (Xh,i)

p f(Xi)dXi =

∫
Nv(u)pf(x− uh)du = O(1).

Further, by construction E[∆w,j ] = 0 and

V [∆w,j ] = h−1E
[
Nv (Xh,i)

2j
]
− h−1E

[
Nv (Xh,i)

j
]2
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≤ h−1E
[
Nv (Xh,i)

2j
]

= γv,2j = O(1).

Returning to Eqn. (S.I.4) and applying Markov’s inequality, we find that hs−2∆2
w,1 = n−1∆2

w,1 =

Op(n
−1) and σ̂2

w − σ2
w = s−1Op(1)− hO(1)s−1Op(1)− hs−2Op(1) = Op(s

−1), whence
∣∣σ̂2
w − σ2

w

∣∣2 =

Op(s
−2). Using these results preceded by a Taylor expansion, we have

(
σ̂2
w

σ2
w

)−1/2

=

(
1 +

σ̂2
w − σ2

w

σ2
w

)−1/2

= 1− 1

2

σ̂2
w − σ2

w

σ2
w

+
3

8

(σ̂2
w − σ2

w)2

σ4
w

+ op((σ̂
2
w − σ2

w)2)

= 1− 1

2σ2
w

(
s−1∆w,2 − h2γw,1s

−1∆w,1

)
+Op(n

−1 + s−2).

Combining this result with the fact that

Tv,w =
∆v,1 + ηv

σ̂w
=

∆v,1

σ̂w
+
ηv
σw

(
σ̂2
w

σ2
w

)−1/2

,

we have

P[Tv,w < z] = P
[
T̃v,w −Rv,w < z − ηv

σw

]
, (S.I.5)

where

T̃v,w =
∆v,1

σ̂w
− ηv

2σ3
w

(
s−1∆w,2 − h2γw,1s

−1∆w,1

)
and is a smooth function of sums of i.i.d. random variables and the remainder term is

Rv,w =
ηv
σw

(
hs−2

∆2
w,1

2σ2
w

+
3

8

(σ̂2
w − σ2

w)2

σ4
w

+ op((σ̂
2
w − σ2

w)2)

)
.

Next we apply the delta method, see Hall (1992a, Chapter 2.7) or Andrews (2002, Lemma 5(a)).

It will be true that

P[Tv,w < z] = P
[
T̃v,w < z − ηv

σw

]
+ o(s−2) (S.I.6)

if it can be shown that s2P[|Rv,w| > ε2s−2 log(s)−1] = o(1).1 This can be demonstrated by applying

Bernstein’s inequality to each piece of Rv,w, as the kernels K and L, and their derivatives, are

bounded.

To apply this inequality to the first term of Rv,w, note that |Nw((x − Xi)/h)| ≤ C1 and that

1Here, s−2 log(s)−1 may be replaced with any sequence that is o(s−2 + η2v + s−1ηv).
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V[Nw((x−Xi)/h)] ≤ C2h, for different constants, and so for ε > 0 we have

s2P

[
ηv
σw

hs−2
∆2
w,1

2σ2
w

> ε2s−2 log(s)−1

]

= s2P

[∣∣∣∣∣
n∑
i=1

{Nw (Xh,i)− E [Nw (Xh,i)]}

∣∣∣∣∣ > εs−1 log(s)−1/2

(
2σ3

wns
2

ηv

)1/2
]

= s2P

[∣∣∣∣∣
n∑
i=1

{Nw (Xh,i)− E [Nw (Xh,i)]}

∣∣∣∣∣ > ε

(
2σ3

wn

ηv log(s)

)1/2
]

≤ 2s2 exp

{
−1

2

ε22σ3
wnη

−1
v log(s)−1

C2nh+ 1
3εC1

√
2σ3

wn/[ηv log(s)]

}

≤ s2 exp

{
−C ε2 log(s)−1

ηh+ ε
√
ηv/[n log(s)]

}

≤ exp

{
C1 log(s)

[
1− C2

ε2

ηh log(s)2 + ε
√
ηv log(s)3/n]

]}
,

which tends to zero because ηv → 0 as n → ∞ is assumed. To see why, note first that the second

term of the denominator automatically vanishes, as ηv → 0 and log(s)3/n → 0. Second, suppose

η2
v � nhω (for example, if ηus � shk, then ω = 1 + 2k) and the first term diverges, it must be that

h is at least as large (in order) as(
1

n log(s)4

)1/(2+ω)

,

which makes the requirement that ηv → 0 equivalent to

η2
v � nhω = n1−ω/(2+ω) log(s)−4ω/(2+ω) → 0,

which is impossible. The remaining terms of Rv,w, characterized using Eqn. (S.I.4), are handled in

exactly the same way. This establishes Eqn. (S.I.6).

Next, the proofs of (Hall, 1992a, Chapters 4.4 and 5.5) show that T̃v,w has an Edgeworth

expansion valid through o(s−2 + s−1ηv + η2
v). Thus, for a smooth function G(z) we can write

P[T̃v,w < z] = G(z) + o(s−2 + s−1ηv + η2
v). Therefore

P
[
T̃v,w < z − ηv

σw

]
= P

[
T̃v,w < z

]
− ηv
σw

G(1)(z) + o(s−2 + s−1ηv + η2
v). (S.I.7)

The final result now follows by combining Equations (S.I.5), (S.I.6), and (S.I.7) with the terms

of the expansion computed below.
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S.I.7.1 Computing the Terms of the Expansion

Identifying the terms of the expansion is a matter of straightforward, if tedious, calculation. The

first four cumulants of Tv,w must be calculated, which are functions of the first four moments. In

what follows, we give a short summary. Note well that we always discard higher-order terms for

brevity, and to save notation we will write
o
= to stand in for “equal up to o((nh)−1 + (nh)−1/2ηv +

η2
v + 1{v 6=w}ρ1+2k)”.

Referring to the Taylor expansion above, for the purpose of computing moments and cumulants,

we can use

Tv,w ≈
(

∆v,1

σw
+
ηv
σw

)(
1− s−1∆w,2

2σw
+
hγw,1s

−1∆w,1

σw
+

3

8

s−2∆2
w,2

σ2
w

)
.

Moments of the two sides agree up to the requisite order. Straightforward moment calculations

then give

E[Tv,w]
o
=
s−1E[∆v,1∆w,2]

2σ3
w

+
hs−1γw,1E[∆v,1∆w,1]

σ3
w

+
3s−2E[∆v,1∆2

w,2]

8σ5
w

+
ηv
σw

+
3s−2ηvE[∆2

w,2]

8σ5
w

o
= −s−1 νv,w(1, 1, 2)

2σ3
w

+
hs−1γw,1νv,w(1, 1, 1)

σ3
w

+
ηv
σw

,

E[T 2
v,w]

o
=

E[∆2
v,1]

σ2
w

+ s−2
E[∆2

v,1∆2
w,2]

σ6
w

+ s−1
E[∆2

v,1∆w,2]

σ4
w

+ 2hs−1
γw,1E[∆2

v,1∆w,1]

σ2
w

− ηvs−1 2E[∆v,1∆w,2]

σ4
w

+ ηvhs
−1 4γw,1E[∆v,1∆w,1]

σ2
w

+
η2
v

σ2
w

o
=
σ2
v

σ2
w

+ s−2σ
2
vνv,w(0, 2, 2)

σ6
w

+ s−2 2νv,w(1, 1, 2)2

σ6
w

− s−2 νv,w(2, 1, 2)2

σ2
w

− ηvs−1 2νv,w(1, 1, 2)

σ2
w

+
η2
v

σ2
w

,

E[T 3
v,w]

o
=

E[∆3
v,1]

σ3
w

− 3s−1
E[∆3

v,1∆w,2]

2σ5
w

+ 3hs−1
γw,1E[∆3

v,1∆w,1]

σ5
w

+ ηv
3E[∆2

v,1]

σ3
w

− ηvs−1
9E[∆2

v,1∆w,2]

2σ5
w

o
= s−1 νv(3)

σ3
w

− s−1 9νv,w(1, 1, 2)σ2
v

2σ5
w

+ hs−1 9γw,1νv,w(1, 1, 1)

σ5
w

+ ηv
3σ2

v

σ3
w

,

and,

E[T 4
v,w]

o
=

E[∆4
v,1]

σ4
w

− s−1
2E[∆4

v,1∆w,2]

σ6
w

+ 4hs−1
γw,1E[∆4

v,1∆w,1]

σ6
w

+ s−2
3E[∆4

v,1∆2
w,1]

σ8
w

+ ηv
4E[∆3

v,1]

σ4
w

− ηvs−1
8E[∆3

v,1∆w,2]

σ6
w

+ η2
v

6E[∆2
v,1]

σ4
w

o
= s−2 νv(4)

σ4
w

+ 3
σ4
v

σ4
w

− s−2 8νv(3)νv,w(1, 1, 2) + 12σ2
vνv,w(2, 1, 2)

σ6
w

+ s−2 9σ4
vνv,w(0, 2, 2)

σ8
w
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+ s−2 36σ2
vνv,w(1, 1, 2)2

σ8
w

+ ηvs
−1 4νv(3)

σ4
w

− ηvs−1 24σ2
vνv,w(1, 1, 2)

σ6
w

+ η2
v

6σ2
v

σ2
w

.

The expansion now follows, formally, from the following steps. First, combining the above

moments into cumulants. Second, these cumulants may be simplified using that

σ2
v

σ2
w

= 1 + 1(w 6=v)
(
ρ1+kΩ1 + ρ1+2kΩ2

)
and in all cases present

νv,w(i, j, p) = fϑNv ,i+jp + o(1). (S.I.8)

The second relation is readily proven for v = w, as νv,v(i, j, p) = E[Nv(Xh,i)
i+jp] + O(h), where

the remainder represents products of expectations. In the case for v 6= w, we find ν2,1(i, j, p) =

fϑN1,i+jp+O(ρ1+k +h), and in this case ρ→ 0 is assumed. For any term of a cumulant with a rate

of (nh)−1, (nh)−1/2ηv, η
2
v , or ρ1+2k (i.e., the extent of the expansion), these simplifications may be

inserted as the remainder will be negligible. Note that this is exactly why the polynomials p
(k)
v,w do

not simplify, while the q
(k)
v,w do. Third, with the cumulants in hand, the terms of the expansion are

determined as described by e.g., Hall (1992a, Chapter 2).

Finally, for traditional bias correction, there are additional terms in the expansion (see discussion

in the main text) representing the covariance of f̂ and B̂f (denoted by Ω1) and the variance of B̂f

(Ω2). We now state their precise forms. These arise from the mismatch between the variance of

the numerator of Tbc and the standardization used, σ2
us, that is σ2

rbc/σ
2
us is given by

nhV[f̂ − B̂f ]

nhV[f̂ ]
=
nhV[f̂ ]− 2nhC[f̂ , B̂f ] + nhV[B̂f ]

nhV[f̂ ]
= 1− 2

nhC[f̂ , B̂f ]

nhV[f̂ ]
+
nhV[B̂f ]

nhV[f̂ ]
.

This makes clear that Ω1 and Ω2 are the constant portions of the last two terms. First, for Ω1,

C[f̂ , B̂f ] = E

[(
1

nh

n∑
i=1

K (Xh,i)

)(
hkµK,k

1

nb1+k

n∑
i=1

L(k) (Xb,i)

)]

= hkµK,k
1

nb1+k

{
E
[
h−1K (Xh,i)L

(k) (Xb,i)
]

− bE
[
h−1K (Xh,i)

]
E
[
b−1L(k) (Xb,i)

]}
=
ρkµK,k
nb

{∫
f(x− uh)K(u)L(k)(uρ)du− b

∫
f(x− uh)K(u)du

∫
f(x− ub)L(k)(u)du

}
.

Therefore

−2
nhC[f̂ , B̂f ]

nhV[f̂ ]
= ρ1+kΩ1,
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where

Ω1 = −2
µK,k
ν1(2)

{∫
f(x− uh)K(u)L(k)(uρ)du− b

∫
f(x− uh)K(u)du

∫
f(x− ub)L(k)(u)du

}
.

Note ν1(2) = σ2
us. If we did not include Ω2 in the Edgeworth expansion, i.e. we stopped at order

ρ1+k, then we could capture only the leading terms of Ω1, as follows, using that kernel integrates

to 1 and ρ→ 0,

Ω1 = −2
µK,k
ν1(2)

{∫
f(x− uh)K(u)L(k)(uρ)du− b

∫
f(x− uh)K(u)du

∫
f(x− ub)L(k)(u)du

}
= −2

µK,k
f(x)ϑ2

K,2 +O(h)

{
f(x)L(k)(0)[1 +O(h+ hρ)]− bf(x)2

∫
L(k)(u)du[1 +O(b+ h)]

}
→ −2µK,kϑ

−2
K,2L

(k)(0).

Note that this matches the term Hall (1992b) calls w2. We do not do this, for completeness. There

are no other terms of up to order ρ1+2k, so capturing the full contribution of σ2
2/σ

2
1−1 = σ2

rbc/σ
2
us−1

is natural and informative.

Turning to Ω2, using the calculations in Section S.I.4.1 (recall k̃ = k ∨ S), we find that

V[B̂f ] =
h2k

n
µ2
K,k

{
1

b1+2k
E
[
b−1L(k) (Xb,i)

2
]
−
(

1

b1+k
E
[
L(k) (Xb,i)

])2
}

=
ρ2kµ2

K,k

nb

{∫
f(x− ub)L(k)(u)2du− b1+2k̃

(∫
L(k−k̃)(u)f (k̃)(x− ub)du

)2
}
,

and hence

nhV[B̂f ]

nhV[f̂ ]
= ρ1+2kΩ2 where Ω2 =

µ2
K,k

ν1(2)

{∫
f(x− ub)L(k)(u)2du− b1+2k̃

(∫
L(k−k̃)(u)f (k̃)(x− ub)du

)2
}
.

The final piece will be b1+2Sf (k)(x)2[1+o(1)] if k ≤ S. Substituting this is permitted because ρ1+2k

is the limit of the expansion, though it is not necessary to do, because this term is always higher

order. Fully simplifying would yield

Ω2 = µ2
K,kϑ

−2
K,2ϑL(k),2,

which can be used in Theorem S.I.1.

S.I.8 Complete Simulation Results

To illustrate the gains from robust bias correction we conduct a Monte Carlo study to compare

undersmoothing, traditional bias correction, and robust bias correction in terms coverage accuracy

and interval length using several data-driven procedures to select the bandwidth. We generate
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n = 500 observations from a density f given by:

Model 1 (Gaussian Density): x v N(0, 1)

Model 2 (Skewed Unimodal Density): x v 1
5N(0, 1) + 1

5N
(

1
2 ,
(

2
3

)2)
+ 3

5N
(

13
12 ,
(

5
9

)2)
Model 3 (Bimodal Density): x v 1

2N
(
−1,

(
2
3

)2)
+ 1

2N
(

1,
(

2
3

)2)
Model 4 (Asymmetric Bimodal Density): x v 3

4N (0, 1) + 1
4N
(

3
2 ,
(

1
3

)2)
We evaluate the density at x = {−2,−1, 0, 1, 2}. These models were previously analyzed in

Marron and Wand (1992) and they are plotted in Figure S.I.1. In this simulation study we compare

the performance of the confidence intervals defined by Tus, Tbc, and Trbc. For Tus, we take K to

be the Epanechnikov kernel, while bias correction uses the Epanechnikov and MSE-optimal kernels

for K and L(2), respectively. The bandwidth h is chosen in three different ways:

(i) population MSE-optimal choice hmse;

(ii) estimated ROT optimal coverage error rate ĥrot.

(iii) estimated DPI optimal coverage error rate ĥdpi.

Empirical coverage and length are reported in Tables S.I.2–S.I.5 (Panel A) using our two pro-

posed data-driven bandwidth selectors, as well as the infeasible hmse. The most obvious finding

is that robust bias correction has accurate coverage for all bandwidth choices in all models. The

intervals are generally longer than for undersmoothing, but neither undersmoothing nor traditional

bias correction yield correct coverage outside of a few special cases (e.g., undersmoothing at the

infeasible MSE-optimal bandwidth in Model 4). The DPI bandwidth selector generally results in

slightly smaller bandwidths (on average). Summary statistics for the two fully data-driven band-

widths are shown in Panel B. The fact that the DPI bandwidth is slightly smaller is born out. It

is also, in general, more variable.

To illustrate the robustness to tuning parameter selection, Figures S.I.2–S.I.9 show coverage

and length for all four models. The dotted vertical line shows the population MSE-optimal band-

width for reference. These figures demonstrate the delicate balance required for undersmoothing to

provide correct coverage, whereas for a wide range of bandwidths robust bias correction provides

correct coverage. Further, interval length is not unduly inflated for bandwidths that provide correct

coverage. Recall that robust bias correction can accommodate, and will optimally employ, a larger

bandwidth, yielding higher precision. Further emphasizing the point of robustness, we depart from

ρ = 1 in Figures S.I.10 and S.I.11 to show coverage and length over a grid of h and ρ.

The simulation results for local polynomial regression reported in Section S.II.7 below bear out

these same conclusions and study these issues in more detail, in particular interval length.

All our methods are implemented in R and STATA via the nprobust package, available from

http://sites.google.com/site/nppackages/nprobust (see also http://cran.r-project.org/

package=nprobust). See Calonico et al. (2017) for a complete description.
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Figure S.I.1: Density Functions
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Table S.I.2: Simulations Results for Model 1

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US BC RBC US RBC

x = −2
hmse 0.819 82.4 88.0 94.7 0.035 0.042

ĥrot 0.746 82.6 86.1 93.0 0.037 0.044

ĥdpi 0.543 90.1 86.1 92.2 0.043 0.052

x = −1
hmse - - - - - -

ĥrot 1.224 90.1 83.5 93.7 0.044 0.060

ĥdpi 0.665 93.7 86.6 93.8 0.073 0.093

x = 0
hmse 0.842 64.1 78.3 91.3 0.064 0.088

ĥrot 0.775 73.3 79.5 91.5 0.069 0.094

ĥdpi 0.665 80.7 80.7 90.9 0.080 0.107

x = 1
hmse - - - - - -

ĥrot 1.221 90.0 83.5 93.9 0.044 0.060

ĥdpi 0.666 93.9 87.0 94.2 0.073 0.093

x = 2
hmse 0.819 83.0 88.8 94.9 0.035 0.042

ĥrot 0.745 83.2 86.8 93.3 0.037 0.044

ĥdpi 0.541 90.5 87.0 92.4 0.043 0.052

Panel B: Summary Statistics for the Estimated Bandwidths

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

x = −2

ĥrot 0.819 0.546 0.698 0.741 0.746 0.789 1.11 0.07

ĥdpi - 0.397 0.462 0.493 0.543 0.544 1.95 0.17

x = −1

ĥrot - 0.898 1.1 1.17 1.22 1.28 9.42 0.27

ĥdpi - 0.357 0.476 0.588 0.665 0.788 2.01 0.25

x = 0

ĥrot 0.842 0.667 0.756 0.775 0.775 0.795 0.876 0.029

ĥdpi - 0.425 0.596 0.637 0.665 0.699 1.79 0.11

x = 1

ĥrot - 0.895 1.1 1.17 1.22 1.28 5.84 0.24

ĥdpi - 0.356 0.478 0.583 0.666 0.791 2.05 0.25

x = 2

ĥrot 0.819 0.55 0.695 0.741 0.745 0.789 1.11 0.071

ĥdpi - 0.398 0.462 0.494 0.541 0.545 1.95 0.16

Notes:
(i) US = Undersmoothing, BC = Bias Corrected, RBC = Robust Bias Corrected.

(ii) Columns under “Bandwidth” report the average estimated bandwidths choices, as appropriate, for bandwidth hn.
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Table S.I.3: Simulations Results for Model 2

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US BC RBC US RBC

x = −2
hmse 1.005 90.3 90.4 93.9 0.015 0.018

ĥrot 1.092 94.3 92.4 95.6 0.015 0.017

ĥdpi 1.108 91.8 92.4 96.0 0.015 0.017

x = −1
hmse 0.942 80.9 87.3 93.9 0.034 0.040

ĥrot 0.622 91.5 87.6 93.6 0.041 0.049

ĥdpi 0.685 85.5 85.2 91.9 0.040 0.048

x = 0
hmse 0.772 77.2 84.0 93.8 0.063 0.081

ĥrot 2.119 8.6 13.3 19.8 0.025 0.041

ĥdpi 0.357 94.1 88.6 94.4 0.103 0.127

x = 1
hmse 0.614 41.9 72.2 88.0 0.088 0.122

ĥrot 0.593 49.7 72.5 87.6 0.091 0.126

ĥdpi 0.457 79.7 81.3 91.5 0.115 0.153

x = 2
hmse 0.603 70.6 85.5 92.9 0.061 0.074

ĥrot 0.913 23.3 53.9 63.4 0.049 0.061

ĥdpi 0.324 93.6 88.5 93.9 0.084 0.102

Panel B: Summary Statistics for the Estimated Bandwidths

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

x = −2

ĥrot 1.005 0.775 1 1.09 1.09 1.17 2.44 0.12

ĥdpi - 0.684 1.01 1.1 1.11 1.2 1.9 0.14

x = −1

ĥrot 0.942 0.472 0.584 0.619 0.622 0.657 0.844 0.055

ĥdpi - 0.376 0.528 0.656 0.685 0.774 1.84 0.21

x = 0

ĥrot 0.772 0.678 1.35 1.69 2.12 2.25 116 2.38

ĥdpi - 0.268 0.324 0.342 0.357 0.367 1.38 0.074

x = 1

ĥrot 0.614 0.513 0.578 0.593 0.593 0.607 0.682 0.022

ĥdpi - 0.371 0.436 0.453 0.457 0.474 0.776 0.033

x = 2

ĥrot 0.603 0.529 0.772 0.864 0.913 0.988 5.83 0.27

ĥdpi - 0.272 0.309 0.321 0.324 0.336 1.03 0.025

Notes:
(i) US = Undersmoothing, BC = Bias Corrected, RBC = Robust Bias Corrected.

(ii) Columns under “Bandwidth” report the average estimated bandwidths choices, as appropriate, for bandwidth hn.
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Table S.I.4: Simulations Results for Model 3

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US BC RBC US RBC

x = −2
hmse 0.767 82.7 86.6 93.8 0.047 0.057

ĥrot 2.843 1.5 3.6 5.1 0.021 0.029

ĥdpi 0.554 89.8 86.8 92.4 0.056 0.067

x = −1
hmse 0.716 65.6 79.3 89.7 0.070 0.092

ĥrot 1.204 3.1 29.6 45.4 0.046 0.063

ĥdpi 0.663 72.4 79.5 89.7 0.075 0.097

x = 0
hmse 0.695 74.3 83.2 92.6 0.064 0.081

ĥrot 1.096 1.2 44.8 67.2 0.046 0.061

ĥdpi 0.431 92.7 87.6 94.3 0.085 0.105

x = 1
hmse 0.716 66.6 79.3 89.8 0.070 0.092

ĥrot 1.202 2.6 31.0 46.8 0.046 0.063

ĥdpi 0.662 72.4 79.3 89.7 0.075 0.097

x = 2
hmse 0.767 82.1 86.2 93.7 0.047 0.057

ĥrot 2.829 1.4 3.5 5.0 0.021 0.029

ĥdpi 0.554 89.3 86.0 92.2 0.056 0.067

Panel B: Summary Statistics for the Estimated Bandwidths

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

x = −2

ĥrot 0.767 1.16 1.89 2.29 2.84 3.03 46.7 1.98

ĥdpi - 0.411 0.494 0.527 0.554 0.573 1.82 0.12

x = −1

ĥrot 0.716 0.973 1.14 1.19 1.2 1.25 1.86 0.09

ĥdpi - 0.572 0.638 0.659 0.663 0.683 0.954 0.037

x = 0

ĥrot 0.695 0.953 1.07 1.09 1.1 1.12 1.31 0.043

ĥdpi - 0.375 0.416 0.428 0.431 0.443 0.604 0.023

x = 1

ĥrot 0.716 0.968 1.14 1.19 1.2 1.25 1.84 0.09

ĥdpi - 0.565 0.637 0.658 0.662 0.683 1.21 0.037

x = 2

ĥrot 0.767 1.24 1.89 2.3 2.83 3.02 119 2.50

ĥdpi - 0.417 0.494 0.526 0.554 0.57 1.83 0.13

Notes:
(i) US = Undersmoothing, BC = Bias Corrected, RBC = Robust Bias Corrected.

(ii) Columns under “Bandwidth” report the average estimated bandwidths choices, as appropriate, for bandwidth hn.

31



Table S.I.5: Simulations Results for Model 4

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US BC RBC US RBC

x = −2
hmse 0.853 84.3 88.8 94.4 0.030 0.036

ĥrot 0.844 78.9 85.4 91.8 0.030 0.036

ĥdpi 0.579 91.7 87.4 92.5 0.036 0.043

x = −1
hmse - - - - - -

ĥrot 1.751 77.3 79.0 88.3 0.032 0.044

ĥdpi 0.823 93.3 87.2 94.5 0.057 0.072

x = 0
hmse 0.879 74.1 81.1 91.6 0.060 0.080

ĥrot 1.086 44.9 66.8 82.7 0.050 0.068

ĥdpi 0.791 78.4 81.4 92.0 0.067 0.088

x = 1
hmse 0.600 81.0 83.1 92.8 0.079 0.101

ĥrot 0.900 55.5 60.3 80.3 0.058 0.078

ĥdpi 0.804 59.9 64.4 86.0 0.066 0.086

x = 2
hmse 0.526 75.9 85.0 92.5 0.068 0.082

ĥrot 1.872 2.6 1.0 3.7 0.031 0.042

ĥdpi 0.816 36.7 43.2 53.2 0.055 0.067

Panel B: Summary Statistics for the Estimated Bandwidths

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

x = −2

ĥrot 0.853 0.632 0.781 0.839 0.844 0.896 1.25 0.088

ĥdpi - 0.447 0.515 0.545 0.579 0.589 1.86 0.13

x = −1

ĥrot - 1.1 1.4 1.55 1.75 1.8 16.6 0.83

ĥdpi - 0.395 0.659 0.794 0.823 0.934 2.06 0.24

x = 0

ĥrot 0.879 0.918 1.04 1.08 1.09 1.12 1.53 0.063

ĥdpi - 0.424 0.635 0.757 0.791 0.893 1.99 0.23

x = 1

ĥrot 0.600 0.787 0.876 0.899 0.9 0.923 1.08 0.036

ĥdpi - 0.429 0.69 0.768 0.804 0.874 2.03 0.21

x = 2

ĥrot 0.526 1.08 1.43 1.6 1.87 1.89 61 1.57

ĥdpi - 0.412 0.606 0.795 0.816 0.94 2.01 0.26

Notes:
(i) US = Undersmoothing, BC = Bias Corrected, RBC = Robust Bias Corrected.

(ii) Columns under “Bandwidth” report the average estimated bandwidths choices, as appropriate, for bandwidth hn.
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Figure S.I.10: Empirical Coverage of 95% Confidence Intervals (x = 0)
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Figure S.I.11: Average Interval Length of 95% Confidence Intervals (x = 0)
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Part S.II

Local Polynomial Estimation and Inference

S.II.1 Notation

Local polynomial regression is notationally demanding, and the Edgeworth expansions will be

substantially more so. For ease of reference, we collect all notation here regardless of where it is

introduced and used. Much of the notation is fully restated later, when needed. As such, this

subsection is designed more for reference, and is not easily readable.

Throughout, a subscript p will generally refer to a quantity used to estimate m(x) = E[Yi|Xi =

x], while a subscript q will refer to the bias correction portion (the vectors e0 and ep+1 below are

notable exceptions to this rule). Recall that p ≥ 1 is odd and q > p may be even or odd.

Throughout this section let Xh,i = (Xi − x)/h and similarly for Xb,i. The evaluation point is

implicit here.

To save notation, products of functions will be written together, with only one argument. For

example

(Krpr
′
p)(Xh,i) := K(Xh,i)rp(Xh,i)rp(Xh,i)

′ = K

(
Xi − x
h

)
rp

(
Xi − x
h

)
rp

(
Xi − x
h

)′
,

and similarly for (Krp)(Xh,i), (Lrq)(Xb,i), etc.

All expectations are fixed-n calculations. To give concrete examples of this notation (Λp,k, Rp,

and Wp are redefined below):

Λp,k = R′pWp[((X1 − x)/h)p+k, · · · , ((Xn − x)/h)p+k]′/n =
1

nh

n∑
i=1

(Krp)(Xh,i)X
p+k
h,i

and

Λ̃p,k = E[Λp,k] = h−1E[(Krp)(Xh,j)X
p+k
h,i ] = h−1

∫
supp{X}

K

(
Xi − x
h

)
rp

(
Xi − x
h

)(
Xi − x
h

)p+k
f(Xi)dXi.

Here the range of integration is explicit, but in general it will not be. This is important for boundary

issues, where the notation is generally unchanged, and it is to be understood that moments and

moments of the kernel be replaced by the appropriate truncated version. Continuing this example,

if supp{X} = [0,∞) and x = 0, then by a change of variables

Λ̃p,k = h−1

∫
supp{X}

(Krp)(Xh,j)X
p+k
h,i f(Xi)dXi =

∫ ∞
0

(Krp)(u)up+kf(−uh)du,
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whereas if supp{X} = (−∞, 0] and x = 0, then

Λ̃p,k =

∫ 0

−∞
(Krp)(u)up+kf(−uh)du.

For the remainder of this section, the notation is left generic.

For the proofs (Section S.II.6) we will frequently abbreviate s =
√
nh.

S.II.1.1 Estimators, Variances, and Studentized Statistics

To define the estimator m̂ of m and the bias correction, begin by defining:

rp(u) =
(
1, u, u2, . . . , up

)′
, Rp = [rp(Xh,1), · · · , rp(Xh,n)]′ ,

Wp = diag
(
h−1K(Xh,i) : i = 1, . . . , n

)
, Hp = diag

(
1, h−1, h−2, . . . , h−p

)
,

Γp = R′pWpRp/n, and Λp,k = R′pWp

[
Xp+k
h,1 , · · · , Xp+k

h,n

]′
/n,

(S.II.1)

where diag(ai : i = 1, . . . , n) denote the n × n diagonal matrix constructed using the elements

a1, a2, · · · , an. Note that in the main text Λp,1 is denoted by Λp.

Similarly, define

rq(u) =
(
1, u, u2, . . . , uq

)′
, Rq = [rq(Xb,1), · · · , rq(Xb,n)]′ ,

Wq = diag
(
b−1L(Xb,i) : i = 1, . . . , n

)
, Hq = diag

(
1, b−1, b−2, . . . , b−q

)
,

Γq = R′qWqRq/n, and Λq,k = R′qWq

[
Xq+k
b,1 , · · · , Xw+k

b,n

]′
/n,

(S.II.2)

These are identical, but substituting q, L, and b in place of p, K, and h, respectively. Note that

some dimensions change but other do not: for example, Wp and Wq are both n×n, but Γp is (p+1)

square whereas Γq is (q + 1).

Denote by e0 the (p+ 1)-vector with a one in the first position and zeros in the remaining and

Y = (Y1, · · · , Yn)′. The local polynomial estimator of m(x) = E[Yi|Xi = x] is

m̂ = e′0β̂p = e′0HpΓ
−1
p R′pWpY/n,

where

β̂p = arg min
b∈Rp+1

1

nh

n∑
i=1

(Yi − rp(Xi − x)′b)2K (Xh,i) = HpΓ
−1
p R′pWpY/n.

If we define Ř = [rp(X1 − x), · · · , rp(Xn − x)]′ and M = [m(X1), . . . ,m(Xn)]′, then we can split

m̂−m into the variance and bias terms

m̂−m = e′0Γ−1
p R′pWp(Y −M)/n+ e′0Γ−1

p R′pWp(M − Řβp)/n.

44



This will be useful in the course of the proofs.

The conditional bias is given by

E[m̂|X1, . . . , Xn]−m = hp+1m(p+1) 1

(p+ 1)!
e′0Γ−1

p Λp,1 + op(h
p+1). (S.II.3)

(Recall that in the main paper, Λp,1 is denoted Λp.) This result is valid for p odd, our main focus,

but also for p even at boundary points.

Denote by ep+1 the (q + 1)-vector with one in the p + 2 position, and zeros in the rest. Then

we estimate the bias as

B̂m = hp+1m̂(p+1) 1

(p+ 1)!
e′0Γ−1

p Λp,1, where m̂(p+1) = [(p+ 1)!]e′p+1HqΓ
−1
q R′qWqY/n.

The bias corrected estimator can then be written

m̂− B̂m = e′0HpΓ
−1
p R′pWpY/n− hp+1e′0Γ−1

p Λp,1e
′
p+1HqΓ

−1
q R′qWqY/n

= e′0Γ−1
p

(
R′pWp − ρp+1Λp,1e

′
p+1Γ−1

q R′qWq

)
Y/n,

using the fact that e′p+1Hq = bp+1e′p+1.

The fixed-n variances are

σ2
us := (nh)V[m̂|X1, · · · , Xn] = e′0Γ−1

p

(
hR′pWpΣWpRp/n

)
Γ−1
p e0 (S.II.4)

and

σ2
rbc := (nh)V [m̂− B̂m|X1, . . . , Xn]

= e′0Γ−1
p

(
h/n

) (
R′pWp − ρp+1Λp,1e

′
p+1Γ−1

q R′qWq

)
Σ
(
R′pWp − ρp+1Λp,1e

′
p+1Γ−1

q R′qWq

)′
Γ−1
p e0,

(S.II.5)

where

Σ = diag(v(Xi) : i = 1, . . . , n), with v(x) = V[Y |X = x].

These are the closest analogue to the density case, but are still random due to the conditioning

on the covariates. Their respective estimators are

σ̂2
us = e′0Γ−1

p

(
hR′pWpΣ̂pWpRpΓ

−1
p /n

)
e0

and

σ̂2
rbc = e′0Γ−1

p

(
h/n

) (
R′pWp − ρp+1Λp,1e

′
p+1Γ−1

q R′qWq

)
Σ̂q

(
R′pWp − ρp+1Λp,1e

′
p+1Γ−1

q R′qWq

)′
Γ−1
p e0.
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The conditional variance matrixes are estimated as

Σ̂p = diag(v̂(Xi) : i = 1, . . . , n), with v̂(Xi) = (Yi − rp(Xi − x)′β̂p)
2,

and

Σ̂q = diag(v̂(Xi) : i = 1, . . . , n), with v̂(Xi) = (Yi − rq(Xi − x)′β̂q)
2.

The Studentized statistics of interest are then:

Tus =

√
nh(m̂−m)

σ̂us
, Tbc =

√
nh(m̂− B̂m −m)

σ̂us
, Trbc =

√
nh(m̂− B̂m −m)

σ̂rbc
.

The main result of this section is an Edgeworth expansion of the distribution function of these

statistics.

S.II.1.2 Edgeworth Expansion Terms

The terms of the Edgeworth expansion require further notation and discussion. The expressions

are not nearly as compact as in the density case (cf. Section S.I.6).

Define the expectations of Γp, Γq, Λp,k, and Λq,k as Γ̃p, Γ̃q, Λ̃p,k, and Λ̃q,k, such as

Γ̃p = E [Γp] = E
[
h−1(Krpr

′
p)(Xh,i)

]
.

These will be used to define nonrandom biases and variances that appear in the expansions.

The biases are defined in Eqn. (S.II.7), and are given by

ηus =
√
nh

∫
e′0Γ̃−1

p K(u)rp(u)
(
m(x− uh)− rp(uh)′βp

)
f(x− uh)du,

ηbc =
√
nh

∫
e′0Γ̃−1

p K(u)rp(u)
(
m(x− uh)− rp+1(uh)′βp+1

)
f(x− uh)du

−
√
nhρp+1

∫
e′0Γ̃−1

p Λ̃p,1e
′
p+1Γ̃−1

q L(u)rq(u)
(
m(x− ub)− rq(ub)′βq

)
f(x− ub)du.

Further discussion and leading terms are found in Section S.II.4.

The fixed-n variances are computed conditionally, and we must replace them with their nonran-

dom analogues (just as ηus and ηbc must be nonrandom). Recalling Equations (S.II.4) and (S.II.5),

define

σ̃2
us := e′0Γ̃−1

p Ψ̃pΓ̃
−1
p e0,

where

Ψ̃p = E
[
Ψ̌p

]
and Ψ̌p := hR′pWpΣWpRp/n,
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and

σ̃2
rbc := e′0Γ̃−1

p Ψ̃qΓ̃
−1
p e0

where

Ψ̃q = E
[
Ψ̌q

]
and Ψ̌q := h

(
R′pWp − ρp+1Λ̃p,1Γ̃−1

q R′qWq

)
Σ
(
R′pWp/n− ρp+1Λ̃p,1Γ̃−1

q R′qWq/n
)′
.

In the course of the proofs, we will also use Ψ̂p = hR′pWpΣ̂pWpRp/n and the analogously-defined

Ψ̂q.

We now give the precise forms of the polynomials in the Edgeworth expansion. As with the

density, there will be both even and odd polynomials. These are not as compact or simple as the

density case. Further, we will not attempt to simplify these functions by making use of limiting

versions of moments. For example, we will not replace Λ̃p,1 by f(x)
∫

(Krp)(u)up+1du, and similarly

for other pieces. The only simplification made will be the use of qk,us(z) in the expansion for Tbc,

which otherwise would require further notation than what is below (along the lines of p1,us(z)

below).

First, define the following functions, which depend on n, p, q, h, b, K and L, but this is generally

suppressed:

`0us(Xi) = e′0Γ̃−1
p (Krp)(Xh,i);

`0bc(Xi) = `0us(Xi)− ρp+1e′0Γ̃−1
p Λ̃p,1e

′
p+1Γ̃−1

q (Lrq)(Xb,i);

`1us(Xi, Xj) = e′0Γ̃−1
p

(
E[(Krpr

′
p)(Xh,j)]− (Krpr

′
p)(Xh,j)

)
Γ̃−1
p (Krp)(Xh,i);

`1bc(Xi, Xj) = `1us(Xi, Xj)− ρp+1e′0Γ̃−1
p

{(
E[(Krpr

′
p)(Xh,j)]− (Krpr

′
p)(Xh,j)

)
Γ̃−1
p Λ̃p,1e

′
p+1

+
(

(Krp)(Xh,j)X
p+1
h,i − E[(Krp)(Xh,j)X

p+1
h,i ]

)
e′p+1

+ Λ̃p,1e
′
p+1Γ̃−1

q

(
E[(Lrqr

′
q)(Xb,j)]− (Lrqr

′
q)(Xb,j)

)}
Γ̃−1
q (Lrq)(Xb,i).

With this notation, we can write

σ̃2
us = E[h−1`0us(X)2v(X)],

σ̃2
rbc = E[h−1`0bc(X)2v(X)],

ηus = sE
[
h−1`0us(Xi)[m(Xi)− rp(Xi − x)′βp]

]
,

and

ηbc = sE
[
h−1`0us(Xi)[m(Xi)− rp+1(Xi − x)′βp+1]

+ h−1
(
`0bc(Xi)− `0us(Xi)

)
[m(Xi) − rq(Xi − x)′βq]

]
.

We will define the Edgeworth expansion polynomials first for the undersmoothing case. The stan-
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dard Normal density is φ(z). First, the even polynomials are

p1,us(z) = φ(z)σ̃−3
us E

[
h−1`0us(Xi)

3ε3
i

] {
(2z2 − 1)/6

}
and

p3,us(z) = −φ(z)σ̃−1
us .

The absence of p(2)(z) is noteworthy: there is no version of this term for local polynomial estimation,

because εi is conditionally mean zero.

Next, the odd polynomials for undersmoothing are defined as follows:

q1,us(z) = φ(z)σ̃−6
us E

[
h−1`0us(Xi)

3ε3
i

]2 {
z3/3 + 7z/4 + σ̃2

usz(z
2 − 3)/4

}
+ φ(z)σ̃−2

us E
[
h−1`0us(Xi)`

1
us(Xi, Xi)ε

2
i

] {
−z(z2 − 3)/2

}
+ φ(z)σ̃−4

us E
[
h−1`0us(Xi)

4(ε4
i − v(Xi)

2)
] {
z(z2 − 3)/8

}
− φ(z)σ̃−2

us E
[
h−1`0us(Xi)

2rp(Xh,i)
′Γ̃−1
p (Krp)(Xh,i)ε

2
i

] {
z(z2 − 1)/2

}
− φ(z)σ̃−4

us E
[
h−1`0us(Xi)

3rp(Xh,i)
′Γ̃−1
p ε2

i

]
E
[
h−1(Krp)(Xh,i)`

0
us(Xi)ε

2
i

] {
z(z2 − 1)

}
+ φ(z)σ̃−2

us E
[
h−2`0us(Xi)

2(rp(Xh,i)
′Γ̃−1
p (Krp)(Xh,j))

2ε2
j

] {
z(z2 − 1)/4

}
+ φ(z)σ̃−4

us E
[
h−3`0us(Xj)

2rp(Xh,j)
′Γ̃−1
p (Krp)(Xh,i)`

0
us(Xi)rp(Xh,j)

′Γ̃−1
p (Krp)(Xh,k)`

0
us(Xk)ε

2
i ε

2
k

]
×
{
z(z2 − 1)/2

}
+ φ(z)σ̃−4

us E
[
h−1`0us(Xi)

4ε4
i

] {
−z(z2 − 3)/24

}
+ φ(z)σ̃−4

us E
[
h−1

(
`0us(Xi)

2v(Xi)− E[`0us(Xi)
2v(Xi)]

)
`0us(Xi)

2ε2
i

] {
z(z2 − 1)/4

}
+ φ(z)σ̃−4

us E
[
h−2`1us(Xi, Xj)`

0
us(Xi)`

0
us(Xj)

2ε2
jv(Xi)

] {
z(z2 − 3)

}
+ φ(z)σ̃−4

us E
[
h−2`1us(Xi, Xj)`

0
us(Xi)

(
`0us(Xj)

2v(Xj)− E[`0us(Xj)
2v(Xj)]

)
ε2
i

]
{−z}

+ φ(z)σ̃−4
us E

[
h−1

(
`0us(Xi)

2v(Xi)− E[`0us(Xi)
2v(Xi)]

)2] {−z(z2 + 1)/8
}

;

q2,us(z) = −φ(z)σ̃−2
us z/2;

q3,us(z) = φ(z)σ̃−4
us E[h−1`0us(Xi)

3ε3
i ](z

3/3).

For robust bias correction, both the even polynomials, p1,rbc(z) and p3,rbc(z), and the odd polyno-

mials, q1,rbc(z), q2,rbc(z), and q3,rbc(z) are defined in the exact same way, but changing the σ̃us to

σ̃rbc, `
k
us(·) to `kbc(·), K to L, and p to q, and so forth. For q1,us(z) and q1,rbc(z), the seventh term

48



can be rewritten by rearranging the terms and factoring the expectation, as follows:

E
[
h−3`0us(Xj)

2rp(Xh,j)
′Γ̃−1
p (Krp)(Xh,i)`

0
us(Xi)rp(Xh,j)

′Γ̃−1
p (Krp)(Xh,k)`

0
us(Xk)ε

2
i ε

2
k

]
= E

[
h−1`0us(Xi)ε

2
i (Kr

′
p)(Xh,i)Γ̃

−1
p

]
E
[
h−1`0us(Xj)

2rp(Xh,j)rp(Xh,j)
′Γ̃−1
p

]
× E

[
h−1(Krp)(Xh,k)`

0
us(Xk)ε

2
k

] (S.II.6)

The polynomials defined here are for distribution function expansions, and are different from

those used for coverage error. The polynomials q1,us, q2,us, and q3,us and q1,rbc, q2,rbc, and q3,rbc,

which do not have an argument, used for coverage error in the main text and in Corollary S.II.1

below, are defined in terms of those given above, which do have an argument. Specifically, the

polynomials above should be doubled, divided by the standard Normal density, and evaluated at

the Normal quantile zα/2, that is,

qk,• :=
2

φ(z)
qk,•(z)

∣∣∣∣
z=zα/2

, k = 1, 2, 3, • = us, rbc

For traditional bias correction, q1,us(z), q2,us(z), and q3,us(z) are used, but such simplification

can not be done for p1,bc(z) and p3,bc(z), which must be defined as

p1,bc(z) = φ(z)σ̃−3
us

(
E
[
h−1`0us(Xi)

3ε3
i

] {
−(z2 − 1)/6

}
+ E

[
h−1`0us(Xi)

2`0bc(Xi)ε
3
i

] {
−(z2 − 3)/4

})
+ φ(z)σ̃2

usσ̃
−5
rbcE

[
h−1`0us(Xi)

2`0bc(Xi)ε
3
i

] {
3(z2 − 1)/4

}
and

p3,bc(z) = −φ(z)σ̃−1
us .

Lastly, traditional bias correction also exhibits additional terms in the expansion (see discussion

in the main text) representing the covariance of m̂ and B̂m (denoted by Ω1,bc) and the variance of

B̂m (Ω2,bc). We now state their precise forms. These arise from the mismatch between the variance

of the numerator of Tbc and the standardization used, σ2
us, but these are random, and so Ω1bc and

Ω2,bc must be derived from the nonrandom versions, σ̃2
rbc and σ̃2

us (cf. Section S.I.6; for the same

reason ηus and ηbc must be nonrandom). Recalling the definitions above,

σ̃2
rbc

σ̃2
us

=
E[h−1`0bc(X)2v(X)]

E[h−1`0us(X)2v(X)]

=
E[h−1{`0us(X) + (`0bc(X)− `0us(X))}2v(X)]

E[h−1`0us(X)2v(X)]

= 1− 2σ̃−2
us E[h−1{`0us(X)(`0bc(X)− `0us(X))}v(X)] + σ̃−2

us E[h−1{(`0bc(X)− `0us(X))}2v(X)]

= 1− 2ρ1+(p+1)σ̃−2
us E[h−1{ρ−p−2`0us(X)(`0bc(X)− `0us(X))}v(X)]

+ ρ1+2(p+1)σ̃−2
us E[b−1{ρ−p−2(`0bc(X)− `0us(X))}2v(X)]
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Therefore

Ω1,bc = −2σ̃−2
us E[h−1{ρ−p−2`0us(X)(`0bc(X)− `0us(X))}v(X)]

and

Ω2,bc = σ̃−2
us E[b−1{ρ−p−2(`0bc(X)− `0us(X))}2v(X)].

Remark S.II.1 (Simplifications). It is possible for the above-defined polynomials to simplify in

special cases. A leading example is in the homoskedastic Gaussian regression model:

Yi = m(Xi) + εi, where εi ∼ N(0, v).

This model is a common theoretical baseline to study, though over-simplified from an empirical

point of view. In this special case, E[ε3
i ] = 0 and thus q3,us(z) ≡ 0, entirely removing this term from

the Edgeworth expansions. This has little bearing on the conceptual conclusions however, and in

particular the comparison of undersmoothing and robust bias correction. �

S.II.2 Details of Practical Implementation

In the main text we give a direct plug-in (DPI) rule to implement the coverage-error optimal

bandwidth. Here we we give complete details for this procedure as well as document a second

practical choice, based on a rule-of-thumb (ROT) strategy. Both choices yield the optimal coverage

error decay rate at interior and boundary points.

All our methods are implemented in R and STATA via the nprobust package, available from

http://sites.google.com/site/nppackages/nprobust (see also http://cran.r-project.org/

package=nprobust). See Calonico et al. (2017) for a complete description.

As in the density case, the MSE-optimal bandwidth undercovers when used in the undersmooth-

ing confidence interval; that is, Remark S.I.1 applies directly. See also Hall and Horowitz (2013).

S.II.2.1 Bandwidth Choice: Rule-of-Thumb (ROT)

As with the density case, a simple rule-of-thumb based on rescaling the MSE-optimal bandwidth

is:

ĥintrot = ĥintmse n
−(p−1)/((2p+3)(p+4)) and ĥbndrot = ĥbndmse n

−p/((2p+3)(p+3)).

where ĥintmse and ĥbndmse denote readily-available implementations of the MSE-optimal bandwidth for

interior and boundary points, respectively. See, e.g., Fan and Gijbels (1996). Again, when p = 1

in the interior, no scaling is needed (ĥintrot = ĥintmse), but for p > 1 any data-driven MSE-optimal
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bandwidth should always be shrunk to improve inference at the boundary (i.e., reduce coverage

errors of the robust bias-corrected confidence intervals).

The ROT selector may be especially attractive for simplicity, if estimating the constants de-

scribed below in the DPI case is prohibitive.

Remark S.I.2 applies to this case as well, though less transparently and without consequences

that are as dramatic.

S.II.2.2 Bandwidth Choice: Direct Plug-In (DPI)

We now detail the required steps to implement the plug-in bandwidth ĥdpi for interior and boundary

points. We always set K = L, ρ = 1, and q = p+ 1. The steps are:

(1) As a pilot bandwidth, use ĥmse: any data-driven version of h∗mse.

(2) Using this bandwidth, estimate the regression function m(Xi) as m̂(Xi; ĥmse) = rp(Xi −
x)′β̂p(ĥmse), where β̂p(ĥmse) is the local polynomial coefficient estimate of order p exactly as

defined in the main text, using the bandwidth ĥmse.

Form ε̂i = Yi − m̂(Xi; ĥmse).

(3) Following Fan and Gijbels (1996, §4.2) we estimate derivatives m(k) using a global least

squares polynomial fit of order k + 2. That is, estimate m̂(p+3)(x) as

m̂(p+3)(x) = [γ̂]p+4 (p+ 3)! + [γ̂]p+5 (p+ 4)! x+ [γ̂]p+6

(p+ 5)!

2
x2,

where [γ̂]k is the k-th element of the vector γ̂ that is estimated as

γ̂ = arg min
γ∈Rp+6

n∑
i=1

(
Yi − rp+5(Xi)

′γ
)2
.

The estimate for m̂(p+2)(x) is similar, with all indexes incremented down once.

For interior points, both are needed, while only m̂(p+2)(x) is required for the boundary.

(4) The estimated polynomials q̂k,rbc, k = 1, 2, 3 and the bias constants ˆ̃ηintbc and ˆ̃ηbndbc are defined

as follows. The polynomials q1,rbc, q2,rbc, and q3,rbc, which do not have an argument, are

defined in terms of those given in Section S.II.1.2, which do have an argument. Specifically,

the polynomials in Section S.II.1.2 should be doubled, divided by the standard Normal density,

and evaluated at the Normal quantile zα/2, that is, qk,rbc = φ(zα/2)−1qk,rbc(zα/2). For q1,rbc,

the form given in Eqn. (S.II.6) should be used.

Note that with the recommended choice of K = L, ρ = 1, and q = p + 1, the polynomials

q̂k,rbc, k = 1, 2, 3 can be read off the expressions for the undersmoothing versions, q̂k,us,

k = 1, 2, 3, with p replaced by p+ 1.

51



The bias terms, for the interior and boundary, are given as follows (dropping remainder

terms). With q = p+ 1, and hence even, and ρ = 1, the expressions of Section S.II.4 simplify.

For the interior: ηintbc =
√
nhhp+3η̃intbc , with

η̃intbc = h−1 m
(p+2)

(p+ 2)!

{
e′0Γ̃−1

p

(
Λ̃p,2 − Λ̃p,1e

′
p+1Γ̃−1

q Λ̃q,1

)}
+
m(p+3)

(p+ 3)!

{
e′0Γ̃−1

p

(
Λ̃p,3 − Λ̃p,1e

′
p+1Γ̃−1

q Λ̃q,2

)}
;

At the boundary: ηbndbc =
√
nhhp+2η̃bndbc , with

η̃bndbc =
m(p+2)

(p+ 2)!

{
e′0Γ̃−1

p

(
Λ̃p,2 − Λ̃p,1e

′
p+1Γ̃−1

q Λ̃q,1

)}
.

The estimates of these, q̂k,rbc, k = 1, 2, 3 and ˆ̃ηintbc and ˆ̃ηbndbc , are defined by replacing:

(i) h with ĥmse,

(ii) population expectations with sample averages (see note below),

(iii) residuals εi with ε̂i,

(iv) derivatives m(p+2) and m(p+3) with their estimators from above,

(v) limiting matrices Γ̃p, Λ̃p,2, etc, with the corresponding sample versions using the band-

width ĥmse, e.g., Γ̃p is replaced with Γp(ĥmse) = R′pWp(ĥmse)Rp/n, where Wp(ĥmse) =

diag
(
ĥ−1
mseK

(
(Xi − x)/ĥmse

))
.

(5) Finally ĥintdpi = Ĥint
dpi (ĥmse)n

−1/(p+4) and ĥbnddpi = Ĥbnd
dpi (ĥmse)n

−1/(p+3), where

Ĥint
dpi (ĥmse) = arg min

H

∣∣H−1q̂1,rbc +H1+2(p+3)(ˆ̃ηintbc )2q̂2,rbc +Hp+3(ˆ̃ηintbc )q̂3,rbc

∣∣,
while at (or near) the boundary the optimal bandwidth is h∗rbc = H∗rbc(ρ)n−1/(p+3), where

Ĥbnd
dpi (ĥmse) = arg min

H

∣∣H−1q̂1,rbc +H1+2(p+2)(ˆ̃ηbndbc )2q̂2,rbc +Hp+2(ˆ̃ηbndbc )q̂3,rbc

∣∣.
These numerical minimizations are easily solved; see note below. Code available from the

authors’ websites performs all the above steps.

Remark S.II.2 (Notes on computation).

• When numerically solving the above minimization problems, computation will be greatly sped

up by squaring the objective function.

• For step 4 above, in estimating q1,rbc, the form given in Eqn. (S.II.6) should be used. The

original form requires evaluating a triple sum, or third order U -statistic, which will be far

slower than the right hand side of Eqn. (S.II.6).
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• For step 4(ii) above, in estimating q̂1,rbc, and specifically when replacing population expec-

tations with sample averages, we use the appropriate U -statistic forms to reduce bias. There

are several terms which are expectations over two or three observations, and for these the

second or third order U -statistic forms are preferred. For example, when estimating terms

such as

E
[
h−2`0us(Xi)

2(rp(Xh,i)
′Γ̃−1
p (Krp)(Xh,j))

2ε2
j

]
we use

1

n(n− 1)

n∑
i=1

∑
j 6=i

[
ĥ−2
mse

ˆ̀0
rbc(Xi)

2(rp(Xĥmse,i
)′Γ−1

p (Krp)(Xĥmse,j
))2ε̂2

j

]
,

where ˆ̀0
rbc(Xi) is made feasible as in step 4(v).

�

S.II.2.3 Alternative Standard Errors

As argued in the main text, using variance forms other than (S.II.4) and (S.II.5) can be detrimental

to coverage. Within these forms however, two alternative estimates of Σ are natural. First, mo-

tivated by the fact that the least-squares residuals are on average too small, the well-known HCk

class of heteroskedasticity consistent estimators can be used; see MacKinnon (2013) for details and

a recent review. In our notation, these are defined as follows. First, σ̂2
us-HC0 is the estimator

above. Then, for k = 1, 2, 3, the σ̂2
us-HCk estimator is obtained by dividing ε̂2

i by, respectively,

(n−2 tr(Qp) + tr(Q′pQp))/n, (1−Qp,ii), and (1−Qp,ii)2, where Qp,ii is the i-th diagonal element of

the projection matrix Qp := R′pΓ
−1
p R′pWp/n. The corresponding estimators σ̂2

rbc-HCk are the same

way, with q in place of p. As is well-known in the literature, these estimators perform better for

small sample sizes, a fact we confirm in our simulation study below.

A second option is to use a nearest-neighbor-based variance estimators with a fixed number of

neighbors, following the ideas of Muller and Stadtmuller (1987); Abadie and Imbens (2008). To

define these, let J be a fixed number and j(i) be the j-th closest observation to Xi, j = 1, . . . , J ,

and set v̂(Xi) = J
J+1(Yi−

∑J
j=1 Yj(i)/J)2. This “estimate” is unbiased (but inconsistent) for v(Xi).

Both types of residual estimators could be handled in our results. The constants will change,

but the rates will not. This is because, in all cases, the errors in estimating v(Xi) are no greater

than in the original m̂(x). Inspection of the proof shows that simple modifications allow for the

HCk estimators: only the terms of Eqn. (S.II.12) will change, and indeed, we conjecture that the

HCk estimators will result in fewer terms and a reduced coverage error. This is consistent with the

improved finite-sample behavior of these estimators and the fact that they are asymptotically equiv-

alent. Accommodating the nearest-neighbor estimates require slightly more work and a modified

version of Assumption S.II.3.
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One crucial property of our method, in the context of Edgeworth expansions, is that the bias

in estimation of Σ is of the same order as the original m̂(x). Using other methods may result

in additional terms, with possibly distinct rates, appearing in the Edgeworth expansions. Some

examples that may have this issue are (i) using v̂(Xi) = (Yi − m̂(x))2; (ii) using local or assuming

global heteroskedasticity; (iii) using other nonparametric estimators for v(Xi), relying on new

tuning parameters.

S.II.3 Assumptions

The following assumptions are sufficient for our results. The first two are copied directly from the

main text (see discussion there) and the third is the appropriate Cramér’s condition.

Assumption S.II.1 (Data-generating process). {(Y1, X1), . . . , (Yn, Xn)} is a random sample, where

Xi has the absolutely continuous distribution with Lebesgue density f , E[Y 8+δ|X] < ∞ for some

δ > 0, and in a neighborhood of x, f and v are continuous and bounded away from zero, m is

S > q+2 times continuously differentiable with bounded derivatives, and m(S) is Hölder continuous

with exponent ς.

Assumption S.II.2 (Kernels). The kernels K and L are positive, bounded, even functions, and

with compact support.

Assumption S.II.3 (Cramér’s Condition). For each δ > 0 and all sufficiently small h, the random

variables Zus(u) and Zrbc(u) defined below obey

sup
t∈Rdim{Z(u)},‖t‖>δ

∣∣∣∣∫ exp{it′Z(u)}f(x− uh)du

∣∣∣∣ ≤ 1− C(x, δ)h,

where C(x, δ) > 0 is a fixed constant, ‖t‖2 =
∑dim{Z(u)}

d=1 t2d, and i =
√
−1.

The random variables of Assumption S.II.3 are defined follows. For two kernels K1 and K2,

two polynomial orders (i.e. positive integers) p1 and p2, a bandwidth b, and a scalar ρ, let

Zm(u;K1, p1, p2, b, ρ) :=
(
K1(u)rp1(u)′ε, K1(u)rp1(u)′(m(x−ub)−rp2(ub)′βp2), vech(K1(u)rp1(u)rp1(u)′)′

)′
.

and

Zσ(u;K1,K2, p1, p2, b, ρ) :=
(

vech(K1(u)K2(uρ)rp1(u)rp2(uρ)′ε2)′,

vech(K1(u)K2(uρ)rp1(u)rp2(uρ)′v(x− ub))′,

vech(K1(u)K2(uρ)rp1(u)rp2(uρ)′ε(m(x− ub)− rp2(ub)′βp2))′,

vech(K2(u)2rp2(u)rp2(u)′rp2(u)′)′,

vech(K1(u)K2(uρ)rp1(u)rp2(uρ)′rp2(u)′ε)′,
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vech(K1(u)K2(uρ)rp1(u)rp2(uρ)′rp2(uρ)′ε(m(x− ub)− rp2(ub)′βp2))′
)′
.

The subscripts are intended to make clear that Zm(·) collects quantities from the numerator of the

Studentized statistic, while Zσ(·) gathers additional variables required for the variance estimation.

With this notation, we define

Zus(u) =
(
Zm(u;K, p, p, h, 1)′, Zσ(u;K,K, p, p, h, 1)′

)′
,

Zbc(u) =
(
Zm(u;K, p, p+1, h, 1)′, Zm(u;L, q, q, b, ρ)′, vech(K(u)rp(u)up+1)′, Zσ(u;K,K, p, p, h, 1)′

)′
,

and

Zrbc(u) =
(
Zm(u;K, p, p+ 1, h, 1)′, Zm(u;L, q, q, b, ρ)′, vech(K(u)rp(u)up+1)′,

Zσ(u;K,K, p, q, b, ρ)′, Zσ(u;L,L, q, q, b, 1)′, Zσ(u;K,L, p, q, b, ρ)′
)′
.

Discussion. This notation is quite compact, and while it emphasizes the simplicity of Cramér’s

condition and the fact that it puts mild restrictions on the kernels, it does obscure the full notational

breadth, particularly for Zrbc. I is also mostly repetitive: what holds for the kernel K and order

p fit must also hold for L and q, and for their squares and cross products. To make this clear, we

can expand all the Zm and Zσ, to write out the full random variables as

Zus(u) =
(
K(u)rp(u)′ε, K(u)rp(u)′(m(x− uh)− rp(uh)′βp), vech(K(u)rp(u)rp(u)′)′,

vech(K(u)2rp(u)rp(u)′ε2)′, vech(K(u)2rp(u)rp(u)′v(x− uh))′,

vech(K(u)2rp(u)rp(u)′ε(m(x− uh)− rp(uh)′βp))
′, vech(K(u)2rp(u)rp(u)′rp(u)′)′,

vech(K(u)2rp(u)rp(u)′rp(u)′ε)′, vech(K(u)2rp(u)rp(u)′rp(u)′ε(m(x− uh)− rp(uh)′βp))
′
)′
,

Zbc(u) =
(
K(u)rp(u)′ε, vech(K(u)rp(u)rp(u)′)′,

vech(K(u)2rp(u)rp(u)′ε2)′, vech(K(u)2rp(u)rp(u)′v(x− uh))′,

vech(K(u)2rp(u)rp(u)′ε(m(x− uh)− rp(uh)′βp))
′, vech(K(u)2rp(u)rp(u)′rp(u)′)′,

vech(K(u)2rp(u)rp(u)′rp(u)′ε)′, vech(K(u)2rp(u)rp(u)′rp(u)′ε(m(x− uh)− rp(uh)′βp))
′,

K(u)rp(u)′(m(x− uh)− rp+1(uh)′βp+1), L(uρ)rq(uρ)′ε, vech(L(uρ)rq(uρ)rq(uρ)′)′,

vech(K(u)rp(u)up+1)′, L(uρ)rq(uρ)′(m(x− uh)− rq(uh)′βq)
)′
,

and

Zrbc(u) =
(
Zbc(u)′, vech(K(u)2rp(u)rp(u)′ε2)′, vech(K(u)2rp(u)rp(u)′v(x− ub))′,

vech(K(u)2rp(u)rp(u)′ε(m(x− ub)− rq(ub)′βq))′, vech(K(u)2rp(u)rp(u)′rq(uρ)′)′,
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vech(K(u)2rp(u)rp(u)′rq(uρ)′ε)′, vech(K(u)2rp(u)rp(u)′rq(uρ)′ε(m(x− ub)− rq(ub)′βq))′,

vech(L(u)2rq(u)rq(u)′ε2)′, vech(L(u)2rq(u)rq(u)′v(x− ub))′,

vech(L(u)2rq(u)rq(u)′ε(m(x− ub)− rq(ub)′βq))′, vech(L(u)2rq(u)rq(u)′rq(u)′)′,

vech(L(u)2rq(u)rq(u)′rq(u)′ε)′, vech(L(u)2rq(u)rq(u)′rq(u)′ε(m(x− ub)− rq(ub)′βq))′,

vech(K(u)L(uρ)rp(u)rq(uρ)′ε2)′, vech(K(u)L(uρ)rp(u)rq(uρ)′v(x− ub))′,

vech(K(u)L(uρ)rp(u)rq(uρ)′ε(m(x− ub)− rq(ub)′βq))′, vech(L(u)2rq(u)rq(u)′rq(u)′)′,

vech(K(u)L(uρ)rp(u)rq(uρ)′rq(u)′ε)′,

vech(K(u)L(uρ)rp(u)rq(uρ)′rq(uρ)′ε(m(x− ub)− rq(ub)′βq))′
)′
.

Finally, the precise random variables Zus(u), Zbc(u), and Zrbc(u) used can be replaced with

slightly different constructions without altering the conclusions of Theorem S.II.1: there are other

potential functions T̃ that satisfy Eqn. (S.II.8) in the proof. Such changes necessarily involve

asymptotically negligible terms, and do not materially alter the severity of the restrictions imposed.

Remark S.II.3 (Sufficient Conditions for Cramér’s Condition). Assumption S.II.3 is a high level

condition, but one that is fairly mild. It is essentially a continuity requirement, and is discussed

at length by (among others) Bhattacharya and Rao (1976), Bhattacharya and Ghosh (1978), and

Hall (1992a). For a recent work in econometrics, the present condition can be compared to that

employed by Kline and Santos (2012) for parametric regression (the role of the covariates is here

played by rp(Xh,i)): ours is more complex due to the nonparametric smoothing bias and the fact

that the expansion is carried out to higher order.

It is straightforward to provide sufficient conditions for Assumption S.II.3, given that Assump-

tions S.II.1 and S.II.2 hold. In particular, if we additionally assume that (1, vech(K(u)rp(u)rp(u)′)′)′

comprises a linearly independent set of functions on [−1, 1], then it holds Zus(u) has components

that are nondegenerate and absolutely continuous, and this will imply that Assumption S.II.3 holds

for Zus(u), by arguing as in Bhattacharya and Ghosh (1978, Lemma 2.2) and Hall (1992a, p. 65).

This is precisely the approach taken by Chen and Qin (2002), when studying undersmoothed lo-

cal linear regression. If the linear independence continues to hold when the set of functions is

augmented with vech(L(u)rq(u)rq(u)′), then Zbc(u) and Zrbc(u) satisfy Assumption S.II.3 as well.

At heart, these are requirements on the kernel functions, just as in Assumption S.I.3 in the

density case. The uniform kernel is again ruled out. See Section S.I.3. Further, note that if

these sets of functions are not linearly independent, there will exist a there exists a smaller set of

functions which are linearly independent and can replace the original set while leaving the value of

the statistic unchanged (see Bhattacharya and Ghosh (1978, p. 442)). �

S.II.4 Bias

We will not present a detailed discussion of bias issues, along the lines of Section S.I.4.1, for brevity;

we focus only on the case of nonbinding smoothness.
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The biases ηus and ηbc are not as conceptually simple as in the density case. The closest

parallel to the density case would be (for example) ηus =
√
nh(E[m̂]−m), but this can not be used

due to the presence of Γ−1
p inside the expectation, and the next natural choice, the conditional bias√

nh(E[m̂|X1, . . . Xn]−m), is still random. Instead, ηus and ηbc are biases computed after replacing

Γp, Γq, and Λp,1 with their expectations, denoted Γ̃p, Γ̃q, and Λ̃p,1. We thus define

ηus =
√
nh

∫
e′0Γ̃−1

p K(u)rp(u)
(
m(x− uh)− rp(uh)′βp

)
f(x− uh)du,

ηbc =
√
nh

∫
e′0Γ̃−1

p K(u)rp(u)
(
m(x− uh)− rp+1(uh)′βp+1

)
f(x− uh)du

−
√
nhρp+1

∫
e′0Γ̃−1

p Λ̃p,1e
′
p+1Γ̃−1

q L(u)rq(u)
(
m(x− ub)− rq(ub)′βq

)
f(x− ub)du.

(S.II.7)

For the generic results of coverage error or the generic Edgeworth expansions of Theorem S.II.1

below, the above definitions of ηus and ηbc are suitable. For the Corollaries detailing specific

cases, and to understand the behavior at different points, it is useful to make the leading terms

precise, that is, analogues of Equations (S.I.2) and (S.I.3). We must consider interior and boundary

point estimation, and even and odd q. We depart slightly from other terms of the expansion in

that we do retain only the leading term for some pieces. This is done in order to capture the

rate of convergence explicitly and to give practicable results. These results are derived by Fan and

Gijbels (1996, Section 3.7) and similar calculations (though our expressions differ slightly as fixed-n

expectations are retained as much as possible).

Since p is odd, both at boundary and interior points we have

ηus =
√
nhhp+1 m

(p+1)

(p+ 1)!
e′0Γ̃−1

p Λ̃p,1 [1 + o(1)] .

Moving to ηbc, consider the first term, which in the present notation is:
√
nhE[h−1`0us(X)(m(X)−

rp+1(X − x)′βp+1)]. With p+ 1 even, we find that in the interior the leading terms are

√
nhhp+3e′0Γ̃−1

p

(
m(p+2)

(p+ 2)!
Λ̃p,2h

−1 +
m(p+3)

(p+ 3)!
Λ̃p,3

)
[1 + o(1)] ,

due to the well-known symmetry properties of local polynomials that result in the cancellation of

the leading terms of Γ̃−1
p and Λ̃p,2. The rate of hp+3 accounts for this. At the boundary, no such

cancellation occurs and we have only

√
nhhp+2 m

(p+2)

(p+ 2)!
e′0Γ̃−1

p Λ̃p,2 [1 + o(1)] .
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Next, turn to the bias of the bias estimate:

√
nhρp+1e′0Γ̃−1

p Λ̃p,1e
′
p+1Γ̃−1

q

∫
L(u)rq(u)

(
m(x− ub)− rq(ub)′βq

)
f(x− ub)du.

If q is odd (so that q − (p+ 1) is also odd), then at the interior or boundary the leading term will

be

√
nhbq+1ρp+1 m

(q+1)

(q + 1)!
e′0Γ̃−1

p Λ̃p,1e
′
p+1Γ̃−1

q Λ̃q,1 [1 + o(1)] �
√
nhhp+1bq−p.

The same expression applies at the boundary for q even. However, for the interior, if q is even,

which it is in the leading case of q = p+1, then we again have cancellation of certain leading terms,

resulting in the bias of the bias estimate being

√
nhbq+2ρp+1e′0Γ̃−1

p Λ̃p,1e
′
p+1Γ̃−1

q

(
m(q+1)

(q + 1)!
Λ̃q,1b

−1 +
m(q+2)

(q + 2)!
Λ̃q,2

)
[1 + o(1)] �

√
nhhp+1bq+1−p.

Combining all these results, we find the following. For an interior point ηintbc =
√
nhhp+3

[
η̃intbc + o(1)

]
,

where, if q is even

η̃intbc = e′0Γ̃−1
p

(
m(p+2)

(p+ 2)!
Λ̃p,2h

−1 +
m(p+3)

(p+ 3)!
Λ̃p,3

)
− ρ−2bq−(p+1)e′0Γ̃−1

p Λ̃p,1e
′
p+1Γ̃−1

q

(
m(q+1)

(q + 1)!
Λ̃q,1b

−1 +
m(q+2)

(q + 2)!
Λ̃q,2

)
,

while if q is odd,

η̃intbc = e′0Γ̃−1
p

(
m(p+2)

(p+ 2)!
Λ̃p,2h

−1 +
m(p+3)

(p+ 3)!
Λ̃p,3

)
− ρ−2bq−(p+2) m

(q+1)

(q + 1)!
e′0Γ̃−1

p Λ̃p,1e
′
p+1Γ̃−1

q Λ̃q,1.

At the boundary, for any q, ηbndbc =
√
nhhp+2

[
η̃bndbc + o(1)

]
, with

η̃bndbc =
m(p+2)

(p+ 2)!
e′0Γ̃−1

p Λ̃p,2 − ρ−1bq−(p+1) m
(q+1)

(q + 1)!
e′0Γ̃−1

p Λ̃p,1e
′
p+1Γ̃−1

q Λ̃q,1.

S.II.5 Main Result: Edgeworth Expansion

We now state our generic Edgeworth expansion, from whence the coverage probability expansion

results follow immediately. We have opted to state separate results for undersmoothing, bias

correction, and robust bias correction, rather than the unified statement of Theorem S.I.1, for

clarity. The unified structure is still present, and will be used in the proof of the result below, but

is too cumbersome to use here. The Standard Normal distribution and density functions are Φ(z)

and φ(z), respectively.
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Theorem S.II.1. Let Assumptions S.II.1, S.II.2, and S.II.3 hold, and assume nh/ log(n)→∞.

(a) If ηus log(nh)→ 0, then for

Fus(z) = Φ(z) +
1√
nh
p1,us(z) + ηusp3,us(z) +

1

nh
q1,us(z) + η2

usq2,us(z) +
ηus√
nh
q3,us(z),

we have

sup
z∈R
|P[Tus < z]− Fus(z)| = o

(
(nh)−1 + (nh)−1/2ηus + η2

us

)
.

(b) If ηbc log(nh)→ 0 and ρ→ 0, then for

Fbc(z) = Φ(z) +
1√
nh
p1,bc(z) + ηbcp3,bc(z) +

1

nh
q1,us(z) + η2

bcq2,bc(z) +
ηbc√
nh
q3,bc(z)

− ρp+2(Ω1 + ρp+1Ω2)
φ(z)

2
z,

we have

sup
z∈R
|P[Tbc < z]− Fbc(z)| = o

(
(nh)−1 + (nh)−1/2ηbc + η2

bc + ρ1+2(p+1)
)
.

(c) If ηbc log(nh)→ 0 and ρ→ ρ̄ <∞, then for

Frbc(z) = Φ(z) +
1√
nh
p1,rbc(z) + ηbcp3,rbc(z) +

1

nh
q1,rbc(z) + η2

bcq2,rbc(z) +
ηbc√
nh
q3,rbc(z),

we have

sup
z∈R
|P[Trbc < z]− Frbc(z)| = o

(
(nh)−1 + (nh)−1/2ηbc + η2

bc

)
.

S.II.5.1 Coverage Error for Undersmoothing

For undersmoothing estimators, we have the following result, which is valid for both interior and

boundary points, with moments appropriately truncated if necessary. This result is the analogue of

the robust bias correction corollary in the main text, and follows directly from the generic theorem

there or Theorem S.II.1 above. Exponents such as 1 + 2(p + 1) are intentionally not simplified to

ease comparison to other results, particularly the density case.

The polynomials q1,us, q2,us, and q3,us, which do not have an argument, are defined in terms of

those given in Section S.II.1.2 and used in Theorem S.II.1, which do have an argument. Specifically,

the polynomials in Section S.II.1.2 and Theorem S.II.1 should be doubled, divided by the standard

Normal density, and evaluated at the Normal quantile zα/2, that is,

qk,us :=
2

φ(z)
qk,us(z)

∣∣∣∣
z=zα/2

, k = 1, 2, 3.
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Corollary S.II.1 (Undersmoothing). Let the conditions of Theorem S.II.1(a) hold. Then

P[m ∈ Ius] = 1− α+

{
1

nh
q1,us + nh1+2(p+1)

(
m(p+1)

)2 (
e′0Γ̃−1

p Λ̃p,1/(p+ 1)!
)2
q2,us

+ hp+1
(
m(p+1)

)(
e′0Γ̃−1

p Λ̃p,1/(p+ 1)!
)
q3,us

}
φ(zα

2
) {1 + o(1)}.

In particular, if h∗us = H∗usn
−1/(1+(p+1)), then P[m ∈ Ius] = 1− α+O(n−(p+1)/(1+(p+1))), where

H∗us = arg min
H

∣∣∣∣H−1q1,us +H1+2(p+1)
(
m(p+1)

)2 (
e′0Γ̃−1

p Λ̃p,1/(p+ 1)!
)2
q2,us

+ Hp+1
(
m(p+1)

)(
e′0Γ̃−1

p Λ̃p,1/(p+ 1)!
)
q3,us

∣∣∣∣.
S.II.6 Proof of Main Result

We will first prove Theorem S.II.1(a), as it is notationally simplest. From a technical and con-

ceptual point of view, proving the remainder of Theorem S.II.1 is identical, simply more involved

notationally due to the additional complexity of the bias correction. Outlines of these proofs are

found below.

S.II.6.1 Proof of Theorem S.II.1(a)

Let s =
√
nh.

Throughout this proof, we will generally omit the subscripts us and p when this causes no

confusion. This entire proof focuses on the undersmoothing statistic, Tus = σ̂−1
us s(m̂ − m), and

since bias correction is not involved at all, the associated constructions such as Γq, Wq, etc, do not

appear, and hence there is no need to carry the additional notation to distinguish Wp from Wq, or

σ̂us from σ̂rbc, for example, and we will simply write Γ for Γp, W for Wp, σ̂ for σ̂us, etc.

Our goal is to expand P[Tus < z], where Tus = σ̂−1s(m̂−m). The proof proceeds by identifying

a smooth function T̃ = T̃ (z) such that, for the random variable Zus := Zus(u) that obeys Cramér’s

condition (Assumption S.II.3), T̃ (E[Zus]) = 0 and

P
[
Tus < z

]
= P

[
T̃ (Z̄us) < z̃

]
+ o(s−2 + s−1η + η2), (S.II.8)

where Z̄ =
∑n

i=1 Zi/n and z̃ is a known, nonrandom quantity that depends on the original quantile

z and the remainder Tus − T̃ . An Edgeworth expansion for T̃ holds under Assumption S.II.3, and

a Taylor expansion of this function around z̃ yields the final result. As in the density case, z̃ will

capture the bias terms of Tus: in that case z̃ = z − η/σ̃, but here bias is present in both the

numerator and the Studentization.

To begin, define the notation Ř = [rp(X1 − x), · · · , rp(Xn − x)]′ and M = [m(X1), . . . ,m(Xn)]′,
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and use this to split T into variance and bias terms, as follows:

T = σ̂−1se′0Γ−1R′W (Y −M)/n+ σ̂−1se′0Γ−1R′W (M − Řβ)/n.

We use this decomposition to rewrite P[Tus < z] as

P [Tus < z] = P
[
Tus − σ̃−1η < z − σ̃−1η

]
= P

[{
σ̂−1se′0Γ−1R′W (Y −M)/n+ σ̂−1se′0Γ−1R′W (M − Řβ)/n− σ̃−1η

}
< z − σ̃−1η

]
= P

[{
σ̃−1se′0Γ−1R′W (Y −M)/n

+ σ̃−1se′0Γ̃−1R′W (M − Řβ)/n− σ̃−1η

+ σ̃−1se′0

(
Γ−1 − Γ̃−1

)
R′W (M − Řβ)/n

+
(
σ̂−1 − σ̃−1

)
se′0Γ−1R′W (Y −M)/n

+
(
σ̂−1 − σ̃−1

)
se′0Γ−1R′W (M − Řβ)/n

}
< z − σ̃−1η

]
.

(S.II.9)

The first three lines in the last equality obey the desired properties of T̃ by the orthogonality of εi,

the definition of ηus in Eqn. (S.II.7) as E
[
se′0Γ̃−1R′W (M − Řβ)/n

]
, and the fact that Γ−1− Γ̃−1 =

Γ̃−1
(

Γ̃− Γ
)

Γ−1. For the final two (which are Tus− σ̃−1s(m̂−m) = σ̂−1− σ̃−1s(m̂−m)), we must

expand the difference σ̂−1− σ̃−1. Accounting for the resulting terms will constitute the bulk of the

remainder of the proof, as well as complete the construction of z̃ and the remainder terms of Eqn.

(S.II.8).2

To begin, with σ̃2 = e′0Γ̃−1Ψ̃Γ̃−1e0 defined in Section S.II.1.2,

1

σ̂
=

1

σ̃

(
σ̂2

σ̃2

)−1/2

=
1

σ̃

(
1 +

σ̂2 − σ̃2

σ̃2

)−1/2

,

and hence a Taylor expansion gives

1

σ̂
=

1

σ̃

[
1− 1

2

σ̂2 − σ̃2

σ̃2
+

3

8

(
σ̂2 − σ̃2

σ̃2

)2

− 1

3!

15

8

(
σ̂2 − σ̃2

σ̃2

)3
σ̃7

σ̄7

]
,

for a point σ̄2 ∈ [σ̃2, σ̂2], and so

σ̂−1 − σ̃−1 = −1

2

σ̂2 − σ̃2

σ̃3
+

3

8

(
σ̂2 − σ̃2

)2
σ̃5

− 5

16

(
σ̂2 − σ̃2

)3
σ̄7

. (S.II.10)

We thus focus on σ̂2 − σ̃2. Recall the definition of Ψ̌ = hR′WΣWR/n. Then define the two terms

2Technically, to obtain a T̃ with the desired properties, one need not expand σ̂−1 − σ̃−1 for the variance term:
that is, in Eqn. (S.II.9), σ̃−1se′0Γ−1R′W (Y −M)/n and

(
σ̂−1 − σ̃−1

)
se′0Γ−1R′W (Y −M)/n may be collapsed. This

requires strengthening Cramér’s condition (see Section S.II.3), and since σ̂−1− σ̃−1 must be accounted for in the final
bias term,

(
σ̂−1 − σ̃−1

)
se′0Γ−1R′W (M − Řβ)/n, there is little reason not to do both terms.
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A1 and A2 through the following:

σ̂2 − σ̃2 = e′0Γ−1
(

Ψ̂− Ψ̌
)

Γ−1e0 +
(
e′0Γ−1Ψ̌Γ−1e0 − e′0Γ̃−1Ψ̃Γ̃−1e0

)
=: A1 +A2. (S.II.11)

For A1, recall that ε̂i = yi − rp(Xi − x)′β̂p and so

Ψ̂− Ψ̌ =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

{
ε̂2
i − v(Xi)

}
=

1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

{(
yi − rp(Xi − x)′β̂p

)2
− v(Xi)

}

=
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

{(
εi + [m(Xi)− rp(Xi − x)′βp] + rp(Xi − x)′

[
βp − β̂p

])2
− v(Xi)

}
=: A1,1 +A1,2 +A1,3 +A1,4 +A1,5 +A1,6 +A1,7 +A1,8, (S.II.12)

where

A1,1 =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

{
ε2
i − v(Xi)

}
,

is due to the approximation of the (average over the) conditional variance by the squared residuals

(i.e. A1,1 is the sole remainder that would arise if the true residuals were known and used in place

of ε̂2
i ), and, using rp(Xi − x)′β̂ = rp(Xi − x)′HpΓ

−1R′WY/n = rp(Xh,i)
′Γ−1R′WY/n, the terms

A1,k, k = 2, 3, . . . , 8 are:

A1,2 =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

{
2εi[m(Xi)− rp(Xi − x)′βp]

}
,

A1,3 =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

{
−2εirp(Xh,i)

′}Γ−1R′W (Y − Řβ)/n,

A1,4 =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)

{
−2[m(Xi)− rp(Xi − x)′βp]rp(Xh,i)

′}Γ−1R′W (Y −M)/n,

A1,5 =
1

nh

n∑
i=1

(K2rpr
′
pr
′
p)(Xh,i)Γ

−1R′W (Y −M)/n
[
(Y −M)′/n+ 2(M − Řβ)/n

]
WRΓ−1rp(Xh,i),

A1,6 =
1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)[m(Xi)− rp(Xi − x)′βp]

2,

A1,7 =
1

nh

n∑
i=1

(K2rpr
′
pr
′
p)(Xh,i)

{
−2[m(Xi)− rp(Xi − x)′βp]

}
Γ−1R′W (M − Řβ)/n,
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and

A1,8 =
1

nh

n∑
i=1

(K2rpr
′
pr
′
p)(Xh,i)Γ

−1[R′W (M − Řβ)/n][(M − Řβ)′/nWR]Γ−1rp(Xh,i).

With this notation, we can write A1 = e′0Γ−1
(

Ψ̂− Ψ̌
)

Γ−1e0 = e′0Γ−1
(∑8

k=1A1,k

)
Γ−1e0. The

terms A1,1 to A1,5 will be incorporated into T̃ : notice that these terms obey A1,k = A1,k(Z̄us) and

A1,k(E[Zus]) = 0, and hence these properties will be inherited in the final two lines of Eqn. (S.II.9).

However, A1,6, A1,7, and A1,8 do not have these properties, and will thus be incorporated into z̃

and the remainder. Details are below.

Turning to A2 in Eqn. (S.II.11), using the identity Γ−1 − Γ̃−1 = Γ̃−1
(

Γ̃− Γ
)

Γ−1 and that Γ

and Ψ are symmetric, we find that

A2 = e′0Γ−1Ψ̌Γ−1e0 − e′0Γ̃−1Ψ̃Γ̃−1e0

= e′0Γ−1
(

Ψ̌− Ψ̃
)

Γ−1e0 + e′0

(
Γ−1 − Γ̃−1

)
Ψ̃Γ−1e0 + e′0

(
Γ−1 − Γ̃−1

)
Ψ̃Γ̃−1e0

= e′0Γ−1
(

Ψ̌− Ψ̃
)

Γ−1e0 − e′0Γ̃−1
(

Γ− Γ̃
)

Γ−1Ψ̃
(

Γ−1 + Γ̃−1
)
e0.

All of these terms obey the required properties of T̃ .

We now collect the terms from expanding σ̂−1 − σ̃−1 and return to Eqn. (S.II.9). Plugging

the terms A1,1–A1,8 and A2 into the Taylor expansion in Eqn. (S.II.10), by way of Eqn. (S.II.11),

and collecting terms appropriately (i.e. those that belong in T̃ as described above), we have the

following, which picks up from Eqn. (S.II.9) and is a precursor to Eqn. (S.II.8):

P[Tus < z] = P
[
T̃ (Z̄us) + U < z̃

]
. (S.II.13)

In this statement, we have made the following constructions:

T̃ = σ̃−1se′0Γ−1R′W (Y −M)/n

+ σ̃−1se′0Γ̃−1R′W (M − Řβ)/n− σ̃−1η

+ σ̃−1se′0

(
Γ−1 − Γ̃−1

)
R′W (M − Řβ)/n

+

{
− 1

2σ̃3

[
e′0Γ−1

(∑5

k=1
A1,k

)
Γ−1e0 +A2

]
+

3

8σ̃5

[
e′0Γ−1A1,1Γ−1e0 +A2

]2}
×
{
se′0Γ−1R′W (Y −M)/n+ se′0Γ−1R′W (M − Řβ)/n

}
,

U =

{
− 1

2σ̃3
e′0Γ−1 (A1,6 +A1,7 +A1,8) Γ−1e0 +

3

8σ̃5

[
e′0Γ−1

(∑8

k=2
A1,k

)
Γ−1e0

]2

− 5

16

(
σ̂2 − σ̃2

)3
σ̄7

}
×
{
se′0Γ−1R′W (Y −M)/n+ se′0Γ−1R′W (M − Řβ)/n

}
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−
{
− 1

2σ̃3
e′0Γ̃−1

(
Ã1,6 + Ã1,7 + Ã1,8

)
Γ̃−1e0

}
η,

and

z̃ = z −
{
σ̃−1 − 1

2σ̃3
e′0Γ̃−1

(
Ã1,6 + Ã1,7 + Ã1,8

)
Γ̃−1e0

}
η.

In U and z̃, each Ã1,k is A1,k where all elements have been replaced by their respective fixed-n

expected values, that is,

Ã1,6 = E[A1,6] = E
[
h−1(K2rpr

′
p)(Xh,i)

[
m(Xi)− rp(Xi − x)′βp

]2]
,

Ã1,7 = −2E
[
h−1(K2rpr

′
pr
′
p)(Xh,i)

[
m(Xi)− rp(Xi − x)′βp

]]
× Γ̃−1E

[
h−1(Krp)(Xh,j)

[
m(Xj)− rp(Xj − x)′βp

]]
,

and

Ã1,8 = E
[
h−1(K2rpr

′
p)(Xh,i)E

[
h−1rp(Xh,i)

′Γ̃−1(Krp)(Xh,j)
[
m(Xj)− rp(Xj − x)′βp

]∣∣∣Xi

]2
]
.

The next step in the proof is to show that, for r∗ = max{s−2, η2, hp+1} (i.e., the slowest

decaying), it holds that

1

r∗
P[|U | > rn]→ 0, for some rn = o(r∗). (S.II.14)

This result is established by Lemma S.II.4 in Section S.II.6.3 below. This, together with Eqn.

(S.II.13), implies Eqn. (S.II.8).

Under Assumption S.II.3, an Edgeworth expansion holds for T̃ up to o(s−2 + s−1η+ η2). Thus,

for a smooth function G(z), we have P[T̃ < z] = G(z) + o(s−2 + s−1η + η2). Therefore, a Taylor

expansion gives

P[T̃ < z̃] = G(z)−G(1)(z)

{
σ̃−1 − 1

2σ̃3
e′0Γ−1

(
Ã1,6 + Ã1,7 + Ã1,8

)
Γ−1e0

}
+o(s−2 + s−1η+η2),

which together with Eqn. (S.II.8) establishes the validity of the Edgeworth expansion. The terms

of the expansion are computed in Section S.II.6.4 below.

S.II.6.2 Proof of Theorem S.II.1(b) & (c)

To prove parts (b) and (c) of Theorem S.II.1 the same steps are required, and so we will not

pursue all the details here. Indeed, the same expansions are performed and the same bounds

computed on objects which are conceptually similar, only taking into account the bias correction

(in the numerator for (b), and also in the denominator for (c)). The bias correction will result in

essentially two changes: first, many more terms like Γ− Γ̃ appear, and second, the bias expressions
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and rates change. To illustrate, we will list several key points where these changes manifest. This

list is not exhaustive, but it will show that the same methods used above still apply.

First, for the numerator of Tbc and Trbc, recall that the estimator m̂ is

m̂ =
{
e′0Γ−1

p R′pWp

}
Y/n,

while the bias corrected estimator is

m̂− B̂m =
{
e′0Γ−1

p

(
R′pWp − ρp+1Λp,1e

′
p+1Γ−1

q R′qWq

)}
Y/n.

Comparing these two expressions, it can be seen that the terms in the proof above that involve

Γp−Γ̃p will now additionally involve Γq−Γ̃q and Λp,1−Λ̃p,1, whereas those that with e′0Γ̃−1
p R′pWp will

now have e′0Γ̃−1
p

(
R′pWp − ρp+1Λ̃p,1e

′
p+1Γ̃−1

q R′qWq

)
instead. To give a concrete example, consider

the third line of Eqn. (S.II.9),

σ̃−1
us se

′
0

(
Γ−1
p − Γ̃−1

p

)
R′pWp(M − Řpβp)/n,

which becomes a piece of the function T̃ . For part (b) Theorem S.II.1, treating Tbc, this will become

σ̃−1
us se

′
0

(
Γ−1
p − Γ̃−1

p

)
R′pWp(M − Řp+1βp+1)/n

− se′0ρp+1
(

Γ−1
p Λp,1e

′
p+1Γ−1

q − Γ̃−1
p Λ̃p,1e

′
p+1Γ̃−1

q

)
R′qWq(M − Řqβq)/n,

and part (c) will have the same but with σ̃−1
rbc. Then, since

Γ−1
p Λp,1e

′
p+1Γ−1

q − Γ̃−1
p Λ̃p,1e

′
p+1Γ̃−1

q =
(

Γ−1
p − Γ̃−1

p

)
Λp,1e

′
p+1Γ−1

q

+ Γ̃−1
p

(
Λp,1 − Λ̃p,1

)
e′p+1Γ−1

q + Γ̃−1
p Λ̃p,1e

′
p+1

(
Γ−1
q − Γ̃−1

q

)
,

this term is handled identically, since the appropriate Cramér’s condition is assumed.

Consider now the denominator of the Studentized statistics. For part (b), there is no change

as σ̂2
us is still used, and so the terms involving A1,k and A2 will be identical. However, for Trbc,

we must account for changes of the above form, but also that the residuals are estimated with the

degree q fit: ε̂i = yi − rq(Xi − x)′β̂q instead of degree p. With these changes in mind, the analogue

of Eqn. (S.II.11) will be

σ̂2
rbc − σ̃2

rbc = e′0Γ−1
p

(
Ψ̂q − Ψ̌q

)
Γ−1
p e0 +

(
e′0Γ−1

p Ψ̌qΓ
−1
p e0 − e′0Γ̃−1

p Ψ̃qΓ̃
−1
p e0

)
. (S.II.15)

The second term will proceed as above, though Ψ̌p − Ψ̃p will be replaced by

Ψ̌q − Ψ̃q =
1

nh

n∑
i=1

{
˜̀0
bc(Xi)˜̀0

bc(Xi)
′v(Xi)− E

[
˜̀0
bc(Xi)˜̀0

bc(Xi)
′v(Xi)

]}
,
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where ˜̀0
bc(Xi) = (Krp)(Xh,i) − ρp+1Λ̃p,1Γ̃−1

q (Lrp)(ρXh,i) (cf. Section S.II.1.2, the function `0bc

therein is `0bc(Xi) = e′0Γ̃−1
p

˜̀0
bc(Xi)). To use similar notation,

Ψ̌p − Ψ̃p =
1

nh

n∑
i=1

{
˜̀0
us(Xi)˜̀0

us(Xi)
′v(Xi)− E

[
˜̀0
us(Xi)˜̀0

us(Xi)
′v(Xi)

]}
.

Then, expanding ˜̀0
bc(Xi) shows that Ψ̌q − Ψ̃q is equal to

(
Ψ̌p − Ψ̃p

)
+ ρ2(p+1)+1Λ̃p,1Γ̃−1

q

1

nb

n∑
i=1

{
(L2rqr

′
q)(Xb,i)v(Xi)− E

[
(L2rqr

′
q)(Xb,i)v(Xi)

]}
Γ̃−1
q Λ̃p,1

− ρ(p+1)+12
1

nh

n∑
i=1

{
(Krp)(Xh,i)(Lr

′
q)(ρXh,i)v(Xi)− E

[
(Krp)(Xh,i)(Lr

′
q)(ρXh,i)v(Xi)

]}
Γ̃−1
q Λ̃p,1,

and since all these terms still obey the appropriate Cramér’s condition, the same steps apply. (The

extra factor of ρ in ρ2(p+1)+1 and ρ(p+1)+1 accounts for the fact that σ̂2
rbc is scaled by (nh) instead

of (nb), but the Wq matrixes contribute a b−1.)

The first term of Eqn. (S.II.15) will also follow by the same method as in the prior proof, but

more care must be taken as many more terms will be present because Ψ̂q − Ψ̌q consists of the

following three terms, representing the variance of m̂, the variance of B̂m, and their covariance,

respectively:

Ψ̂q − Ψ̌q = hR′pWp

(
Σ̂q − Σ

)
WpRp/n

+ hρ2(p+1)Λp,1Γ−1
q

(
R′qWqΣ̂qWqRq

)
Γ−1
q Λ′p,1/n− hρ2(p+1)Λ̃p,1Γ̃−1

q

(
R′qWqΣWqRq

)
Γ̃−1
q Λ̃′p,1/n

− 2hρp+1R′pWp

(
Σ̂qWqRqΓ

−1
p Λ′p,1Γ− ΣWqRqΓ̃

−1
p Λ̃′p,1

)
/n.

The first of these three is as in the prior proof, and yields the same A1,1–A1,8, only with the bias

of a q-degree fit: m(Xi)− rq(Xi − x)′βq. If we define

ˇ̌Ψq :=
1

nb

n∑
i=1

(L2rqr
′
q)(Xb,i)v(Xi)

then the second term of Ψ̂q − Ψ̌q is equal to

ρ1+2(p+1)Λp,1Γ−1
q

{
1

nb

n∑
i=1

(L2rqr
′
q)(Xb,i)

{
ε̂2
i − v(Xi)

}}
Γ−1
q Λp,1

+ ρ1+2(p+1)
(

Λp,1 − Λ̃p,1

)
Γ−1
q

ˇ̌ΨqΓ
−1
q Λp,1

+ ρ1+2(p+1)Λ̃p,1

(
Γ−1
q − Γ̃−1

q

)
ˇ̌ΨqΓ

−1
q Λp,1

+ ρ1+2(p+1)Λ̃p,1Γ̃−1
q

ˇ̌Ψq

(
Γ−1
q − Γ̃−1

q

)
Λp,1

+ ρ1+2(p+1)Λ̃p,1Γ̃−1
q

ˇ̌ΨqΓ̃
−1
q

(
Λp,1 − Λ̃p,1

)
.
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The first of these terms will also give rise to versions of A1,1–A1,8, only with the bias of a q-degree

fit and changing K to L, p to q, h to b, etc, and will thus be treated exactly as above. The rest

of these are incorporated into T̃rbc, similar to how A2 is treated, because Cramér’s condition is

satisfied. The third and final piece of Ψ̂q − Ψ̌q is equal to

− 2ρ1+(p+1)

{
1

nh

n∑
i=1

(Krp)(Xh,i)(Lr
′
q)(Xh,iρ)

{
ε̂2
i − v(Xi)

}}
Γ−1
q Λ′p,1

− 2ρ1+(p+1) ˇ̌Ψq

(
Γ−1
q − Γ̃−1

q

)
Λ′p,1

− 2ρ1+(p+1) ˇ̌ΨqΓ̃
−1
q

(
Λp,1 − Λ̃p,1

)
,

and thus is entirely analogous, with yet another version of A1,1–A1,8 defined for the remainder in

the first line, and the second two easily incorporated into T̃rbc.

From these arguments, it is clear that the analogue of Lemma S.II.4 will hold for these cases as

well: the same fundamental pieces are involved, and thus the same arguments will apply, just as

above.

S.II.6.3 Lemmas

Our proof of Theorem S.II.1 relies on the following lemmas. The first gives generic results used

to derive rate bounds on the probability of deviations of the necessary terms. Some such results

are collected in Lemma S.II.2. Lemma S.II.4 shows how to use the previous results to establish

negligibility of the remainder terms required for Eqn. (S.II.14).

As above, we will generally omit the details required for Theorem S.II.1 parts (b) and (c), to

save space. These are entirely analogous, as can be seen from the steps in Lemma S.II.2. Indeed,

the first results are stated in terms of the kernel K and bandwidth h, but continue to hold for L

and b under the obvious substitutions and appropriate assumptions.

Throughout proofs C shall be a generic conformable constant that may take different values in

different places. If more than one constant is needed, C1, C2, . . . , will be used.

Lemma S.II.1. Let the conditions of Theorem S.II.1 hold and let g(·) and t(·) be continuous scalar

functions.

(a) For some δ > 0,

s2P

[∣∣∣∣∣s−2
n∑
i=1

{(Kt)(Xh,i)g(Xi)− E[(Kt)(Xh,i)g(Xi)]}

∣∣∣∣∣ > δs−1 log(s)1/2

]
→ 0.

(b) For some δ > 0,

s2P

[∣∣∣∣∣s−1
n∑
i=1

{(Kt)(Xh,i)g(Xi)εi}

∣∣∣∣∣ > δ log(s)1/2

]
→ 0.
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The same holds with ε2
i − v(Xi) in place of εi, since it is conditionally mean zero and has

more than four moments.

(c) For any δ > 0, an integer k, and any γ > 0,

1

hp+1
P

[∣∣∣∣∣s−2
n∑
i=1

(Kt)(Xh,i)g(Xi)
[
m(Xi)− rp(Xi − x)′βp

]k∣∣∣∣∣ > δh(k−1)(p+1) log(s)γ

]
→ 0.

(d) For any δ > 0 and any γ > 0,

s2P

[∣∣∣∣∣s−2
n∑
i=1

(Kt)(Xh,i)g(Xi)εi
[
m(Xi)− rp(Xi − x)′βp

]∣∣∣∣∣ > δhp+1 log(s)γ

]
→ 0.

(e) For any δ > 0, an integer k, and any γ > 0,

s2P
[∣∣∣∣s−2

n∑
i=1

{
(Kt)(Xh,i)g(Xi)(m(Xi)− rp(Xi − x)′βp)

k

− E
[
(Kt)(Xh,i)g(Xi)(m(Xi)− rp(Xi − x)′βp)

k
]}∣∣∣∣ > δhk(p+1) log(s)γ

]
→ 0.

Proof of Lemma S.II.1(a). Because the kernel function has compact support and t and g are con-

tinuous, we have

|(Kt)(Xh,i)g(Xi)− E[(Kt)(Xh,i)g(Xi)]| < C1.

Further, by a change of variables and using the assumptions on f , g and t:

V[(Kt)(Xh,i)g(Xi)] ≤ E
[
(Kt)(Xh,i)

2g(Xi)
2
]

=

∫
f(Xi)(Kt)(Xh,i)

2g(Xi)
2dXi

= h

∫
f(x− uh)g(x− uh)(Kt)(u)2du ≤ C2h.

Therefore, by Bernstein’s inequality

s2P

[∣∣∣∣∣ 1

s2

n∑
i=1

{(Kt)(Xh,i)g(Xi)− E[(Kt)(Xh,i)g(Xi)]}

∣∣∣∣∣ > δs−1 log(s)1/2

]

≤ 2s2 exp

{
− (s4)(δs−1 log(s)1/2)2/2

C2s2 + C1s2δs−1 log(s)1/2/3

}

= 2 exp{2 log(s)} exp

{
− δ2 log(s)/2

C2 + C1δs−1 log(s)1/2/3

}
= 2 exp

{
log(s)

[
2− δ2/2

C2 + C1δs−1 log(s)1/2/3

]}
,

68



which vanishes for any δ large enough, as s−1 log(s)1/2 → 0.

Proof of Lemma S.II.1(b). For a sequence rn →∞ to be given later, define

Hi = s−1(Kt)(Xh,i)g(Xi) (Yi1{Yi ≤ rn} − E[Yi1{Yi ≤ rn} | Xi])

and

Ti = s−1(Kt)(Xh,i)g(Xi) (Yi1{Yi > rn} − E[Yi1{Yi > rn} | Xi]) .

By the conditions on g(·) and t(·) and the kernel function,

|Hi| < C1s
−1rn

and

V[Hi] = s−2V[(Kt)(Xh,i)g(Xi)Yi1{Yi ≤ rn}] ≤ s−2E
[
(Kt)(Xh,i)

2g(Xi)
2Y 2
i 1{Yi ≤ rn}

]
≤ s−2E

[
(Kt)(Xh,i)

2g(Xi)
2Y 2
i

]
= s−2

∫
(Kt)(Xh,i)

2g(Xi)
2v(Xi)f(Xi)dXi

= s−2h

∫
(Kt)(u)2(gvf)(x− uh)du

≤ C2/n.

Therefore, by Bernstein’s inequality

s2P

[∣∣∣∣∣
n∑
i=1

Hi

∣∣∣∣∣ > δ log(s)1/2

]
≤ 2s2 exp

{
− δ2 log(s)/2

C2 + C1s−1rnδ log(s)1/2/3

}
≤ 2 exp{2 log(s)} exp

{
− δ2 log(s)/2

C2 + C1s−1rnδ log(s)1/2/3

}
≤ 2 exp

{
log(s)

[
2− δ2/2

C2 + C1s−1rnδ log(s)1/2/3

]}
,

which vanishes for δ large enough as long as s−1rn log(s)1/2 does not diverge.

Next, by Markov’s inequality and the moment condition on Y of Assumption S.II.1

s2P

[∣∣∣∣∣
n∑
i=1

Ti

∣∣∣∣∣ > δ log(s)1/2

]
≤ s2 1

δ2 log(s)
E

∣∣∣∣∣
n∑
i=1

Ti

∣∣∣∣∣
2


≤ s2 1

δ2 log(s)
nE
[
T 2
i

]
≤ s2 1

δ2 log(s)
nV
[
s−1(Kt)(Xh,i)g(Xi)Yi1{Yi > rn}

]
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≤ s2 1

δ2 log(s)
ns−2E

[
(Kt)(Xh,i)

2g(Xi)
2Y 2
i 1{Yi > rn}

]
≤ s2 1

δ2 log(s)
ns−2E

[
(Kt)(Xh,i)

2g(Xi)
2|Yi|2+ξr−ηn

]
≤ s2 1

δ2 log(s)
ns−2(Chr−ξn )

≤ C

δ2

s2

log(s)rξn
,

which vanishes if s2 log(s)−1r−ξn → 0.

It thus remains to choose rn such that s−1rn log(s)1/2 does not diverge and s2 log(s)−1r−ξn → 0.

This can be accomplished by setting rn = sγ for any 2/ξ ≤ γ < 1, which is possible as ξ > 2.

Proof of Lemma S.II.1(c). By Markov’s inequality

1

hp+1
P

[∣∣∣∣∣s−2
n∑
i=1

(Kt)(Xh,i)g(Xi)
[
m(Xi)− rp(Xi − x)′βp

]k∣∣∣∣∣ > δh(k−1)(p+1) log(s)γ

]

≤ 1

hp+1

1

δh(k−1)(p+1) log(s)γ
E
[
h−1(Kt)(Xh,i)g(Xi)

[
m(Xi)− rp(Xi − x)′βp

]k]
≤ 1

δhk(p+1) log(s)γ
hk(p+1)E

[
h−1(Kt)(Xh,i)g(Xi)

[
h−p−1(m(Xi)− rp(Xi − x)′βp)

]k]
= O(log(s)−γ) = o(1).

This relies on the following calculation, which uses the conditions placed on m(·):

E
[
h−1 ((Kt)(Xh,i)g(Xi)εi)

[
m(Xi)− rp(Xi − x)′βp

]k]
= h−1

∫
(gfv)(Xi)(Kt)(Xh,i)

[
m(Xi)− rp(Xi − x)′βp

]k
dXi

= h−1

∫
(gfv)(Xi)(Kt)(Xh,i)

(
m(p+1)(x̄)

(p+ 1)!
(Xi − x)p+1

)k
dXi

= hk(p+1)h−1

∫
(gfv)(Xi)(Kt)(Xh,i)

(
m(p+1)(x̄)

(p+ 1)!
Xp+1
h,i

)k
dXi

= Chk(p+1)h−1

∫
(gfv)(Xi)(Kt)(Xh,i)X

k(p+1)
h,i dXi

= Chk(p+1)

∫
(gfv)(x− uh)(Kt)(u)uk(p+1)du

� hk(p+1).

Proof of Lemma S.II.1(d). By Markov’s inequality, since εi is conditionally mean zero, we have

s2P

[∣∣∣∣∣s−2
n∑
i=1

(Kt)(Xh,i)g(Xi)εi
[
m(Xi)− rp(Xi − x)′βp

]∣∣∣∣∣ > δhp+1 log(s)γ

]
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≤ s2 1

δh2(p+1) log(s)2γ

1

s2
E
[
h−1 ((Kt)(Xh,i)g(Xi)εi)

2 [m(Xi)− rp(Xi − x)′βp
]2]

≤ s2h2(p+1)

δs2h2(p+1) log(s)γ
E
[
h−1 ((Kt)(Xh,i)g(Xi)εi)

2 [h−p−1(m(Xi)− rp(Xi − x)′βp)
]2]

� log(s)−2γ → 0,

where we rely on the same argument as above to compute the bias rate.

Proof of Lemma S.II.1(e). Follows from identical steps to S.II.1(d).

To illustrate how the above Lemma is used for the objects under study, we present the following

collection of results. This is not meant to be an exhaustive list of all such results needed to prove

all parts of Theorem S.II.1, but any and all omitted terms follow by identical reasoning.

Lemma S.II.2. Let the conditions of Theorem S.II.1 hold.

(a) For some δ > 0, r−1
∗ P[|Γp − Γ̃p| > s−1 log(s)1/2] → 0. Consequently, there exists a constant

CΓ < ∞ such that P[Γ−1
p > 2CΓ] = o(s−2) and so the prior rate result holds for |Γ−1

p − Γ̃−1
p |

as well. Finally, these same results hold for Γq as well.

(b) For some δ > 0, r−1
∗ P[|Λp,1 − Λ̃p,1| > s−1 log(s)1/2]→ 0.

(c) For some δ > 0,

s2P

[∣∣∣∣∣s−1
n∑
i=1

{(Krp)(Xh,i)εi}

∣∣∣∣∣ > δ log(s)1/2

]
→ 0.

(d) For any δ > 0 and γ > 0,

1

hp+1
P

[∣∣∣∣∣s−2
n∑
i=1

{
(Krp)(Xh,i)

[
m(Xi)− rp(Xi − x)′βp

]}∣∣∣∣∣ > δ log(s)γ

]
→ 0.

(e) There is some constant CΨ such that P[Ψ̌p > 2CΨ] = o(s−2).

Proof of Lemma S.II.2(a). A typical element of Γp − Γ̃p is, for some integer k ≤ 2p,

1

nh

n∑
i=1

{
K(Xh,i)X

k
h,i − E

[
K(Xh,i)X

k
h,i

]}
.

Therefore, the result follows by applying Lemma S.II.1(a) to each element. Next, note that under

the maintained assumptions

Γ̃p = E
[
h−1(Krpr

′
p)(Xh,i)

]
= h−1

∫
(Krpr

′
p)(Xh,i)f(Xi)dXi =

∫
(Krpr

′
p)(u)f(x− uh)du
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is bounded away from zero and infinity for n large enough. Therefore, there is a CΓ <∞ such that

|Γ̃−1
p | < CΓ and then

P
[
Γ−1
p > 2CΓ

]
= P

[(
Γ−1
p − Γ̃−1

p

)
+ Γ̃−1

p > 2CΓ

]
≤ P

[
Γ−1
p − Γ̃−1

p > s−1 log(s)1/2
]

+ P
[
Γ̃−1
p > 2CΓ − s−1 log(s)1/2

]
= o(s−2).

The third result follows from these two and the identity Γ−1
p − Γ̃−1

p = Γ̃−1
p (Γ̃p − Γp)Γ

−1
p .

Finally, for Γq, the identical steps apply with L, q, and b in place of K, p, and h.

Proof of Lemma S.II.2(b). Follows from identical steps to the previous result.

Proof of Lemma S.II.2(c). Follows from identical steps, but using Lemma S.II.1(b) in place of

Lemma S.II.1(a).

Proof of Lemma S.II.2(d). Follows from identical steps, but using Lemma S.II.1(c) in place of

Lemma S.II.1(a).

Proof of Lemma S.II.2(e). A typical element of Ψ̌p is

1

nh

n∑
i=1

(K2rpr
′
p)(Xh,i)v(Xi),

and hence under the maintained assumptions the result follows just as the comparable result on

Γp.

We next state, without proof, the following fact about the rates appearing in all these Lemmas,

which follows from elementary inequalities.

Lemma S.II.3. If r1 = O(r′1) and r2 = O(r′2), for sequences of positive numbers r1, r′1, r2, and

r′2 and if a sequence of nonnegative random variables obeys (r1)−1P[Un > r2]→ 0 it also holds that

(r′1)−1P[Un > r′2]→ 0.

In particular, since r∗ = max{s−2, η2, s−1η} is defined as the slowest vanishing of the rates,

then r−1
1 P[|U ′| > rn] = o(1) implies r−1

∗ P[|U ′| > rn] = o(1), for r1 equal to any of s−2, η2, or s−1η.

Similarly, rn may be chosen as any sequence that obeys rn = o(r∗). Thus, for different pieces of U

defined in Eqn. (S.II.14), we may make different choices for these two sequences, as convenient.

The next Lemma proves Eqn. (S.II.14), a crucial step in the proof of Theorem S.II.1(a). Because

this result only involves undersmoothing, we will omit the subscript p as above.

Lemma S.II.4. Let the conditions of Theorem S.II.1(a) hold. Then Eqn. (S.II.14) holds, namely,

for some rn = o(r∗)

1

r∗
P[|U | > rn]→ 0.
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Proof. Recall the definition:

U =

{
− 1

2σ̃3
e′0Γ−1 (A1,6 +A1,7 +A1,8) Γ−1e0 +

3

8σ̃5

[
e′0Γ−1

(∑8

k=2
A1,k

)
Γ−1e0

]2

− 5

16

(
σ̂2 − σ̃2

)3
σ̄7

}
×
{
se′0Γ−1R′W (Y −M)/n+ se′0Γ−1R′W (M − Řβ)/n

}
−
{
− 1

2σ̃3
e′0Γ̃−1

(
Ã1,6 + Ã1,7 + Ã1,8

)
Γ̃−1e0

}
η.

To fully prove the claim of the lemma, we must fully expand U and bound each piece. First, we

present complete details on two terms. The remainder are entirely analogous, as discussed below.

Consider the pieces involving A1,6, namely:

e′0Γ−1A1,6Γ−1e0

{
se′0Γ−1R′W (Y −M)/n+ se′0Γ−1R′W (M − Řβ)/n

}
− e′0Γ̃−1Ã1,6Γ̃−1e0 η.

The first of these is

e′0Γ−1A1,6Γ−1e0se
′
0Γ−1R′W (Y −M)/n = e′0Γ−1

(
A1,6 − Ã1,6

)
Γ−1e0se

′
0Γ−1R′W (Y −M)/n

+ e′0

(
Γ−1 − Γ̃−1

)
Ã1,6Γ−1e0se

′
0Γ−1R′W (Y −M)/n

+ e′0Γ̃−1Ã1,6

(
Γ−1 − Γ̃−1

)
e0se

′
0Γ−1R′W (Y −M)/n

+ e′0Γ̃−1Ã1,6Γ̃−1e0se
′
0

(
Γ−1 − Γ̃−1

)
R′W (Y −M)/n

+ e′0Γ̃−1Ã1,6Γ̃−1e0se
′
0Γ̃−1R′W (Y −M)/n.

=: U1,1 + U1,2 + U1,3 + U1,4 + U1,5

We now bound each remainder in turn. First, for rn = hp+1 log(s)−1/2, we have

s2P [|U1,1| > rn] = s2P
[∣∣∣e′0Γ−1

(
A1,6 − Ã1,6

)
Γ−1e0se

′
0Γ−1R′W (Y −M)/n

∣∣∣ > rn

]
≤ s2P

[
8C3

Γ

∣∣∣A1,6 − Ã1,6

∣∣∣ > log(s)−1/2rn

]
+ s2P

[∣∣∣∣∣s−1
n∑
i=1

{(Krp)(Xh,i)εi}

∣∣∣∣∣ > log(s)1/2

]
+ s23P

[
Γ−1
p > 2CΓ

]
= s2P

[
8C3

Γ

∣∣∣A1,6 − Ã1,6

∣∣∣ > h2(p+1) log(s)γ
rn

h2(p+1) log(s)1/2+γ

]
+ o(1)

= o(1),

because h−2(p+1)rn log(s)−1/2−γ = h−(p+1) log(s)−1−γ →∞.

Next, since Ã1,6 � h2(p+1), for rn = hp+1 log(s)−1/2.

s2P [|U1,2| > rn] = s2P
[∣∣∣e′0 (Γ−1 − Γ̃−1

)
Ã1,6Γ−1e0se

′
0Γ−1R′W (Y −M)/n

∣∣∣ > rn

]
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≤ s2P

[
4C2

Γ

∣∣∣Ã1,6

∣∣∣ ∣∣∣∣∣s−1
n∑
i=1

{(Krp)(Xh,i)εi}

∣∣∣∣∣ > s log(s)−1/2rn

]
+ s2P

[∣∣∣Γ−1 − Γ̃−1
∣∣∣ > s−1 log(s)1/2

]
+ s22P

[
Γ−1
p > 2CΓ

]
= s2P

[
4C2

Γ

∣∣∣∣∣s−1
n∑
i=1

{(Krp)(Xh,i)εi}

∣∣∣∣∣ > log(s)1/2 srn

h2(p+1) log(s)

]
+ o(1)

= o(1),

because srnh
−2(p+1) log(s)−1 = sh−(p+1) log(s)−3/2 →∞. Terms U1,3 and U1,4 are nearly identically

treated.

Let rn = hp+1 log(s)−1/2. Then since Ã1,6 � h2(p+1),

s2P [|U1,5| > rn] = s2P
[∣∣∣e′0Γ̃−1Ã1,6Γ̃−1e0se

′
0Γ̃−1R′W (Y −M)/n

∣∣∣ > rn

]
≤ s2P

[
C3

Γ

∣∣∣Ã1,6

∣∣∣ ∣∣∣∣∣s−1
n∑
i=1

{(Krp)(Xh,i)εi}

∣∣∣∣∣ > rn

]

≤ s2P

[
C3

Γ

∣∣∣∣∣s−1
n∑
i=1

{(Kt)(Xh,i)g(Xi)εi}

∣∣∣∣∣ > log(s)1/2 log(s)−1/2rn

h2(p+1)

]
= o(1),

because h−2(p+1)rn log(s)−1/2 = h−(p+1) log(s)−1 →∞.

Thus, since σ̃−1 is bounded away from zero, we find that

s2P
[∣∣∣∣ 1

2σ̃3
e′0Γ−1A1,6Γ−1e0se

′
0Γ−1R′W (Y −M)/n

∣∣∣∣ > rn

]
→ 0.

Turning our attention to the second term, we have

e′0Γ−1A1,6Γ−1e0se
′
0Γ−1R′W (M − Řβ)/n− e′0Γ̃−1Ã1,6Γ̃−1e0η

= e′0Γ−1
(
A1,6 − Ã1,6

)
Γ−1e0se

′
0Γ−1R′W (M − Řβ)/n

+ e′0Γ−1Ã1,6Γ−1e0se
′
0Γ−1

(
R′W (M − Řβ)/n− E

[
R′W (M − Řβ)/n

])
+ e′0

(
Γ−1 − Γ̃−1

)
Ã1,6Γ−1e0se

′
0Γ−1E

[
R′W (M − Řβ)/n

]
+ e′0Γ̃−1Ã1,6

(
Γ−1 − Γ̃−1

)
e0se

′
0Γ−1E

[
R′W (M − Řβ)/n

]
+ e′0Γ̃−1Ã1,6Γ̃−1e0se

′
0

(
Γ−1 − Γ̃−1

)
E
[
R′W (M − Řβ)/n

]
=: U2,1 + U2,2 + U2,3 + U2,4 + U2,5.

For rn = hp+1 log(s)−1, we have

r−1
∗ P [|U2,1| > rn] = r−1

∗ P
[
e′0Γ−1

(
A1,6 − Ã1,6

)
Γ−1e0se

′
0Γ−1R′W (M − Řβ)/n > rn

]
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≤ r−1
∗ P

[
8C3

Γs
∣∣∣A1,6 − Ã1,6

∣∣∣ > sh2(p+1) log(s)γ
rn

sh2(p+1) log(s)2γ

]
+ r−1
∗ P

[∣∣∣∣∣ 1

nh

n∑
i=1

{
(Krp)(Xh,i)

[
m(Xi)− rp(Xi − x)′βp

]}∣∣∣∣∣ > log(s)γ

]
+ r−1
∗ 3P

[
Γ−1
p > 2CΓ

]
≤ s2P

[
8C3

Γs
∣∣∣A1,6 − Ã1,6

∣∣∣ > sh2(p+1) log(s)γ
rn

sh2(p+1) log(s)2γ

]
+ h−(p+1)P

[∣∣∣∣∣ 1

nh

n∑
i=1

{
(Krp)(Xh,i)

[
m(Xi)− rp(Xi − x)′βp

]}∣∣∣∣∣ > log(s)γ

]
+ s23P

[
Γ−1
p > 2CΓ

]
= o(1),

because sh2(p+1)r−1
n log(s)2γ = shp+1 log(s)1+2γ → 0 by the conditions on η placed in the theorem.

Next, with rn = hp+1 log(s)−1 and using Ã1,6 � h2(p+1), we have

r−1
∗ P [|U2,2| > rn] = r−1

∗ P
[∣∣∣e′0Γ−1Ã1,6Γ−1e0se

′
0Γ−1

(
R′W (M − Řβ)/n− E

[
R′W (M − Řβ)/n

])∣∣∣ > rn

]
≤ r−1
∗ P

[
8C3

Γ

∣∣∣Ã1,6

∣∣∣ ∣∣∣∣s−1
n∑
i=1

{
(Krp)(Xh,i)

[
m(Xi)− rp(Xi − x)′βp

]
− E

[
(Krp)(Xh,i)

[
m(Xi)− rp(Xi − x)′βp

]]}∣∣∣∣ > rn

]
+ r−1
∗ 3P

[
Γ−1
p > 2CΓ

]
≤ s2P

[
8C3

Γ

∣∣∣∣s−2
n∑
i=1

{
(Krp)(Xh,i)

[
m(Xi)− rp(Xi − x)′βp

]
− E

[
(Krp)(Xh,i)

[
m(Xi)− rp(Xi − x)′βp

]]}∣∣∣∣ > hp+1 log(s)γ
rn

h3(p+1) log(s)γ

]
+ s23P

[
Γ−1
p > 2CΓ

]
= o(1),

because rnh
−3(p+1) log(s)−γ = h−2(p+1) log(s)−1−γ →∞.

Third, as Ã1,6 � h2(p+1) and E
[
R′W (M − Řβ)/n

]
� hp+1, if we choose rn = hp+1 log(s)−1,

r−1
∗ P [|U2,3| > rn] ≤ r−1

∗ P
[
4C2

Γs
∣∣∣Γ−1 − Γ̃−1

∣∣∣ > s−1 log(s)1/2 srn

h3(p+1) log(s)1/2

]
+ r−1
∗ 2P

[
Γ−1
p > 2CΓ

]
≤ s2P

[
4C2

Γ

∣∣∣Γ−1 − Γ̃−1
∣∣∣ > s−1 log(s)1/2 rn

h3(p+1) log(s)1/2

]
+ s22P

[
Γ−1
p > 2CΓ

]
= o(1),
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because rnh
−3(p+1) log(s)−1/2 = h−2(p+1) log(s)−1−1/2 → ∞. The terms U2,3 and U2,5 are handled

identically.

Thus, since σ̃−1 is bounded away from zero, we find that

s2P
[∣∣∣∣ 1

2σ̃3
e′0Γ−1A1,6Γ−1e0se

′
0Γ−1R′W (M − Řβ)/n− e′0Γ̃−1Ã1,6Γ̃−1e0η

∣∣∣∣ > rn

]
→ 0.

The same type of arguments, though notationally more challenging, will show that the remainder

of U obeys the same bounds. Note that the rest of the terms are even higher order, involving either

A1,7 and A1,8, or the square or cube of the other errors. It is for this reason that only the “leading”

three terms need be centered, that is, why only

−
{
− 1

2σ̃3
e′0Γ̃−1

(
Ã1,6 + Ã1,7 + Ã1,8

)
Γ̃−1e0

}
η

appears in z̃.

S.II.6.4 Computing the Terms of the Expansion

Identifying the terms of the expansion is a matter of straightforward, if tedious, calculation. The

first four cumulants of the Studentized statistics must be calculated (due to James and Mayne

(1962)), which are functions of the first four moments. In what follows, we give a short summary.

Note well that we always discard higher-order terms for brevity, and to save notation we will write
o
= to stand in for “equal up to o((nh)−1 + (nh)−1/2η + η2)”, and including o(ρ1+2(p+1)) for Tbc.

The computations will be aided by putting all three estimators into a common structure. In

close parallel to the density case, let us define m̂1 := m̂ and m̂2 = m̂ − m̂m, σ2
1 := σ2

us, and

σ2
2 := σ2

rbc, so that subscripts 1 and 2 generically stand in for undersmoothing and bias correction,

respectively. With this in mind, we write

Tus = T1,1, Tbc = T2,1, and Trbc = T2,2,

again paralleling the density case, so that the first subscript refers to the numerator and the second

to the denominator. In the same vein, with some abuse of notation, we will also use3 r1(u) = rp(u),

r2(u) = rq(u), K1(u) = K(u), K2(u) = L(u), h1 = h, and h2 = b, as well as

`01(Xi) ≡ `0us(Xi),

`11(Xi, Xj) ≡ `1us(Xi, Xj),

`02(Xi) ≡ `0bc(Xi),

`12(Xi, Xj) ≡ `1bc(Xi, Xj).

For the purpose of computing the expansion terms (i.e. moments of the two sides agree up to

3Throughout Section S.II, we use only generic polynomial orders p and q, and so this notation will not conflict
with the local linear or local quadratic fits, which would also be denoted r1(u) and r2(u), respectively.
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the requisite order), recalling the Taylor series expansion above, we will use

Tv,w ≈
{

1− 1

2σ̃2
w

(Ww,1 + Vw,1 + Vw,2) +
3

8σ̃4
w

(Ww,1 + Vw,1 + Vw,2)2

}
σ̃−1
w {Ev,1 + Ev,2 + Ev,3 +Bv,1} ,

where we define, for v ∈ {1, 2},

Ev,1 = s
1

nh

n∑
i=1

`0v(Xi)εi

Ev,2 = s
1

(nh)2

n∑
i=1

n∑
j=1

`1v(Xi, Xj)εi,

Ev,3 =: s
1

(nh)3

n∑
i=1

n∑
j=1

n∑
k=1

`2v(Xi, Xj , Xk)εi,

where the final line defines `2us(Xi, Xj , Xk) in the obvious way following `1us. To concretize the

notation, for undersmoothing we are defining

E1,1 = se′0Γ̃−1
p R′pWp(Y −M)/n,

E1,2 = se′0Γ̃−1
p (Γ̃p − Γp)Γ̃

−1
p R′pWp(Y −M)/n,

E1,3 = se′0Γ̃−1
p (Γ̃p − Γp)Γ̃

−1
p (Γ̃p − Γp)Γ̃

−1
p R′pWp(Y −M)/n.

In a similar way,

Wv,1 =
1

nh

n∑
i=1

{
`0v(Xi)

2
(
ε2
i − v(Xi)

)}
− 2

1

n2h2

n∑
i=1

n∑
j=1

{
`0v(Xi)

2rv(Xhv ,i)
′Γ̃−1
v (Kvrv)(Xhv ,i)εiεj

}
+

1

n3h3

n∑
i=1

n∑
j=1

n∑
k=1

{
`0v(Xi)

2rv(Xhv ,i)
′Γ̃−1
v (Kvrv)(Xhv ,i)εjεk

}
,

Vv,1 =
1

nh

n∑
i=1

{
`0v(Xi)

2v(Xi)
2 − E[`0v(Xi)

2v(Xi)
2]
}

+ 2
1

n2h2

n∑
i=1

n∑
j=1

`2v(Xi, Xj)`
0
v(Xi)v(Xi),

Vv,2 =
1

n3h3

n∑
i=1

n∑
j=1

n∑
k=1

`1v(Xi, Xj)`
1
v(Xi, Xk)v(Xi) + 2

1

n3h3

n∑
i=1

n∑
j=1

n∑
k=1

`2v(Xi, Xj , Xk)`
0
v(Xi)v(Xi),

and specifically for undersmoothing and bias correction, let

B1,1 = s
1

nh

n∑
i=1

`01(Xi)[m(Xi)− rp(Xi − x)′βp]

and
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B2,1 = s
1

nh

n∑
i=1

{
h−1`0us(Xi)[m(Xi)− rp+1(Xi − x)′βp+1]

− h−1
(
`0bc(Xi)− `0us(Xi)

)
[m(Xi) − rq(Xi − x)′βq]

}
.

Note that ηus = E[B1,1] and ηbc = E[B2,1].

Straightforward moment calculations yield

E[Tv,w]
o
= σ̃−1

w E [Bv,1]− 1

2σ̃2
w

E [Ww,1Ev,1] ,

E[T 2
v,w]

o
=

1

σ̃2
w

E
[
E2
v,1 + E2

v,2 + 2Ev,1Ev,2 + 2Ev,1Ev,3
]

− 1

σ̃4
w

E
[
Ww,1E

2
v,1 + Vw,1E

2
v,1 + Vw,2E

2
v,1 + 2Vw,1Ev,1Ev,2

]
+

1

σ̃6
w

E
[
W 2
w,1E

2
v,1 + V 2

w,1E
2
v,1

]
+

1

σ̃2
w

E
[
B2
v,1

]
− 1

σ̃4
w

E [Ww,1Ev,1Bv,1] ,

E[T 3
v,w]

o
=

1

σ̃3
w

E
[
E3
v,1

]
− 3

2σ̃5
w

E
[
Ww,1E

3
v,1

]
+

3

σ̃3
w

E
[
E2
v,1Bv,1

]
,

and

E[T 4
v,w]

o
=

1

σ̃4
w

E
[
E4
v,1 + 4E3

v,1Ev,2 + 4E3
v,1Ev,3 + 6E2

v,1E
2
v,3

]
− 2

σ̃6
w

E
[
Ww,1E

4
v,1 + Vw,1E

4
v,1 + 4Vw,1E

3
v,1Ev,2 + Vw,2Ev,1

]
+

3

σ̃8
w

E
[
W 2
w,1E

4
v,1 + V 2

w,1E
4
v,1

]
+

4

σ̃4
w

E
[
E3
v,1Bv,1

]
− 8

σ̃6
w

E
[
Ww,1E

3
v,1Bv,1

]
+

6

σ̃4
w

E
[
E2
v,1B

2
v,1

]
.

Computing each term in turn, we have

E [Bv,1] = ηv,

E [Ww,1Ev,1]
o
= s−1E

[
h−1`0w(Xi)

2`0v(Xi)ε
3
i

]
,

E
[
E2
v,1

] o
= σ̃2

v ,

E [Ev,1Ev,2]
o
= s−2E

[
h−1`1v(Xi, Xi)`

0
v(Xi)ε

2
i

]
,

E
[
E2
v,2

] o
= s−1E

[
h−2`1v(Xi, Xj)

2ε2
i

]
,

E [Ev,2Ev,3]
o
= s−2E

[
h−2`2v(Xi, Xj , Xj)`

0
v(Xi)ε

2
i

]
,

E
[
Ww,1E

2
v,1

] o
= s−2

{
E
[
h−1`0w(Xi)

2`0v(Xi)
2
(
ε4
i − v(Xi)

2
)]
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− 2σ̃2
vE
[
h−1`0w(Xi)

2rw(Xhw,i)
′Γ̃−1
w (Kwrw)(Xhw,i)ε

2
i

]
− 4E

[
h−1`0w(Xi)

2`0v(Xi)
2rw(Xhw,i)

′Γ̃−1
w ε2

i

]
E
[
h−1(Kwrw)(Xhw,i)`

0
v(Xi)ε

2
i

]
+ σ̃2

vE
[
h−2`0w(Xi)

2
(
rw(Xhw,i)

′Γ̃−1
w (Kwrw)(Xhw,j)

)2
ε2
j

]
+ E

[
h−1`0us(Xj)

2
(
E
[
h−1rp(Xh,j)

′Γ̃−1
p (Krp)(Xh,i)`

0
us(Xi)ε

2
i |Xj

])2
]}

,

E
[
Vw,1E

2
v,1

] o
= s−2

{
E
[
h−1

(
`0w(Xi)

2v(Xi)− E[`0w(Xi)
2v(Xi)]

)
`0v(Xi)

2ε2
i

]
+ 2σ̃2

vE
[
h−1`1w(Xi, Xi)`

0
w(Xi)v(Xi)

]}
,

E [Vw,1Ev,1Ev,2]
o
= s−2

{
E
[
h−2

(
`0w(Xj)

2v(Xj)− E[`0w(Xj)
2v(Xj)]

)
`1v(Xi, Xj)`

0
v(Xi)ε

2
i

]
+ 2E

[
h−3`1w(Xi, Xj)`

1
v(Xk, Xj)`

0
w(Xi)`

0
v(Xk)v(Xi)ε

2
k

]}
,

E
[
Vw,2E

2
v,1

] o
= s−2

{
σ̃2
vE
[
h−2

(
`1w(Xi, Xj)

2 + 2`2w(Xi, Xj , Xj)
)
v(Xi)

]}
,

E
[
W 2
w,1E

2
v,1

] o
= s−2

{
σ̃2
vE
[
h−1`0w(Xi)

4
(
ε4
i − v(Xi)

2
)]

+ 2E
[
h−1`0v(Xi)`

0
w(Xi)

2ε3
i

]2}
,

E
[
V 2
w,1E

2
v,1

] o
= s−2σ̃2

v

{
E
[
h−1

(
`0w(Xi)

2v(Xi)− E[`0w(Xi)
2v(Xi)]

)2]
+ 4E

[
h−2

(
`0w(Xi)

2v(Xi)− E[`0w(Xi)
2v(Xi)]

)
`1w(Xj , Xi)`

0
w(Xj)v(Xj)

]
+ 4E

[
h−3`1w(Xi, Xj)`

0
w(Xi)v(Xi)`

1
w(Xk, Xj)`

0
w(Xk)v(Xk)

]}
,

E [Ww,1Ev,1Bv,1]
o
= E [Ww,1Ev,1]E [Bv,1] ,

E
[
E3
v,1

] o
= s−1E

[
h−1`0v(Xi)

3ε3
i

]
,

E
[
Ww,1E

3
v,1

] o
= E

[
E2
v,1

]
E [Ww,1Ev,1] ,

E
[
E4
v,1

] o
= 3σ̃4

v + s−2E
[
h−1`0v(Xi)

4ε3
i

]
,

E
[
E3
v,1Ev,2

] o
= s−26σ̃2

vE
[
h−1`1v(Xi, Xi)`

0
v(Xi)ε

2
i

]
,

E
[
E3
v,1Ev,3

] o
= s−23σ̃2

vE
[
h−2`2v(Xi, Xj , Xj)`

0
v(Xi)ε

2
i

]
,

E
[
E2
v,1E

2
v,2

] o
= s−2

{
σ̃2
vE
[
h−2`1v(Xi, Xj)

2ε2
i

]
+ 2E

[
h−3`1v(Xi, Xj)`

1
v(Xk, Xj)`

0
v(Xi)`

0
v(Xk)ε

2
i ε

2
k

]}
,

E
[
Ww,1E

4
v,1

] o
= s−2

{
E
[
h−1`0w(Xi)

2`0v(Xi)ε
3
i

]
E
[
h−1`0v(Xi)

3ε3
i

]
+ 6E

[
E2
v,1

]
E
[
Ww,1E

2
v,1

]}
,

E
[
Vw,1E

4
v,1

] o
= s−2σ̃2

v6
{
E
[
h−1

(
`0w(Xi)

2v(Xi)− E[`0w(Xi)
2v(Xi)]

)
`0v(Xi)

2ε2
i

]
+ 2E

[
h−2`1w(Xi, Xj)`

0
w(Xi)`

0
v(Xj)

2ε2
jv(Xi)

]
+ E

[
h−1`1w(Xi, Xi)`

0
w(Xi)v(Xi)

]}
,

E
[
Vw,1E

3
v,1Ev,2

] o
= 3E

[
E2
v,1

]
E [Vw,1Ev,1Ev,2] ,

E
[
Vw,2E

4
v,1

] o
= 3E

[
E2
v,1

]
E
[
Vw,2E

2
v,1

]
,

E
[
W 2
w,1E

4
v,1

] o
= 3E

[
E2
v,1

]
E
[
W 2
w,1E

2
v,1

]
,

E
[
V 2
w,1E

4
v,1

] o
= 3E

[
E2
v,1

]
E
[
V 2
w,1E

2
v,1

]
.

The expansion now follows, formally, from the following steps. First, combining the above
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moments into cumulants. Second, these cumulants may be simplified using that

σ2
v

σ2
w

= 1 + 1(w 6=v)
(
ρ1+(p+1)Ω1,bc + ρ1+2(p+1)Ω2,bc

)
and that in all cases present products such as `0w(Xi)

k1`0v(Xi)
k2 and `1w(Xi, Xj)

k1`1v(Xi, Xj)
k2 may

be replaced with `0v(Xi)
k1+k2 and `1v(Xi, Xj)

k1+k2 , respectively, provided the arguments match.

This is immediate for v = w, and for v 6= w, follows because ρ → 0 is assumed. This is the

analogous step to Eqn. (S.I.8) in the density case. For any term of a cumulant with a rate of

(nh)−1, (nh)−1/2ηv, η
2
v , or ρ1+2(p+1) (i.e., the extent of the expansion), these simplifications may

be inserted as the remainder will be negligible. Third, with the cumulants in hand, the terms of

the expansion are determined as described by e.g., (Hall, 1992a, Chapter 2).

S.II.7 Complete Simulation Results

In this section we present the results of a simulation study addressing the finite-sample performance

of the methods described in the main paper. As with the density estimator, we report empirical

coverage probabilities and average interval length of nominal 95% confidence interval for different

estimators of a regression functions m(x) evaluated at values x = {−2/3,−1/3, 0, 1/3, 2/3}. For

each replication, the data is generated as i.i.d. draws, i = 1, 2, ..., n, n = 500 as follows:

Y = m(x) + ε, x ∼ U[−1, 1], ε ∼ N(0, 1)

Model 1: m(x) = sin(4x) + 2 exp{−64x2}

Model 2: m(x) = 2x+ 2 exp{−64x2}

Model 3: m(x) = 0.3 exp{−4(2x+ 1)2}+ 0.7 exp{−16(2x− 1)2}

Model 4: m(x) = x+ 5φ(10x)

Model 5: m(x) =
sin(3πx/2)

1 + 18x2[sgn(x) + 1]

Model 6: m(x) =
sin(πx/2)

1 + 2x2[sgn(x) + 1]

Models 1 to 3 were used by Fan and Gijbels (1996) and Cattaneo and Farrell (2013), while Models

4 to 6 are from Hall and Horowitz (2013), with some originally studied by Berry et al. (2002). The

regression functions are plotted in Figure S.II.1 together with the evaluation points used.

We compute confidence intervals for m(x) using five alternative approaches:

US: local-linear estimator using a conventional approach based on undersmoothing (Ius).

Locfit: local lineal estimator computed using default options in the R package locfit (see Loader

(2013) for implementation details).

80



BC: traditional bias corrected estimator using a local-linear estimator with local-quadratic bias-

correction, and ρ = 1 (Ibc).

HH: local linear estimator using the bootstrapped confidence bands introduced in Hall and Horowitz

(2013) (see Remark S.II.4 below for additional implementation details).

RBC: our proposed local-linear estimator with local-quadratic bias-correction and ρ = 1 using

robust standard errors (Irbc).

In all cases the Epanechnikov kernel is used. The bandwidth h is chosen in three different ways:

(i) population MSE-optimal choice hmse;

(ii) estimated ROT optimal coverage error rate ĥrot.

(iii) estimated DPI optimal coverage error rate ĥdpi.

For the construction of the variance estimators σ̂2
us and σ̂2

rbc we consider HC3 plug-in residuals when

forming the Σ matrix. In Table S.II.9 we report empirical coverage and average interval length of

RBC 95% Confidence Intervals (only for Model 5) using ĥmse for different variance estimators. The

results reflect the robustness of the findings to this choice.

The results are presented in detail in the tables and figures below to give a complete picture

of the performance of robust bias correction. First, Tables S.II.1-S.II.6 show, for each regression

model, respectively, the performance of the five methods above, in terms of empirical coverage

and interval length, for all evaluation points and bandwidth choices (recall that Ius and Ibc have

the same length). Panel A of each shows the coverage and length, while Panel B gives summary

statistics for the two fully data-driven bandwidths. Note that in some cases, the population MSE-

optimal bandwidth is not defined or is not computable numerically; usually because the bias is too

small or other values are too extreme.

The broad conclusion from these tables is that robust bias correction provides excellent coverage

and that the data-driven bandwidths perform well and are numerically stable. In almost all cases

robust bias correction provides correct coverage, whereas the other methods often, but not always,

fail to do so. In cases where there is little to no bias all the methods give good coverage. This

can be seen in results for Models 2 and 4, at |x| = 2/3, far enough away from the “hump” in the

center of each, where the true regression function is (nearly) linear. But despite the encouraging

results away from the center, only robust bias correction yields good coverage closer to the center

(|x| = 1/3), when there is more bias. Going further, considering x = 0, the center of the sharp peak

in these models, we see that even robust bias correction fails to provide accurate coverage for ĥrot,

although ĥdpi performs slightly better. At this point, for these models, the bias is too extreme even

for robust bias correction to overcome. The results for the other models yield similar lessons.

It is somewhat more difficult to compare interval length using these tables. The comparison is

invited for a fixed bandwidth, in which case, by construction, undersmoothing will have a shorter

length. However, this ignores the fact that robust bias correction can accommodate a larger range
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of bandwidths, and in particular will optimally use a larger bandwidth. For example, robust

bias correction has excellent coverage in many cases for ĥrot, which is in this case a data-driven

MSE-optimal choice (i.e. they coincide). This bandwidth is generally larger than ĥdpi, and hence

undersmoothing generally covers better with the latter. However, if you compare the length of

Ius(ĥrot) to the length of Ius(ĥdpi), we see that robust bias correction compares favorably in terms

of length.

Both to better make this point and to illustrate the robustness of Irbc to tuning parameter

selection, Figures S.II.2–S.II.13 show empirical coverage and length for all six models, and all

evaluation points, across a range of bandwidths. The dotted vertical line shows the population

MSE-optimal bandwidth (whenever available) for reference. The coverage figures highlight the

delicate balance required for undersmoothing to provide correct coverage, and the generally poor

performance of traditional bias correction, but show that for a wide range of bandwidths robust bias

correction provides correct coverage. Further, interval length is not unduly inflated for bandwidths

that provide correct coverage. Again, by construction, undersmoothing will yield shorter intervals

for a fixed bandwidth, and this is clear from Figures S.II.8–S.II.13, but it is also clear that robust

bias correction can use much larger bandwidths while still maintaining correct coverage.

To further illustrate this idea, in Tables S.II.7–S.II.8 we compare average interval length of US

and RBC 95% confidence intervals but at different bandwidths. First, in Table S.II.7 we compute

average interval length at the largest bandwidth that provides close to correct coverage for each

method separately. Note that in all cases these bandwidths are not feasible: these are ex-post

findings. Next, in Table S.II.8 we evaluate the performance of US and RBC confidence intervals at

certain alternative bandwidths likely to be chosen in practice. First, we evaluate the performance

of US confidence intervals at h = λĥmse for λ = {0.5; 0.7}. We then compare the performance with

RBC confidence intervals computed using the optimal, fully data-driven choices ĥrot and ĥdpi.

Both tables reflect that, once we control for coverage, intervals lengths do not differ systematically

between both approaches.

Figures S.II.14-S.II.19 make this same point in a different way. For a range of bandwidths, as

in the previous figures, we show the “average position” of Ius and Irbc, where the center of the

bar is placed at the average bias and the length of each bar is the average interval length across

the simulations. The bars are then color-coded by coverage (green bars having good coverage,

fading to red showing undercoverage). These make visually clear that although undersmoothing

provides shorter intervals in general, that this comes at the expense of coverage, while robust bias

correction provides good coverage for a range of bandwidths, many of which are “large” enough to

yield narrow intervals.

All our methods are implemented in R and STATA via the nprobust package, available from

http://sites.google.com/site/nppackages/nprobust (see also http://cran.r-project.org/

package=nprobust). See Calonico et al. (2017) for a complete description.

Remark S.II.4 (Implementation of Hall and Horowitz (2013)). The column HH computes the

bootstrapped confidence bands introduced in Hall and Horowitz (2013), following as close as pos-
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sible their implementation choices. First, we estimate m(x) using a local linear estimator using

the Epanechnikov kernel for our previously discussed bandwidth choices. Standard errors are cal-

culated using their proposed variance estimator σ̂2
HH = κσ̂2/f̂X(x) where κ =

∫
K2 and f̂X(x)

is a standard kernel density estimator using a data-driven bandwidth choice h1. Then, we use

the same estimator for the error variance σ̂2 =
∑n

i=1 ε̂
2
i /n and ε̂i = ε̃i − ε̄, ε̃i = Yi − m̂(Xi),

ε̄ = n−1
∑n

i=1 ε̃i. Next, we take generate B = 500 bootstrap samples Z∗ = {(Xi, Y
∗
i )}, 1 ≤ i ≤ n,

where Y ∗i = m̂(Xi) + ε∗i , with ε∗i obtained by sampling with replacement from the {ε̂i}, 1 ≤ i ≤ n.

With these bootstrap samples we can construct the final confidence bands using the adjusted crit-

ical values that approximates the estimated coverage error with the selected one. Following their

recommendation, the final critical values are taken to be the ξ-level quantile (for ξ = 0.1) obtained

by repeating this exercise over a grid of evaluation points, which we choose to be the sequence

{x1, ..., xN} = {−0.9,−0.8, ..., 0, ..., 0.8, 0.9}. �
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Table S.II.1: Simulations Results for Model 1

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC

x = −2/3
hmse 0.478 56.1 76.5 83.6 30.5 94.8 0.302 0.330 0.198 0.422

ĥrot 0.201 93.6 94.3 83.8 94.3 95.2 0.440 0.479 0.468 0.631

ĥdpi 0.177 95.0 95.0 83.6 97.1 94.7 0.467 0.507 0.515 0.669

x = −1/3
hmse 0.331 4.9 31.2 82.1 1.9 93.1 0.357 0.377 0.277 0.488

ĥrot 0.488 3.1 8.8 53.0 2.5 62.7 0.327 0.326 0.199 0.417

ĥdpi 0.319 24.5 47.0 81.0 20.3 91.9 0.366 0.387 0.298 0.504

x = 0
hmse 0.115 52.7 72.9 83.3 61.7 93.6 0.596 0.625 0.665 0.826

ĥrot 0.464 0.0 0.0 0.0 0.0 0.0 0.354 0.328 0.199 0.462

ĥdpi 0.238 1.9 4.1 43.9 2.2 55.9 0.464 0.444 0.398 0.591

x = 1/3
hmse 0.383 92.1 94.2 77.9 82.1 91.4 0.318 0.354 0.239 0.455

ĥrot 0.340 94.1 94.5 79.0 87.4 92.9 0.340 0.378 0.280 0.488

ĥdpi 0.314 95.3 95.5 77.6 90.6 91.9 0.351 0.388 0.298 0.504

x = 2/3
hmse 0.478 58.8 78.2 83.0 32.4 94.5 0.302 0.331 0.198 0.423

ĥrot 0.289 88.6 92.2 82.5 82.4 94.3 0.366 0.403 0.325 0.525

ĥdpi 0.219 92.4 93.7 82.3 92.2 94.4 0.422 0.462 0.431 0.606

Panel B: Summary Statistics for the Estimated Bandwidths

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

x = −2/3

ĥrot 0.478 0.158 0.183 0.191 0.201 0.201 0.671 0.049

ĥdpi - 0.0513 0.166 0.178 0.177 0.19 0.32 0.024

x = −1/3

ĥrot 0.331 0.223 0.401 0.497 0.488 0.576 0.73 0.109

ĥdpi - 0.0827 0.284 0.312 0.319 0.343 0.577 0.064

x = 0

ĥrot 0.115 0.32 0.433 0.462 0.464 0.491 0.676 0.046

ĥdpi - 0.0661 0.212 0.24 0.238 0.265 0.577 0.046

x = 1/3

ĥrot 0.383 0.206 0.281 0.337 0.34 0.39 0.65 0.067

ĥdpi - 0.0782 0.291 0.313 0.314 0.336 0.576 0.044

x = 2/3

ĥrot 0.478 0.211 0.254 0.279 0.289 0.318 0.505 0.045

ĥdpi - 0.0667 0.196 0.212 0.219 0.233 0.577 0.044

Notes:
(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width hn.
(iii) The population MSE-optimal choice hmse coincides with the population ROT optimal coverage error rate hrotrbc.

(iv) For some evaluation points, hmse is not well defined so it was left missing.
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Table S.II.2: Simulations Results for Model 2

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC

x = −2/3
hmse - - - - - - - - - -

ĥrot 0.325 95.2 95.6 83.7 87.3 95.4 0.351 0.388 0.282 0.504

ĥdpi 0.205 95.2 95.5 83.2 94.4 95.3 0.433 0.473 0.421 0.622

x = −1/3
hmse 0.706 0.0 0.5 1.5 0.0 4.8 0.254 0.268 0.122 0.356

ĥrot 0.461 1.1 18.0 83.5 0.2 94.7 0.304 0.327 0.188 0.418

ĥdpi 0.440 13.9 33.6 69.0 8.2 84.2 0.311 0.336 0.203 0.432

x = 0
hmse 0.115 52.7 72.8 83.3 49.7 93.6 0.596 0.625 0.576 0.826

ĥrot 0.495 0.0 0.0 0.0 0.0 0.0 0.341 0.315 0.174 0.451

ĥdpi 0.238 2.3 4.3 43.6 2.1 55.3 0.464 0.444 0.370 0.591

x = 1/3
hmse 0.706 0.0 0.4 1.7 0.0 5.1 0.254 0.268 0.122 0.356

ĥrot 0.461 1.0 18.4 82.7 0.1 93.7 0.303 0.326 0.188 0.417

ĥdpi 0.440 14.0 33.0 68.7 8.4 83.9 0.311 0.336 0.202 0.430

x = 2/3
hmse - - - - - - - - - -

ĥrot 0.325 94.8 95.4 82.2 87.0 94.3 0.351 0.388 0.282 0.504

ĥdpi 0.205 94.9 94.8 82.1 94.1 93.9 0.434 0.473 0.421 0.623

Panel B: Summary Statistics for the Estimated Bandwidths

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

x = −2/3

ĥrot - 0.205 0.261 0.292 0.325 0.377 0.583 0.083

ĥdpi - 0.0647 0.19 0.205 0.205 0.221 0.356 0.026

x = −1/3

ĥrot 0.706 0.32 0.43 0.458 0.461 0.488 0.69 0.043

ĥdpi - 0.151 0.379 0.426 0.44 0.5 0.577 0.081

x = 0

ĥrot 0.115 0.395 0.469 0.492 0.495 0.518 0.67 0.037

ĥdpi - 0.0585 0.212 0.241 0.238 0.266 0.385 0.045

x = 1/3

ĥrot 0.706 0.309 0.432 0.457 0.461 0.487 0.666 0.043

ĥdpi - 0.178 0.38 0.427 0.44 0.499 0.577 0.081

x = 2/3

ĥrot - 0.207 0.261 0.294 0.325 0.379 0.568 0.083

ĥdpi - 0.0459 0.19 0.205 0.205 0.221 0.373 0.026

Notes:
(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width hn.
(iii) The population MSE-optimal choice hmse coincides with the population ROT optimal coverage error rate hrotrbc.

(iv) For some evaluation points, hmse is not well defined so it was left missing.
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Table S.II.3: Simulations Results for Model 3

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC

x = −2/3
hmse 1.235 86.3 86.3 87.5 29.8 87.7 0.285 0.298 0.078 0.286

ĥrot 0.530 91.3 91.7 86.3 64.8 95.5 0.299 0.313 0.166 0.406

ĥdpi 0.266 94.9 95.0 83.1 88.1 95.5 0.380 0.412 0.309 0.546

x = −1/3
hmse 1.235 83.2 81.2 67.2 32.7 81.8 0.206 0.210 0.070 0.266

ĥrot 0.697 80.6 86.4 82.2 43.9 94.4 0.233 0.253 0.116 0.336

ĥdpi 0.493 90.2 93.2 82.6 67.7 94.8 0.278 0.303 0.166 0.400

x = 0
hmse 0.976 13.8 19.8 40.3 1.3 63.2 0.198 0.215 0.082 0.283

ĥrot 0.696 34.2 65.3 84.6 7.9 96.0 0.234 0.254 0.116 0.334

ĥdpi 0.354 93.2 94.7 82.8 79.9 95.5 0.327 0.356 0.231 0.470

x = 1/3
hmse 0.246 77.8 85.2 79.0 67.4 92.6 0.393 0.424 0.327 0.562

ĥrot 0.697 86.0 82.4 49.2 51.2 72.1 0.237 0.253 0.116 0.343

ĥdpi 0.491 75.0 68.2 47.9 45.3 71.4 0.282 0.303 0.167 0.406

x = 2/3
hmse 0.246 78.3 85.6 79.6 67.1 93.0 0.394 0.425 0.327 0.565

ĥrot 0.504 78.2 76.2 46.5 47.5 69.2 0.309 0.321 0.177 0.424

ĥdpi 0.267 76.9 84.1 77.8 63.5 91.7 0.381 0.412 0.308 0.547

Panel B: Summary Statistics for the Estimated Bandwidths

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

x = −2/3

ĥrot - 0.25 0.436 0.529 0.53 0.617 0.822 0.119

ĥdpi - 0.0666 0.242 0.262 0.266 0.283 0.576 0.043

x = −1/3

ĥrot - 0.495 0.667 0.703 0.697 0.732 0.833 0.050

ĥdpi - 0.276 0.439 0.492 0.493 0.571 0.577 0.068

x = 0

ĥrot 0.976 0.484 0.667 0.704 0.696 0.731 0.826 0.051

ĥdpi - 0.125 0.326 0.347 0.354 0.373 0.577 0.046

x = 1/3

ĥrot 0.246 0.469 0.665 0.703 0.697 0.734 0.862 0.052

ĥdpi - 0.201 0.436 0.49 0.491 0.57 0.577 0.069

x = 2/3

ĥrot 0.246 0.222 0.392 0.497 0.504 0.609 0.836 0.132

ĥdpi - 0.0659 0.243 0.262 0.267 0.284 0.577 0.045

Notes:
(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width hn.
(iii) The population MSE-optimal choice hmse coincides with the population ROT optimal coverage error rate hrotrbc.

(iv) For some evaluation points, hmse is not well defined so it was left missing.
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Table S.II.4: Simulations Results for Model 4

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC

x = −2/3
hmse - - - - - - - - - -

ĥrot 0.309 95.2 95.5 83.5 88.5 95.4 0.358 0.394 0.295 0.515

ĥdpi 0.200 95.2 95.3 83.2 94.7 95.3 0.439 0.478 0.431 0.630

x = −1/3
hmse 0.466 0.5 8.5 76.2 0.0 89.8 0.301 0.323 0.185 0.413

ĥrot 0.441 0.8 14.0 82.6 0.1 94.2 0.309 0.332 0.197 0.426

ĥdpi 0.432 10.5 27.1 67.9 6.3 82.5 0.314 0.337 0.207 0.435

x = 0
hmse 0.128 52.4 73.0 83.4 51.0 93.9 0.564 0.593 0.559 0.785

ĥrot 0.473 0.0 0.0 0.0 0.0 0.1 0.348 0.321 0.183 0.447

ĥdpi 0.233 3.2 7.4 58.5 3.1 72.0 0.457 0.447 0.378 0.592

x = 1/3
hmse 0.466 0.5 9.2 75.0 0.1 89.4 0.301 0.322 0.185 0.412

ĥrot 0.441 0.6 15.1 81.7 0.0 93.2 0.309 0.332 0.197 0.425

ĥdpi 0.433 10.4 26.7 67.0 6.1 82.5 0.313 0.337 0.206 0.433

x = 2/3
hmse - - - - - - - - - -

ĥrot 0.309 94.6 95.2 82.1 88.2 94.3 0.359 0.394 0.295 0.515

ĥdpi 0.200 94.7 94.7 82.2 94.5 94.1 0.440 0.478 0.431 0.631

Panel B: Summary Statistics for the Estimated Bandwidths

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

x = −2/3

ĥrot - 0.203 0.254 0.28 0.309 0.341 0.572 0.077

ĥdpi - 0.0544 0.186 0.2 0.2 0.215 0.354 0.026

x = −1/3

ĥrot 0.466 0.309 0.413 0.438 0.441 0.466 0.643 0.039

ĥdpi - 0.122 0.373 0.418 0.432 0.487 0.577 0.082

x = 0

ĥrot 0.128 0.382 0.449 0.47 0.473 0.493 0.623 0.033

ĥdpi - 0.0301 0.21 0.236 0.233 0.259 0.373 0.042

x = 1/3

ĥrot 0.466 0.303 0.414 0.438 0.441 0.465 0.62 0.039

ĥdpi - 0.13 0.373 0.42 0.433 0.491 0.577 0.082

x = 2/3

ĥrot - 0.204 0.254 0.281 0.309 0.342 0.566 0.076

ĥdpi - 0.0448 0.185 0.2 0.2 0.215 0.41 0.026

Notes:
(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width hn.
(iii) The population MSE-optimal choice hmse coincides with the population ROT optimal coverage error rate hrotrbc.

(iv) For some evaluation points, hmse is not well defined so it was left missing.
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Table S.II.5: Simulations Results for Model 5

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC

x = −2/3
hmse - - - - - - - - - -

ĥrot 0.251 95.1 95.2 83.6 91.0 95.5 0.392 0.424 0.340 0.563

ĥdpi 0.203 95.4 95.3 83.4 93.7 95.0 0.437 0.472 0.410 0.627

x = −1/3
hmse 0.307 43.5 69.2 82.6 26.4 94.5 0.355 0.380 0.271 0.504

ĥrot 0.405 9.9 27.2 81.3 5.4 93.3 0.316 0.334 0.209 0.440

ĥdpi 0.307 44.1 66.3 82.1 31.2 94.1 0.357 0.381 0.275 0.507

x = 0
hmse - - - - - - - - - -

ĥrot 0.474 24.9 49.6 78.2 5.5 93.4 0.286 0.309 0.177 0.410

ĥdpi 0.320 73.5 83.1 81.0 58.8 93.6 0.348 0.376 0.267 0.498

x = 1/3
hmse 0.821 3.3 38.3 80.7 0.1 92.7 0.227 0.241 0.102 0.319

ĥrot 0.538 72.3 88.1 76.4 44.8 91.1 0.268 0.293 0.158 0.384

ĥdpi 0.343 93.3 93.7 82.0 83.1 94.5 0.332 0.361 0.245 0.477

x = 2/3
hmse 0.887 91.3 94.1 74.1 46.7 80.0 0.289 0.312 0.107 0.317

ĥrot 0.401 93.5 93.8 82.8 78.4 94.6 0.319 0.342 0.218 0.455

ĥdpi 0.262 94.2 94.5 82.0 89.2 94.3 0.386 0.418 0.329 0.554

Panel B: Summary Statistics for the Estimated Bandwidths

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

x = −2/3

ĥrot - 0.187 0.225 0.24 0.251 0.262 0.56 0.043

ĥdpi - 0.048 0.186 0.201 0.203 0.217 0.576 0.033

x = −1/3

ĥrot 0.307 0.253 0.369 0.41 0.405 0.443 0.631 0.054

ĥdpi - 0.0927 0.287 0.307 0.307 0.327 0.577 0.038

x = 0

ĥrot - 0.362 0.443 0.47 0.474 0.501 0.682 0.044

ĥdpi - 0.0843 0.289 0.312 0.32 0.339 0.577 0.055

x = 1/3

ĥrot 0.821 0.311 0.478 0.53 0.538 0.597 0.775 0.078

ĥdpi - 0.0837 0.323 0.342 0.343 0.362 0.576 0.034

x = 2/3

ĥrot 0.887 0.251 0.344 0.375 0.401 0.422 0.747 0.089

ĥdpi - 0.0589 0.231 0.251 0.262 0.277 0.576 0.056

Notes:
(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width hn.
(iii) The population MSE-optimal choice hmse coincides with the population ROT optimal coverage error rate hrotrbc.

(iv) For some evaluation points, hmse is not well defined so it was left missing.
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Table S.II.6: Simulations Results for Model 6

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC

x = −2/3
hmse 0.783 88.8 88.3 91.0 45.2 94.6 0.289 0.299 0.113 0.333

ĥrot 0.563 90.7 91.4 85.0 59.5 95.1 0.294 0.303 0.152 0.393

ĥdpi 0.359 93.3 94.1 83.2 78.8 95.2 0.334 0.358 0.233 0.479

x = −1/3
hmse 0.975 80.3 83.8 77.2 33.4 91.2 0.210 0.218 0.084 0.296

ĥrot 0.580 92.0 93.8 83.4 63.3 95.1 0.254 0.276 0.139 0.367

ĥdpi 0.475 92.4 93.4 82.5 71.5 94.8 0.283 0.307 0.171 0.408

x = 0
hmse - - - - - - - - - -

ĥrot 0.562 87.3 91.2 82.1 59.3 95.4 0.258 0.280 0.143 0.372

ĥdpi 0.447 92.3 93.9 82.4 71.6 95.2 0.292 0.317 0.183 0.420

x = 1/3
hmse 0.616 52.3 73.3 81.6 19.4 93.8 0.247 0.267 0.129 0.354

ĥrot 0.548 66.6 78.9 81.2 36.3 93.1 0.262 0.284 0.146 0.377

ĥdpi 0.461 78.8 85.7 81.2 53.6 93.9 0.288 0.312 0.177 0.414

x = 2/3
hmse - - - - - - - - - -

ĥrot 0.461 94.3 94.4 83.2 74.6 94.7 0.304 0.318 0.181 0.429

ĥdpi 0.347 94.5 94.2 82.4 82.4 94.4 0.340 0.364 0.242 0.487

Panel B: Summary Statistics for the Estimated Bandwidths

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

x = −2/3

ĥrot 0.783 0.284 0.515 0.575 0.563 0.621 0.798 0.084

ĥdpi - 0.113 0.302 0.339 0.359 0.398 0.577 0.082

x = −1/3

ĥrot 0.975 0.41 0.534 0.574 0.58 0.621 0.801 0.063

ĥdpi - 0.164 0.418 0.47 0.475 0.546 0.577 0.073

x = 0

ĥrot - 0.396 0.52 0.557 0.562 0.6 0.786 0.060

ĥdpi - 0.124 0.387 0.436 0.447 0.506 0.577 0.078

x = 1/3

ĥrot 0.616 0.388 0.505 0.542 0.548 0.584 0.764 0.059

ĥdpi - 0.163 0.402 0.449 0.461 0.526 0.577 0.076

x = 2/3

ĥrot - 0.261 0.41 0.452 0.461 0.505 0.786 0.070

ĥdpi - 0.0791 0.291 0.328 0.347 0.384 0.577 0.082

Notes:
(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width hn.
(iii) The population MSE-optimal choice hmse coincides with the population ROT optimal coverage error rate hrotrbc.

(iv) For some evaluation points, hmse is not well defined so it was left missing.
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Table S.II.7: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

US RBC
h EC IL h EC IL

Model 1
x = −2/3 0.140 94.8 0.523 0.420 94.8 0.442
x = −1/3 0.100 94.7 0.625 0.420 94.8 0.434
x = 0 0.100 71.3 0.640 0.100 93.7 0.893
x = 1/3 0.300 94.6 0.355 0.440 94.3 0.425
x = 2/3 0.100 95.0 0.624 0.260 94.9 0.546

Model 2
x = −2/3 0.180 94.9 0.459 0.540 94.9 0.399
x = −1/3 0.140 94.8 0.524 0.440 94.9 0.424
x = 0 0.100 71.3 0.640 0.100 93.7 0.893
x = 1/3 0.140 94.5 0.522 0.440 94.2 0.424
x = 2/3 0.260 94.9 0.380 0.280 94.9 0.525

Model 3
x = −2/3 0.140 94.9 0.523 0.420 94.9 0.442
x = −1/3 0.200 94.9 0.435 0.400 94.9 0.440
x = 0 0.100 94.7 0.628 0.680 94.7 0.337
x = 1/3 0.100 93.9 0.623 0.100 94.0 0.887
x = 2/3 0.100 94.6 0.624 0.180 94.9 0.658

Model 4
x = −2/3 0.180 94.9 0.459 0.520 94.8 0.406
x = −1/3 0.100 94.8 0.625 0.400 94.8 0.444
x = 0 0.100 79.3 0.636 0.100 93.9 0.893
x = 1/3 0.100 94.4 0.623 0.400 94.2 0.443
x = 2/3 0.320 94.9 0.342 0.280 94.9 0.525

Model 5
x = −2/3 0.180 94.9 0.459 0.200 94.8 0.624
x = −1/3 0.100 94.7 0.625 0.180 94.6 0.658
x = 0 0.100 94.6 0.628 0.240 94.4 0.572
x = 1/3 0.140 94.6 0.522 0.260 94.3 0.545
x = 2/3 0.200 94.8 0.434 0.280 94.9 0.525

Model 6
x = −2/3 0.140 94.9 0.523 0.600 94.9 0.379
x = −1/3 0.140 94.8 0.524 0.420 94.9 0.429
x = 0 0.100 94.8 0.628 0.600 94.9 0.359
x = 1/3 0.140 94.5 0.522 0.480 94.4 0.401
x = 2/3 0.260 94.8 0.380 0.420 94.9 0.442

Notes: Bandwidths are selected ex post as the largest bandwidths yielding good coverage, and as can not be made
feasible
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Table S.II.8: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

US (λ = 0.5) US (λ = 0.7) RBC (ĥrotrbc) RBC (ĥ
dpi
rbc)

EC IL EC IL EC IL EC IL

Model 1
x = −2/3 94.4 0.630 94.7 0.528 94.3 0.630 94.7 0.669
x = −1/3 56.5 0.410 21.1 0.362 63.3 0.417 91.9 0.504
x = 0 0.0 0.466 0.0 0.414 0.0 0.463 55.9 0.591
x = 1/3 93.5 0.479 94.1 0.404 92.4 0.486 91.9 0.504
x = 2/3 95.0 0.519 93.3 0.436 94.9 0.522 94.4 0.606

Model 2
x = −2/3 94.9 0.495 95.2 0.416 95.1 0.503 95.3 0.622
x = −1/3 92.7 0.408 57.9 0.350 94.4 0.417 84.2 0.432
x = 0 0.0 0.455 0.0 0.403 0.0 0.451 55.3 0.591
x = 1/3 92.4 0.407 58.0 0.350 93.9 0.417 83.9 0.430
x = 2/3 95.3 0.496 95.0 0.417 94.9 0.503 93.9 0.623

Model 3
x = −2/3 94.4 0.384 93.9 0.329 94.9 0.405 95.5 0.546
x = −1/3 93.9 0.328 91.4 0.277 94.1 0.336 94.8 0.400
x = 0 94.5 0.329 87.5 0.277 95.8 0.334 95.5 0.470
x = 1/3 71.2 0.331 77.5 0.281 73.0 0.343 71.4 0.406
x = 2/3 81.4 0.399 74.7 0.343 68.9 0.423 91.7 0.547

Model 4
x = −2/3 94.9 0.507 95.1 0.426 95.0 0.513 95.3 0.630
x = −1/3 90.2 0.418 51.8 0.358 93.9 0.425 82.5 0.435
x = 0 0.0 0.451 0.0 0.403 0.0 0.448 72.0 0.592
x = 1/3 90.3 0.417 52.3 0.357 93.5 0.424 82.5 0.433
x = 2/3 95.4 0.508 95.0 0.427 94.9 0.514 94.1 0.631

Model 5
x = −2/3 94.6 0.560 95.0 0.470 94.4 0.562 95.0 0.627
x = −1/3 85.1 0.437 55.0 0.370 93.1 0.440 94.1 0.507
x = 0 90.8 0.402 73.5 0.340 92.0 0.410 93.6 0.498
x = 1/3 94.4 0.378 94.1 0.319 92.2 0.385 94.5 0.477
x = 2/3 95.2 0.442 94.7 0.373 95.0 0.454 94.3 0.554

Model 6
x = −2/3 94.3 0.368 93.2 0.317 94.9 0.392 95.2 0.479
x = −1/3 94.9 0.362 94.4 0.305 94.5 0.366 94.8 0.408
x = 0 94.1 0.367 93.0 0.309 94.9 0.372 95.2 0.420
x = 1/3 92.6 0.372 86.8 0.313 93.6 0.377 93.9 0.414
x = 2/3 94.8 0.407 94.5 0.344 94.7 0.427 94.4 0.487

Notes: Undersmoothing is implemented using bandwidths h = λĥmse for λ = {0.5; 0.7}, in the columns labeled as
such.
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Table S.II.9: Empirical Coverage and Average Interval Length of RBC 95% Confidence Intervals
for Model 5, for Different Variance Estimators

h EC IL

x = −2/3
HC0 0.248 94.2 0.555
HC1 0.249 94.4 0.562
HC2 0.249 94.4 0.559
HC3 0.250 94.4 0.562
NN 0.249 93.9 0.560

x = −1/3
HC0 0.402 92.9 0.437
HC1 0.403 93.1 0.440
HC2 0.403 92.9 0.439
HC3 0.404 93.1 0.440
NN 0.399 92.7 0.441

x = 0
HC0 0.473 91.9 0.408
HC1 0.474 92.0 0.410
HC2 0.474 91.9 0.409
HC3 0.474 92.0 0.410
NN 0.474 91.7 0.404

x = 1/3
HC0 0.534 92.0 0.383
HC1 0.535 92.2 0.385
HC2 0.535 92.1 0.384
HC3 0.536 92.2 0.385
NN 0.541 91.9 0.380

x = 2/3
HC0 0.396 94.8 0.450
HC1 0.398 95.0 0.454
HC2 0.397 94.9 0.452
HC3 0.398 95.0 0.454
NN 0.400 94.7 0.452

Notes:
(i) The h column reports the average estimated bandwidths ĥrot.
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