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This supplement contains technical and notational details omitted from the main text, proofs
of all results, further technical details and derivations, and additional simulations results and nu-
merical analyses. The main results are Edgeworth expansions of the distribution functions of the
t-statistics Tys, Toe, and Type, for density estimation and local polynomial regression. Stating and
proving these results is the central purpose of this supplement. The higher-order expansions of
confidence interval coverage probabilities in the main paper follow immediately by evaluating the
Edgeworth expansions at the interval endpoints.

Part S.I contains all material for density estimation at interior points, while Part S.II treats
local polynomial regression at both interior and boundary points, as in the main text. Roughly,
these have the same generic outline:

e We first present all notation, both for the estimators themselves and the Edgeworth expan-
sions, regardless of when the notation is used, as a collective reference;

e We then discuss optimal bandwidths and other practical matters, expanding on details of the
main text;

e Assumptions for validity of the Edgeworth expansions are restated from the main text, and
Cramér’s condition is discussed;

e Bias properties are discussed in more detail than in the main text, and some things mentioned
there are made precise;

e The main Edgeworth expansions are stated, some corollaries are given, and the proofs are
given;

e Complete simulation results are presented.

All our methods are implemented in R and STATA via the nprobust package, available from
http://sites.google.com/site/nppackages/nprobust (see also http://cran.r-project.org/
package=nprobust). See Calonico et al. (2017) for a complete description.
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Part S.1I

Kernel Density Estimation and Inference

S.I.1 Notation

Here we collect notation to be used throughout this section, even if it is restated later. Throughout
this supplement, let X}, ; = (z — X;)/h and similarly for X} ;. The evaluation point is implicit here.
In the course of proofs we will frequently write s = v/nh.

S.I.1.1 Estimators, Variances, and Studentized Statistics

To begin, recall that the original and bias-corrected density estimators are

1 n
7h Z K (Xh )
i=1
and
. . 1 <& L
f-By=— > M (X)), M(u) := K (u) — p ™ L (pu) g g, (S.I.1)
=1

for symmetric kernel functions K (-) and L(-) that integrate to one on their compact support, h and

b are bandwidth sequences that vanish as n — 0o, and where

p="h/b, By = 0" {0 (@) uic . @) = Z L") (Xp)

and integrals of the kernel are denoted

_1\k
MKk = ( kll) /ukK(u)du, and Uk = /K(u)kdu

The three statistics Tys, Tve, and Type share a common structure that is exploited to give a

unified theorem statement and proof. For v € {1, 2}, define
fo= LS N () here  Ny(u) = K(u) and Na(u) = M(u)
U—nhiil v \Ahi)s wher 1\u) = u) an 2\U) = u),

and M is given in Eqn. (S.I.1). Thus, fi=fand fo=f— Ef. In exactly the same way, define

1

oF == nhV[f,] = {E [Nv (Xh,i)ﬂ _E[N, (Xh,i)]Q}



and the estimator
1)1 1 & ?
= 43 o] - [ 13w )|
i=1 ;

The statistic of interest for the generic Edgeworth expansion is, for 1 < w <wv < 2,

Tv,w = ~
Ow
In this notation,
Tws = T1 1, Toe =T 1, and Trve = Top.

S.I.1.2 Edgeworth Expansion Terms

The scaled bias is 7, = vVnh(E[f,] — f). The Standard Normal distribution and density functions
are ®(z) and ¢(z), respectively.

The Edgeworth expansion for the distribution of T, ,, will consist of polynomials with coefficients
that depend on moments of the kernel(s). To this end, continuing with the generic notation, for

nonnegative integers j, k, p, define
1 . .
Yv,p = h_lE [Nv (Xh,i)p] 5 Av,j = g Z {Nv (Xh,i)] —-E [Nv (Xh,i)]i| } ;
i=1

and
oo p) = 7 (N (Xi) = B [No (X)) (Vo (Xii)? — B [Ny (X307

We abbreviate v, 4,(4,0,p) = v4,(7).
To expand the distribution function, additional polynomials are needed beyond those used in

the main text for coverage error. These are
v}gu(z) = ¢(Z)0;3[Vv,w(1v 17 2)22/2 - VU(3)(22 - 1)/6]7
(2)

0(2) = =0(2)0 L Elfulrow(1,1,1)2%, and  p{,(2) = é(2)oy,

p

p

Next, recall from the main text the polynomials used in coverage error expansions, here with an

explicit argument for a generic quantile z rather than the specific z /5

01 (2 K) = 0,00k 4 (2 = 32) /6 — 0,050 5[22° /3 4 (2° — 102° + 152) /9],
02(7 K) = =05 (2), and g3(2; K) = 0350k 3(22%/3).



The corresponding polynomials for expansions of the distribution function are

1(2)
2 f

Finally, the precise forms of €2; and {29 are:

91:4:1(‘2’3 {/f(:z:uh)K( YL (up) dub/fxuh du/fmub ) (u )du}

q'z()]fw( ) Qk(Z;Nw>7 k= 1,2,3.

and Qy = ,u%(ﬁﬁ;(?Qﬁ L - These only appear for Ty, and so are not indexed by {v, w}.

All these are discussed in Section S.I.6.

S.I.2 Details of practical implementation

We maintain £ = 2 and recommend £ = 2. For the kernels K and L, we recommend either the
second order minimum variance (to minimize interval length) or the MSE-optimal kernels; see
Sections S.I.2.3 and S.1.4.2. In the next two subsections we discuss choice of h and p.

As argued below in Section S.1.2.3, we shall maintain p = 1. In the main text we give a direct
plug-in (DPI) rule to implement the coverage-error optimal bandwidth. Here we we give complete
details for this procedure as well as document a second practical choice, based on a rule-of-thumb
(ROT) strategy. Both choices yield the optimal coverage error decay rate of n~(+2)/(1+(A+2))

All our methods are implemented in R and STATA via the nprobust package, available from
http://sites.google.com/site/nppackages/nprobust (see also http://cran.r-project.org/

package=nprobust). See Calonico et al. (2017) for a complete description.

Remark S.I.1 (Undercoverage of Is(h;:

mse

)). It is possible not only to show that Ls(h}..) asymp-
totically undercovers (see Hall and Horowitz (2013) for discussion in the regression context) but
also to quantify precisely the coverage. To do so, write Tys = v/nh( f E[f ] /Gus + Tus/Ous, Where
the first term will be asymptotically standard Normal and the second will be a nonrandom, non-
vanishing bias when h; . is used.

To characterize this second term, first we define A, in in our notation. Recall from Eqn. (S.1.2)
and Section S.I.1 that the mean-square error of f can be written as (nh)~'o2, 4+ (nh)~'nZ,. Define
flus to be the leading constant of the bias, so that 7ys = vVnhh[fus + 0(1)] and the MSE becomes

(nh)~to2, + h?[2,. Then optimizing the MSE yields, in this notation,

1

1 2 T2R+1

hr =2 [ Cus

mse 2/%7';’]2 °
us

Therefore, the second term of Tys(h)

mse

) will be

~

Ous Ous Ous Ous

Ths _ v nh:z(lse(h;;se) [ﬁus +0(1)] ( (h* )2/i+1)1/2 E — ( UES >1/2 Tus = <1> v [14—0 (1)]
22, 24 e


http://sites.google.com/site/nppackages/nprobust
http://cran.r-project.org/package=nprobust
http://cran.r-project.org/package=nprobust

using consistency of Gy (or if a feasible h}. is used, it is the bias estimate that must be consistent).
Hence Tys(hise) —a N ((28)71/2, 1).
The most common empirical case would be £ = 2 and «a = 0.05, and so Tys —¢ N(1/2,1) and

P[f € Is(hi.,)] ~ 0.92. u

S.I.2.1 Bandwidth Choice: Rule-of-Thumb (ROT)

Motivated by the fact that estimating fIdpi might be difficult in practice, while data-driven MSE-
optimal bandwidth selectors are readily-available, the ROT bandwidth choice is to simply rescale
any feasible MSE-optimal bandwidth Pmse tO yield optimal coverage error decay rates (but sub-

optimal constants):

Prot = hmse n~(A=2/((A+26)(A+3))

When £ = 2, hyot = hnse, which is optimal (in rates) as discussed previously.

Remark S.I.2 (Integrated Coverage Error). A closer analogue of the Silverman (1986) rule of
thumb, which uses the integrated MSE, would be to integrate the coverage error over the point
of evaluation z. For point estimation, this approach has some practical benefits. However, in the
present setting note that [ f #)(z)dx = 0, removing the third term (of order h*) entirely and thus,

for any given point x, yields a lower quality approximation. |

S.I.2.2 Bandwidth Choice: Direct Plug-In (DPI)

To detail the direct plug-in (DPI) rule from the main text, it is useful to first simplify the problem.
Recall from the main text that the optimal choice is hip, = Ho(p)n ™Y #+3) | where

N _ . _ ; ,_ 2
Hpo (K, L, p) = arghrrnm‘H Lqr (M) + HYPRERD(FEFDNZ (1o — 5 2 ppn2)” q2(Mp)
+ HH2 fA+2) (,UK,/éJ,-Q - ﬁ_QﬂK,/éML,Q) Q3(Mﬁ){-

With ¢ = 2 and p = 1, and using the definitions of gx(M7), k = 1,2,3, from the main text or
Section S.I.1.2, this simplifies to:

22 -3
6

k
Hrbc

(K,L,1) = arg min
H

92 24—422+15}
T R

9

H! {19]\/[74
— [H2RF2) {(f(k+2))2 (K fr2 — P AIL2) 19M,2}

)

222
+ H'2 {fmﬁ) (LK fv2 — BEAIL2) VM3 KN }

where z = z,/5 the appropriate upper quantile of the Normal distribution. However, Hp, (p) still

depends on the unknown density through f#+2).,



Our recommendation is a DPI rule of order one, which uses a pilot bandwidth to estimate f (£+2)

consistently. A simple and easy to implement choice is the MSE-optimal bandwidth appropriate
£+2)

*
mse

Wand and Jones (1995). Let us denote a feasible MSE-optimal pilot bandwidth by il/i+27mse. Then

we have:

to estimating f( » say hy o pee, which is different from hgg, for the level of the function; see e.g.,

22 -3
6

Hgpi (K, L, 1) = arg min - 0?\473
H

-1 {ﬁm 24—4z2+15}

9

— gHAE2) {f(HQ) (23 hpromse)? (i hve — K ARL2) 19M,2}

A N 222
+ H'? {f(HQ) (@; hitomse) (MK A+2 — LK ALL2) 19M,33} .

This is now easily solved numerically (see note below). Further, if £ = 2, the most common case in
practice, and K and L are either the respective second order minimum variance or MSE-optimal
kernels (Sections S.I.2.3 and S.I1.4.2), then the above may be simplified to:

22 -3

f[dpi(M, 1) = arg min - 19?\473
H

H1{0M4 24—4z2+15}

9

- Hg {f(4) (l’; iL/?'+2,mse)2,U%\/[,419M,2}

222

+ H* {f(4) (3 hﬁ+2,mse)HM,479M,33} .

Continuing with £ = 2, a second option is a DPI rule of order zero, which uses a reference model
to build the rule of thumb, more akin to Silverman (1986). Using the Normal distribution, so that

f(x) = ¢(x) and derivatives have known form, we obtain:

2 4 4.0
HdPi(M7 1) :argmin H_l {ﬁMAZ 3 _19?‘4732434‘15}
H
9 (74 _ 652 12 2
—H {[(1: — 62° + 3) ¢(Z)] MM,419M,2}
4 ~4 ~92 - 222
+ H (:c — 62 +3) gi)(:v),uMAﬁM’g?

where Z = (z — f1)/Jx is the point of interest centered and scaled.

Remark S.I.3 (Notes on computation). When numerically solving the above minimization prob-

lems, computation will be greatly sped up by squaring the objective function. |

S.I.2.3 Choice of p

First, we expand on the argument that p should be bounded and positive. Intuitively, the standard

errors 62, control variance up to order (nh)~!, while letting b — 0 faster removes more bias. If b



vanishes too fast, the variance is no longer controlled. Setting p € (0,00) balances these two. Let
us simplify the discussion by taking ¢ = 2, reflecting the widespread use of symmetric kernels. This
does not affect the conclusions in any conceptual way, but considerably simplifies the notation.
With this choice, Eqn. (S.I.1) yields the tidy expression

Noe = Vnhh 2 f0E+2) (K fre — p 2prppr2) {1+o0(1)}.

A

Choice of £ and b (or p) cannot reduce the first term, which represents E[f] — f — By, and further,
if p = oo, the bias rate is not improved, but the variance is inflated beyond order (nh)~!. On
the other hand, if p = 0, then not only is a delicate choice of b needed, but ¢ > 2 is required,
else the second term above dominates 7., and the full power of the variance correction is not
exploited; that is, more bias may be removed without inflating the variance rate. Hall (1992b, p.
682) remarked that if E[f] — f — B ¢ is (part of) the leading bias term, then “explicit bias correction
[...] is even less attractive relative to undersmoothing.” We show that, on the contrary, when
using our proposed Studentization, it is optimal that E[ f] — f — By is (part of) the dominant bias
term. This reasoning is not an artifact of choosing £ even and ¢ = 2, but in other cases p — 0 can
be optimal if the convergence is sufficiently slow to equalize the two bias terms.

The following result which makes the above intuition precise.

Corollary S.I.1 (Robust bias correction: p — 0). Let the conditions of Theorem S.1.1(c) hold,
with p=20, and fir { =2 and K < S — 2. Then

1 , B
Plf € Iipe] =1 —a+ {nhql(K) + nhP2EED) (p(RF2))2 (N%{,/&,-ﬂ +p 4#%{,/&#%,2) q2(K)

P(z2)
f

4 pfit2 pli+2) (MK,/H—Q _ p_QMK,féML,Q) qg(K)} {1+0(1)}

By virtue of our new studentization, the leading variance remains order (nh)~! and the prob-
lematic correlation terms are absent, however by forcing p — 0, the p~2 terms of 1. are dominant
(the bias of B ¢), and in light of our results, unnecessarily inflated. This verifies that p = 0 or oo
will be suboptimal.

We thus restrict to bounded and positive, p. Therefore, p impacts only the shape of the “kernel”
M,(u) = K (u) — p" A L") (pu) g 4, and hence the choice of p depends on what properties the user
desires for the kernel. It happens that p = 1 has good theoretical properties and performs very
well numerically (see Section S.I.8). As a result, from the practitioner’s point of view, choice of p
(or b) is completely automatic.

To see the optimality of p = 1, consider two cogent and well-studied possibilities: finding the
kernel shape to minimize (i) interval length and (ii) MSE. The following optimal shapes are derived
by Gasser et al. (1985) and references therein. Given the above results, we set £ = 2. Indeed, the
optimality properties here do not extend to higher order kernels.

Minimizing interval length is (asymptotically) equivalent to finding the minimum variance



fourth-order kernel, as 02, — fo M,2- Perhaps surprisingly, choosing K and L@ to be the second-
order minimum variance kernels for estimating f and f) respectively, yields an M;(u) that is
exactly the minimum variance kernel. The fourth order minimum variance kernel for estimating
fis Kuy(u) = (3/8)(—5u? + 3), which is identical to Mj(u) when K is the uniform kernel and
L® = (15/4)(3u® — 1), the minimum variance kernels for f and f(®) respectively.

The result is similar for minimizing MSE: choosing K and L to be the MSE-optimal kernels
for their respective point estimation problems yields an MSE-optimal Mj(u). The optimal fourth
order kernel is Kyge(u) = (15/32)(7u* — 10u? + 3), and the respective second-order MSE optimal
kernels are K(u) = (3/4)(1 — u?) and L® (u) = (105/16)(6u? — 5u* — 1). A practitioner might
use the MSE-optimal kernels (along with h.

*

rse) 1O Obtain the best possible point estimate. Our

results then give an accompanying measure of uncertainty that both has correct coverage and the
attractive feature of using the same effective sample.

In Section S.I.4.2 we numerically compare several kernel shapes, focusing on: (i) interval length,
measured by 0y 2, (ii) bias, given by fias4, and (iii) the associated MSE, given by (79?\472[1%\4’4)1/9.
These results, and the discussion above, give the foundations for our recommendation of p = 1,
which delivers an easy-to-implement, fully automatic choice for implementing robust bias-correction

that performs well numerically, as in Section S.I.8.

Remark S.I.4 (Coverage Error Optimal Kernels). Our results hint at a third notion of optimal
kernel shape: minimizing coverage error. This kernel, for a fixed order £, would minimize the
constants in Corollary 1 of the main text. In that result, h is chosen to optimize the rate and the
constant Hjg gives the minimum for a fixed kernel K. A step further would be to view H}  as a
function of K, and optimizing. To our knowledge, such a derivation has not been done and may
be of interest. |

S.I.3 Assumptions

The following assumptions are sufficient for our results. The first two are copied directly from the

main text (see discussion there) and the third is the appropriate Cramér’s condition.

Assumption S.I.1 (Data-generating process). {Xi,...,X,} is a random sample with an abso-
lutely continuous distribution with Lebesgue density f. In a neighborhood of x, f > 0, f is S-times
continuously differentiable with bounded derivatives f(s), s=1,2,---,5, and f(S) 1s Holder con-

tinuous with exponent .

Assumption S.I.2 (Kernels). The kernels K and L are bounded, even functions with support
[—1,1], and are of order K > 2 and ¢ > 2, respectively, where k and { are even integers. That is,
pro =1, pgr =0 for 1 <k <k, and prp # 0 and bounded, and similarly for pr, with ¢ in
place of k. Further, L is k-times continuously differentiable. For all integers k and I such that
k+1=#—1, f®(z0)LO((zg — x)/b) = 0 for zg in the boundary of the support.



It will cause no confusion (as the notations never occur in the same place), but in the course of

proofs we will frequently write s = v/nh.

Assumption S.I.3 (Cramér’s Condition). For each & > 0 and all sufficiently small h

sup
teR2, t2412>¢

/ exp{i(ti M(u) + taM(u)2)} f(z — uh)du| < 1— C(z, €)h,

where C(x,€) > 0 is a fized constant and i = /—1.

Remark S.I.5 (Sufficient Conditions for Cramér’s Condition). Assumption S.I.3 is a high level
condition, but one that is fairly mild. Hall (1991) provides a primitive condition for Assumption
S.I.3 and Lemma 4.1 in that paper verifies that Assumption S.I.3 is implied. Hall (1992a) and
Hall (1992b) assume the same primitive condition. This condition is as follows. On their compact
support, assumed here to be [—1, 1], there exists a partition —1 = ap < a1 < --+ < ap, = 1, such
that on each (aj—1,a;), K and M are differentiable, with bounded, strictly monotone derivatives.

This condition is met for many kernels, with perhaps the only exception of practical importance
being the uniform kernel. As Hall (1991) describes, it is possible to prove the Edgeworth expansion
for the uniform kernel using different methods than we use in below. The uniform kernel is also

ruled out for local polynomial regression, see Section S.II.3. |

S.I.4 Bias

This section accomplishes three things. First, we first carefully derive the bias of the initial estimator
and the bias correction. Second, we explicate the properties of the induced kernel M, in terms of
bias reduction and how exactly this kernel is “higher-order”. Finally, we examine two other methods
of bias reduction: (i) estimating the derivatives without using derivatives of kernels (Singh, 1977),
and (ii) the generalized jackknife approach (Schucany and Sommers, 1977). Further methods are
discussed and compared by Jones and Signorini (1997). The message from both alternative methods
echoes our main message: it is important to account for any bias correction when doing inference,

i.e., to avoid the mismatch present in Ty..
S.I.4.1 Precise Bias Calculations
Recall that the biases of the two estimators are as follows:
hﬁf(/i),U'K,/i + hﬁ,+2f(fé+2)ﬂKﬁ+2 + O(h/e,JrZ) ifh<S—2

E[f] = f = 1 f® pge s + O(hS+) ifhe{S—1,5) (S.1.2)
0+ O(h"*s) if £ > S



and

h/i+2f(ﬁ+2)MKﬁ+2 _ hﬁbef(ﬁ'+£)/lK,/%ML,Z + o2+ hEBY) iR+ L< S
E[f_ Bf] e h/i+2f(/é+2)MKﬁ+2 + O(RfBS—H+) 4 o(RA+2) if2<S—h<t
O(h5F9) + O(RfpS—F+<) if £ €{S—1,5}
O(h5*<) + O(Rfb5H) if £ > S.
(S.1.3)

The following Lemma gives a rigorous proof of these statements.
Lemma S.I.1. Under Assumptions S.I.1 and S.I.2, Equations (S.1.2) and (S.1.3) hold.

Proof. To show Eqn. (S.I.2), begin with the change of variables and the Taylor expansion
BIf = 0 [ K () 70X = [ K~ uh)d
S

= —R)F ) () [ P K (u)du/k! WK @) (S z) = 9 2)) du.
S {0 [utkinn )+ o0 [k (196 - 10 w) d

where Z € [z, — uh]. By the Holder condition of Assumption S.I.1, the final term is O(h°*). If
k> S, then all [u*K(u)du = 0, and only this remainder is left. In all other cases, hﬁf(ﬁ)(x)u;(ﬁ
is the first nonzero term of the summation, and hence the leading bias term. Further, by virtue
of £ being even and K symmetric, [ *1K (u)du = 0, leaving only O(h%*<) when £ = S — 1, and
otherwise, when £ < S — 2, leaving A +2f"+2)(2) e 4o + o(h#F2). This completes the proof of
Eqn. (S.1.2).

To establish Eqn. (S.1.3), first write

E[f — Bf] - f =E[f - f — By] + E[By — By],

where By follows the convention of being identically zero if £ > S. The first portion is characterized
by rearranging Eqn. (S.1.2), so it remains to examine the second term. Let £ = £V S. By repeated

integration by parts, using the boundary conditions of Assumption S.1.2:

E[f®)] = bli-/é /L(ﬁ) (Xp,i) f(Xi)dX;

1 -
= —mL(h D (Xp4) f(X0)

1 -
+ D / LD (X, £ (X0)d X
X

1 -
=0+ 5y /L(" Y (Xy0) fY(X5)dX;

1, 1 )
= _b1+(/§,72)L(r 2 (Xb,i)f(l)(Xi)JrW/L(ﬁ D (Xp) fO(X;)dX;

10



]. éi'{ ~
— i [ 2 () P (Xax,

1 . ~
- (A—F) B) (o —
Y L (u) fY(x — ub)du,
where the last line follows by a change of variables. We now proceed separately for each case
delineated in (S.I.3), from top to bottom. For £ > S, no reduction is possible, and the final line
above is O(b°*), and with By = 0, we have E[By — By] = 0 — R g sE[f®] = O(hb5H), as

shown. For £ < S, by a Taylor expansion, the final line displayed above becomes

S {0 O @namaf+ 05 [0 L) (£9@) - 1O @) du.

k=*k

The second term above is O(b°~#*<) in all cases, and puro = 1, which yields E[f(k)] = 0 4
O(b3~#+s) for £ € {S — 1,5}, using py 1 = 0 in the former case. Next, if £ + ¢ < S, the above
becomes E[f(/")] = fU) 4 bef(ﬁH),uLj + o(b%), as prk =0 for 1 < k < ¢, whereas if £ 4+ ¢ > S, the
remainder terms can not be characterized, leaving E| f® ] = f®+0(b5+5). Plugging any of these
results into E[B — By] = b jug 4 (f*) — E[f®)]) completes the demonstration of Eqn. (S.1.3). [

S.I.4.2 Properties of the kernel A/,()

As made precise below, M, is a higher-order kernel. The choices of K, L, and p determine the shape
of M,, which in turn effects the variance and bias constants. In standard kernel analyses, these
constants are used to determine optimal kernel shapes for certain problems (see Gasser et al. (1985)
and references therein). For several choices of K, L, and p, Table S.I.1 shows numerical results for
the various constants of the induced kernel M,. The table includes (i) the variance, given by ¥/ 2
and relevant for interval length, (ii) a measure of bias given by fips 4, and finally (iii) the resulting
mean square error constant, [19%72,&%4,4]1/ 9 (finra = (KN(=1)*upr4). These specific constants are
due to M, being a fourth order kernel, as discussed next, and would otherwise remain conceptually
the same but rely on different moments. A more general, but more cumbersome procedure would
be to choose p numerically to minimize some notation of distance (e.g., Ly) between the resulting
kernel M, and the optimal kernel shape already available in the literature. However, using p = 1
as a simple rule-of-thumb exhibits very little lost performance, as shown in the Table and discussed
in the paper.

It is worthwhile to make precise the sense in which the n-varying “kernel” M, (-) of Eqn. (S.I.1)
is a higher-order kernel. Comparing Equations (S.I.2) and (S.I.3) shows exactly what is meant by
this statement: the bias rate attained agrees with a standard estimate using a kernel of order £ + 2
(if p > 0), as £ > 2. For example, if £ = ¢ = 2 and p > 0, then Mjp(-) behaves as a fourth-order
kernel in terms of bias reduction.

However, it is not true in general that M(-) is a higher-order kernel in the sense that its moments
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below £ + 2 are zero. That is, for any k < £, by the change of variables w = pu,

1 1 1
/ ub M (u)du = / uP K (u)du — p* ™ g s / u* LW (pu)du
-1 -1 -1

p
—0— pl—f—/éuKﬁp—l—k/ ka(/é)(w)du
-P

. p .
=0—p" Fugs / w L) (w)du.
-p

Now, L(u) = L(—u) implies that L) (u) = (—1)*L*) (—u). Since £ is even, L") (w) is symmetric,
therefore if k is odd 0 = fp wr L /‘)( )du for any p. But this fails for k even, even for p = 1, and
hence f LU M(u)du # 0. For example, in the leading case of £ = { = 2, f UM (u)du # 0 in
general, and so M (-) is not a fourth-order kernel in the traditional sense.

Instead, the bias reduction is achieved differently. The proof of Lemma S.I.1 makes explicit
use of the structure imposed by estimating f*) using the deriative of the kernel L(-). From a
technical standpoint, an integration by parts argument shows how the properties of the kernel L(-)
(not the function L") (.)) are used to reduce bias. This argument precedes the Taylor expansion of
f, and thus moments of M are never encountered and there is no requirement that they be zero.
This approach is simple, intuitive, and leads to natural restrictions on the kernel L, and for this

reason it is commonly employed in the literature and in practice (Hall, 1992b).

S.I.4.3 Other Bias Reduction Methods

We now examine two other methods of bias reduction: (i) estimating the derivatives without using
derivatives of kernels (Singh, 1977), and (ii) the generalized jackknife approach (Schucany and
Sommers, 1977). Further methods are discussed and compared by Jones and Signorini (1997).
Both methods are shown to be tightly connected to our results. Further, a more general message
is that it is important to account for any bias correction when doing inference, i.e., to avoid the
mismatch present in Ti..

The first method, which dates at least to Singh (1977), is to introduce a class of kernel functions
directly for derivative estimation, more closely following the standard notion of a higher-order
kernel rather than using the derivative of a kernel to estimate the density derivative and proving
bias reduction via integration by parts. Jones (1994) expands on this method and gives further
references. This class of kernels is used in the derivation of optimal kernel shapes (for derivative
estimation) by Gasser et al. (1985). It is worthwhile to show how this class of kernel achieves bias
correction and how this approach fits into our Edgeworth expansions.

Consider estimating f*) with

I3
f( )( ) nb“"i ZJ sz )

for some kernel function J(-). Note well that J is generic, it need not itself be a derivative, but
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this is the only difference here. A direct Taylor expansion (i.e. without first integrating by parts)

then gives

S
E[fO) =67 o ugpf® + 0.
k=0
Thus, if J satisfies pjp = 0 for k = 0,1,...,A =LA+ 1A +2,...,k+({—1), pyjsg = 1, and
wrpe 7 0, and S is large enough then

E[f®] = & 4 o fED 15000 4 0(0),

just as achieved by f*) and exactly matching Eqn. (S.I1.2). Note that wyo = 0, that is, the kernel
J does not integrate to one. In the language of Gasser et al. (1985), J is a kernel of order (£, £ + 7).

Given this result, bias correction can of course be performed using f*) () (based on .J) rather
than f*) (based on L™). Much will be the same: the structure of Eqn. (S.1.1) will hold with .J in
place of L") and the results in Eqn. (S.1.3) are achieved with modifications to the constants (e.g.,
in the first line, p744¢ appears in place of ur,¢). In either case, the same bias rates are attained.
Our Edgeworth expansions will hold for this class under the obvious modifications to the notation
and assumptions, and all the same conclusions are obtained.

When studying optimal kernel shapes, Gasser et al. (1985) actually further restrict the class,
by placing a limit on the number of sign changes over the support of the kernel, which ensures
that the MSE and variance minimization problems have well-defined solutions. Collectively, these
differences in the kernel classes explain why it is possible to demonstrate “super-optimal” MSE and
variance performance for certain choices of K, L!), and p, as in Table S.I.1.

A second alternative is the generalized jackknife method of Schucany and Sommers (1977),
and expanded upon by Jones and Foster (1993). To simplify the notation and ease exposition, we
describe this approach for second order kernels (£ = 2), but the method, and all the conclusions
below, generalize fully. We thank an anonymous reviewer for encouraging us to include these
details.

Begin with two estimators f; and fo, with (possibly different) bandwidths and second-order
kernels h; and Kj, j = 1,2; thus Eqn. (S.1.2) gives

Elfj] — f(x) = h3fPuk, 2 + o(h3), j=1,2.
Schucany and Sommers (1977) propose to estimate f with fGJ,R = (f1 - ng)/(l — R), the bias of
which is

; @, 2 2 32
Elfes,r — f] = F) (hipr, 2 — Rhipu, 2) + o(hi + ha).

Hence, setting R = (h3pk, 2)/(h31K, 2) renders the leading bias exactly zero. Moreover, if S > 4,
fc 3,r has bias O(h‘l1 + h%); behaving as a single estimator with £ = 4. To put this in context of our
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results, observe that with this choice of R, if we let p = hy/hg, then

R 1l -~ (Xi—x N Ky(pu) — p~ K1 (u)
=—>Y M , M(u) = Ki(u) — 1+2{ 2 ,
foun= g o (7)) = K)o { AP

exactly matching Eqn. (S.I.1). Or equivalently, fGJ,R = fi —h%f@),uKhQ, for the derivative estimator

= 1 L (Xi—x
2 - _ - L v
7= (5,

L K) - G
)’ L === i R)

Therefore, we can view fG 1,k as a change in the kernel M (-) or an explicit bias estimation described
directly above with a specific choice of J(-) (depending on p in either case). Again, Eqn. (S.I.1)
holds exactly. Thus, our results cover the generalized jackknife method as well, and the same
lessons apply.

Finally, we note that these bias correction methods can be applied to nonparametric regression
as well, and local polynomial regression in particular, and that the same conclusions are found. We

will not repeat this discussion however.

S.I.5  First Order Properties

Here we briefly state the first-order properties of Tys, The, and Type, using the common notation
Ty defined in Section S.I.1. Recall that 1, = vnh(E[f,] — f) is the scaled bias in either case.

With this notation, we have the following result.

Lemma S.I1.2. Let Assumptions S.1.1 and S.1.2 hold. Then if nh — oo, n, — 0, and if v = 2,
p— 0+ pl{v=w} < oo, it holds that T, —4 N(0,1).

The conditions on h and b behind the generic assumption that the scaled bias vanishes can
be read off of (S.I.2) and (S.I.3): Tys requires Vnhh* — 0 whereas Tpe and Tipe require only
Vnhhf(R? v b) — 0, and thus accommodate v/nhh® 4 0 or b /4 0 (but not both). However, bias
correction requires a choice of p = h/b. One easily finds that V[mgf] = O(p**?"), whence p — 0
is required for Ty.. But Type does not suffer from this requirement because of our proposed, new
Studentization. From a first-order point of view, traditional bias correction allows for a larger class
of sequences h, but requires a delicate choice of p (or b), and Hall (1992b) shows that this constraint
prevents Ty, from improving inference. Our novel standard errors remove these constraints, allowing
for improvements in bias to carry over to improvements in inference. The fact that a wider range
of bandwidths is allowed hints at the robustness to tuning parameter choice discussed above and

formalized by our Edgeworth expansions.

Remark S.I.6 (p — 00). Type —q N(0,1) will hold even for p = oo, under the even weaker bias

rate restriction that mye = o(p'/?**), provided nb — oco. In this case Bf dominates the first-

2

order approximation, but o,

still accounts for the total variability. However there is no gain for
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inference: the bias properties can not be improved due to the second bias term (E[f] — f — By),
while variance can only be inflated. Thus, we restrict to bounded p. Section S.I.2.3 has more

discussion on the choice of p. |

S.I.6 Main Result: Edgeworth Expansion

Recall the generic notation:

for 1 <w < v < 2. The Edgeworth expansion for the distribution of 7T, ,, will consist of polynomials
with coefficients that depend on moments of the kernel(s). Additional polynomials are needed

beyond those used in the main text for coverage error. These are:

)
p(2) = =0(2) 0y, Bl fulvuw(1,1,1)2%, and  p)(2) = ¢(2)o,,"

The polynomials pS,’?U are even, and hence cancel out of coverage probability expansions, but are
used in the expansion of the distribution function itself (or equivalently, the coverage of a one-sided
confidence interval).

Next, recall from the main text the polynomials used in coverage error expansions:

01 (2 K) = 0050k 4(2° = 32) /6 — 0,207 5[22% /3 4 (2° — 102° + 152) /9],
@z K)=—045(2),  and  gs3(5K) =050k 3(22°/3).

The corresponding polynomials for expansions of the distribution function are

1¢(2
g (2) = Q%)Qk(Z;Nw), k=1,2,3.
As before, the ql()k’;a} are odd and hence do not cancel when computing coverage: the gx(z; Ny) in
the main text are doubled for just this reason.

Note that, despite the notation, qq(]ki)u(z) depends only on the “denominator” kernel N,,. The

notation comes from the fact that when first computed, the terms which enter into the qq(,kgj(z)
depend on both kernels, but the simplifications in Eqn. (S.1.8) reduce the dependence to N,,. This
is because for undersmoothing and robust bias correction, v = w, and for traditional bias correction
Ny =M = K +0(1) = N1 +0(1), as p — 0 is assumed. Thus, when computing 9/, the terms

with the lowest powers of p will be retained. These can be found by expanding
q

; , q N\ 47 . e .
Inrg = / (K(u) - PlMMK,/iL(k)(U)) du="" (;]) <—MK,/ipl+k> /K(U)JL(/')(PU)q Ydu,

Jj=0
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and hence we can write Uarq = g g — p1+kQMK,/éL(ﬁ)(O)19K,q—1 + O(h + p?>™). We can thus write
qj(z; M) = qj(2; K) + o(1) in this case. If the expansions were carried out beyond terms of order
(nh)=' + (nh)~Y2n, + 2 + 1{v#w}p'*?% this would not be the case.

Finally, for traditional bias correction, there are additional terms in the expansion (see discussion
in the main text) representing the covariance of f and B ¢ (denoted by €21) and the variance of B [
(Q2). We now state their precise forms. These arise from the mismatch between the variance of

the numerator of Ty and the standardization used, o2

. 2 2 . .
o, that is 07, /o5 is given by

nhV(f — Byl  nhV[f] — 2nhC[f, Bf] + nhV[By] . 2nh(C[f, By N nhV[By]

nhVI[f] nhV(f] nhV[f] nhV[f]

This makes clear that £2; and 2y are the constant portions of the last two terms. We have

_2nh(C[f, ABf] — i,
nhV|[f]

where

= — MKJé r—Uu u (t)u U — r—Uu u)au r — U ()U u e .
o1 = 2254 { [ 1o~ am LD woldu b [ o~ ) Kyt [ fo - )Ly

Note 1(2) = 02,. Turning to Qy, using the calculations in Section S.1.4.1 (recall £ = £ V ), we

find that
. ) 7 B 7 2
m =p' T2k where Q= 51}((2’3 {/f(m — ub) L) (u)%du — b1+ </ LR () fO) (2 — ub)du) } _

Fully simplifying would yield

2 9-2
Qy = MK,/iﬁKQﬁL(k’) 20

which can be used in Theorem S.I.1.
As a last piece of notation, define the scaled bias as 1, = Vnh(E[f,] — f).
We can now state our generic Edgeworth expansion, from whence the coverage probability

expansion results follow immediately.

Theorem S.I.1. Suppose Assumptions S.1.1, S.1.2, and S.1.3 hold, nh/log(n) — oo, n, — 0, and
ifv=2, p— 0+ pl{v=w}. Then for

1 h 1
= BN ) o (3) (1) 2 (2) T (3
Fuw(z) CI)(Z) + \/,'Thpv,w(z) + \/;pv,w(’z) + nvpv,w(z) + nhqv,w(z) + nqu,w(z) + (Z)
¢(2)

— HoFwp"™ (2 + P/éQ2)TZ’
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we have

sup [P[Ty < 2] = Fow(2)] = 0 (nh) ™"+ () ™2, + 02 + L £w}p!+2).
z€R

To use this result to find the expansion of the error in coverage probability of the Normal-based
confidence interval, the function F, (%) is simply evaluated at the two endpoints of the interval.
(Note: if the confidence interval were instead constructed with the bootstrap, a few additional steps

are needed, but these do not alter any conclusions or results outside of constant terms.)

S.I.6.1 Undersmoothing vs. Bias-Correction Exhausting all Smoothness

In general, we have assumed that the level of smoothness was large enough to be inconsequential
in the analysis, and in particular this allowed for characterization of optimal bandwidth choices. In
this section, in contrast, we take the level of smoothness to be binding, so that we can fully utilize
the S derivatives and the Holder condition to obtain the best possible rates of decay in coverage
error for both undersmoothing and robust bias correction, but at the price of implementability: the
leading bias constants can not be characterized, and hence feasible “optimal” bandwidths are not
available.

For undersmoothing, the lowest bias is attained by setting £ > S (see Eqn. (S.1.2)), in which
case the bias is only known to satisfy E[f]— f = O(h519) (i.e., By is identically zero) and bandwidth
selection is not feasible. Note that this approach allows for vVnhh® /4 0, as nus = O(vVnhhots).

Robust bias correction has several interesting features here. If £ < S — 2 (the top two cases
in Eqn. (S.1.3)), then the bias from approximating ]E[f] — [ by By, that is not targeted by bias
correction, dominates 1, and prevents robust bias correction from performing as well as the best
possible infeasible (i.e., oracle) undersmoothing approach. That is, even bias correction requires a
sufficiently large choice of £ in order to ensure the fastest possible rate of decay in coverage error: if
k > S —1, robust bias correction can attain error decay rate as the best undersmoothing approach,
and allow vnhh® 4 0.

Within £ > S — 1, two cases emerge. On the one hand, if # =S — 1 or S, then By is nonzero
and f*) must be consistently estimated to attain the best rate. Indeed, more is required. From
Eqn. (S.I1.3), we will need a bounded, positive p to equalize the bias terms. This (again) highlights
the advantage of robust bias correction, as the classical procedure would enforce p — 0, and thus
underperform. On the other hand, p — 0 will be required if £ > S because (from the final case
of (S.1.3)) we require p~% = O(h®) to attain the same rate as undersmoothing. Note that we can
accommodate b /4 0 (but bounded). Interestingly, By is identically zero and B ¢ merely adds noise
to the problem, but this noise is fully accounted for by the robust standard errors, and hence does
not affect the rates of coverage error (though the constants of course change). The f(k) in Ef is
inconsistent (f*) does not exist), but the nonvanishing bias of f® is dominated by hf.

This discussion is summarized by the following result:

Corollary S.1.2. Let the conditions of Theorem S.1.1 hold.
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(a) If kR > S, then

1 o(zg)
nhf

Plf €l =1—a+ @1 (K) {1+ o(1)} + O (nh' 2572 4 pS+s)

(b) If k > S —1, then

L a0 1+

+0 (nh(hS“ V RApS—AHSHASSHY2 | (pSts h/ébS—fé+<]1{/é§S})) '

P[fEIrbc]:l—Oé+

S.I.6.2 Multivariate Densities and Derivative Estimation

We now briefly present state analogues of our results, both for distributional convergence and
Edgeworth expansions, that cover multivariate data and derivative estimation. The conceptual
discussion and implications are similar to those in the main text, once adjusted notationally to the
present setting, and are hence omitted.

For a nonnegative integral d-vector ¢ we adopt the notation that: (i) [¢] = ¢1 + -+ + qu, (ii)
gD (z) = 0dg(z)/ (80 - - 0%xy), (iii) k! = ¢! --qq!, and (iv) > lq=q for some integer Q > 0
denotes the sum over all indexes in the set {q: [¢] = Q}.

The parameter of interest is f(?(z), for z € R? and [¢] < S. The estimator is

N

1 n
F(x) = AT Z;K(q) (Xni) -

Note that here, and below for bias correction, we use a constant, diagonal bandwidth matrix, e.g.
h x I;. This is for simplicity and comparability, and could be relaxed at notational expense.
The bias, for a given kernel of order £ < S — [¢] (we restrict attention to the case where S is

large enough), is

WYY g f O (@) + o(h),
k:[k+q]l=#

exactly mirroring Eqn. (S.1.2), where now px j, represents a d-dimensional integral. Bias estimation
is straightforward, relying on estimates f(4t%)(z), for all [k] = £ — [¢]. The form of fQ(Q)(a?) =
f@(z) - Bf(q) () is now given by

. 1 n ,
fg(q) (x) = pywre) Z My (Xn,i) where Mg (u) = K@ (u) — (p)quHk Z uKykL(quk)(u),
i—1 (k]=#

exactly analogous to Eqn. (S.I.1).
With these changes in notation out of the way, we can (re-)define the generic framework for

both estimators exactly as above. Dropping the point of evaluation z, for v € {1,2}, define the
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estimator as

A~

1 n
féq) = T ZN” (Xn,i), where Ni(u) = K(q)(u) and Na(u) = My (u);
i=1

the variance

0% = nh V0] = - B[N, (X0:)?] ~ B[N, (Xa)P )

and its estimator as

1 — 1 — ?
~2 )+ AV . .
Oy, = hd n ; |:Nv (Xh,z) :| [TL Z Nv (Xh,z)] 3
and the t-statistics, for 1 < w < wv < 2, as,

Vnhd+2ld (ﬁgq) - f(q))

Ow

Tyw:i=

)

As before, Tus = Tl,ly Tbc = T271, and Trbc = T272.
The scaled bias 7, has the same general definition as well: the bias of the numerator of the

T, w- In this case, given by
no = kil (E[f0] - 10 (@)

The asymptotic order of n, for different settings can be obtained straightforwardly via the obvious
multivariate extensions of Equation (S.I.3) and the corresponding conclusion of Lemma S.I.1.

First-order convergence is now given by the following result. the proof of which is standard.
Lemma S.1.3. Suppose appropriate multivariate versions of Assumptions S.I.1 and S.I1.2 hold,
nh®t2d — 0o, n, =0, and if v =2, p = 0+ pl{v =w}. Then Ty —q N(0,1).

For the Edgeworth expansion, redefine

oo s B) = e [ (N o) — BIN ()] (Nu(ui)? — BIN,()7])*]

where u; = (x — X;)/h. The polynomials pl(,k&(z) and qz(,kg,(z) are as given above, but using mul-
tivariate moments. The analogue of Theorem S.I.1 is given by the following result, which can be

proven following the same steps as in Section S.I.7.
Theorem S.1.2. Suppose appropriate multivariate versions of Assumptions S.1.1, S.1.2, and S.1.3
hold, nh®+2l4 /log(n) — oo, 7, = 0, and if v =2, p — 0+ pl{v = w}. Then for

1 hd+2[q]

1
= (1) 2 (3) — W) 2,(2) e B3
Fv,w(z) (I)(Z) + ’I’Lhdpv7w(z) + n pv;w(z) + vav,w(z) + nhdqv,w(z) + nqu,w(z) + \/qu,w(z)
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+ H{oFwhp™ Q) + Pﬁ+[q]92)¢(22)2,
we have

sup [P[Tu < 21 = Foan(2)] = o (A2 40,2 + H{u w2640,
z€

The same conclusions reached in the main text continue to hold for multivariate and/or deriva-
tive estimation, both in terms of comparing undersmoothing, bias correction, and robust bias
correction, as well as for inference-optimal bandwidth choices. In particular, it is straightforward
that the MSE optimal bandwidth in general has the rate n~1/(¢+26+2ld) whereas the coverage error
optimal choice is of order n~1/(4+4+(a)  Note that these two fit the same patter as in the univariate,
level case, with £ + [¢] in place of £ and d in place of one. One intuitive reason for the similarity is
that the number of derivatives in question does not impact that variance or higher order moment
terms of the expansion, once the scaling is accounted for. That is, for all averages beyond the first,
for example of the kernel squared, Vnh? can be thought of as the effective sample size, since that

is the multiplier which stabilizes averages.

S.I1.7 Proof of Main Result

Throughout C shall be a generic constant that may take different values in different uses. If more
than one constant is needed, Cy, Cy, ..., will be used. It will cause no confusion (as the notations
never occur in the same place), but in the course of proofs we will frequently write s = v/nh, which
overlaps with the order of the kernel L.

The first step is to write T}, ,, as a smooth function of sums of i.i.d. random variables plus a

remainder term that is shown to be of higher order. In addition to the notation above, define

Top = EN, (K] and Ay =13 {No (X03) B [Ny (X0,] |-

i=1
With this notation f, — E[f,] = s 1Ay, 02 = E[AZ 1] = w2 — hys, 1 and

60— 0p =5 "Nua — h2vu15 ' Auw1 — hs2AL ). (S.1.4)

By a change of variables
M / Ny (Xna)? £(X0)dX; = / Ny f(x — uh)du = O(1).
Further, by construction E[A,, ;] = 0 and

V[Ay,] =h"'E [NU (Xhﬂ-)zj] —h7'E {Nv (Xh,i)j}2
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<h'E [Nu (Xh,i)Qj]

=25 = O(1).

Returning to Eqn. (S.1.4) and applying Markov’s inequality, we find that hs_QAfU’1 = n_lAZ}’l =
Op(n™1) and 62 — 02 = 5710,(1) — hO(1)s 710, (1) — hs20,(1) = Op(s~"), whence |62 — 02| =

Op(s72). Using these results preceded by a Taylor expansion, we have

~2\ —1/2 A2 2\ —1/2 ~9 2 ~9 242
o) 65— 0 1o, —o 3(65 —o05) .9 2192
<§> =<Lsz1ﬁ =l-o— st tol(ay — o))

o2, o2 o2, 8 ol v
1
=1-5> (S_lAw’Q - h2’}/w718_1Aw71) + Op(n_1 + 5_2).
207,
Combining this result with the fact that
. Av,l + Ny . Av,l T 6'120 12
Tv,w - ~ - A + — Y 9
Ow Ow  Ow \ 02
we have
P[T,. < 2] =P [Tw — Ry < 2 — ””] , (S.L5)
Ow
where
~ A B _
Ty = vl _ 77”3 (s "Awa — h2vp 158 1Aw71)
Ow 203,

and is a smooth function of sums of i.i.d. random variables and the remainder term is

2 ~2 212
n —2A 1 3(0,—0 ) ~2 212
e Gt = el |

w

Next we apply the delta method, see Hall (1992a, Chapter 2.7) or Andrews (2002, Lemma 5(a)).
It will be true that

P[Tyo < 2] =P [va <z ’7] +o(s72) (S.1.6)

if it can be shown that s?P[| R, .| > e2s72log(s) 1] = o(1).! This can be demonstrated by applying
Bernstein’s inequality to each piece of R, ., as the kernels K and L, and their derivatives, are

bounded.
To apply this inequality to the first term of R, ., note that | N, ((x — X;)/h)| < Cy and that

"Here, s721og(s)™* may be replaced with any sequence that is o(s™2 + 12 4+ s~ n,).
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VI[Nw((z — X;)/h)] < Cah, for different constants, and so for € > 0 we have

$’P [mhszAi’l > g2s72 log(5)1]
Z {Nw (Xh,i) —E [Nw (Xh,i)]}

Ow 202,
i=1

= §’P [
Z {Nw (Xh,i) —E [Nw (Xh,i)]}
=1

:SQP[

293 ) —1 -1
< 282 exp 71 € 2%;”% IOg(S)
2 Cynh + 3eC1v/203n /[y log(s)]

e2log(s)~! }
nh +ev/ny/[nlog(s)]

< exp {01 log(s)

1/2
> s~ Hog(s) /2 <2‘73)”52) / ]
Tl

< s2exp {—C’

2
_ C’ € ,
! * nhlog(s)? + e/ log(8)3/n]] }

which tends to zero because 1, — 0 as n — oo is assumed. To see why, note first that the second
term of the denominator automatically vanishes, as 1, — 0 and log(s)?/n — 0. Second, suppose
n2 < nh* (for example, if nys =< sh”, then w = 1 + 2#) and the first term diverges, it must be that

h is at least as large (in order) as

1 1/(24w)
()

which makes the requirement that 7, — 0 equivalent to

nl_w/(2+w) —4dw/(24w) -0,

n? = nh® = log(s)

which is impossible. The remaining terms of R, ,,, characterized using Eqn. (S.I.4), are handled in
exactly the same way. This establishes Eqn. (S.1.6).

Next, the proofs of (Hall, 1992a, Chapters 4.4 and 5.5) show that Tww has an Edgeworth
expansion valid through o(s™2 + s71n, + n2). Thus, for a smooth function G(z) we can write
P[Ty0 < 2] = G(2) + o(s72 + 5710, +12). Therefore

P [Tv,w <z-— 771)} =P [Tv,w < z} - EG(l)(z) +o(s72+ 571y, +12). (S.I.7)

Ow

The final result now follows by combining Equations (S.1.5), (S.I.6), and (S.1.7) with the terms

of the expansion computed below. O
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S.I1.7.1 Computing the Terms of the Expansion

Identifying the terms of the expansion is a matter of straightforward, if tedious, calculation. The
first four cumulants of T;, ,, must be calculated, which are functions of the first four moments. In
what follows, we give a short summary. Note well that we always discard higher-order terms for
brevity, and to save notation we will write = to stand in for “equal up to o((nh)~* + (nh)~'/2n, +
7+ L{oAw}pl 2y,

Referring to the Taylor expansion above, for the purpose of computing moments and cumulants,

we caln use

A 1A hywis A 35 2A
va%<v71+nv> <1_8 w2 | s Awr 3 2w,2 .

20, Ow 8 og

Moments of the two sides agree up to the requisite order. Straightforward moment calculations

then give
BT 12 sTE[Ap 1Al hs Y B[Ay1Aua] 35T E[A 1A% ] p, 3T E[AL ]
(Tyw] = 3 + 3 + 5 t+ =t
207, o 802, Ow 802,
o 1 uv,w(l,?)l,Q) . h5_17w»1’/g:w(1’ 1,1) n &’
203, o, Ow
2 2 A2 2 2
E[T2 ] o E[Av,l] i 872E[Av,1Aw,Q] -1 E[Av,lAwQ] i ohs~L PVw,lE[Av,lA”LU,l]
T of i 7
2E[A, 1A 4y, 1E[Ay 1A 2
s [ Zi w2l | pohs—L et [U2v,1 wil | s
w w w
o 02 502 w(0,2,2)  520,(1,1,2)2 o 1p(2,1,2)3 1 20p0(1,1,2)
=g ts T % ts 5 —5 2 — s 2
Uw Jw Uw Uw Uw
3 10 E[Ag,l] _1E[Ag,1Aw72} 1 ’Yw,lE[Ag,lAw,l] 3E[A12),1] _19E[A12),1Aw72
E[Tv’w] = 0_73 —3s T + 3hs 0_5 o) 03 — M8 T
w w w w w
2871 VU(?’B) _8719’/11,10(1’51’2)012; +h3719'Yw,1Vv,uE;)(17171) + 1)3;‘;%7
o 207, o, o
and,
4 70 E[Aﬁ,ﬂ _12E[A3,1Aw,2} 1 ’Yw,lE[Ag,lAw,l] _9 SE[Ag,lA%u,l]
E[T, ] = i 6 +4hs 6 +s g
w w w w
L, EAL) L SEIAL AL GEIAY)
771) 0_3} 771) 0_2] nv 0_3}
o 2 vy (4) 3073 B 5_28%(3)1/@@(1, 1,2) + 12020, (2, 1,2) N 3—2903””’“’(0’ 2,2)
- ok 1 6 o8
w w w w
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87236031/@@(1,1,2)2 N 3*14””(3) . 3*124012’”“”(1’1’2) N 2603.

8 v 4 v 6 v
Ow w Ow

The expansion now follows, formally, from the following steps. First, combining the above

moments into cumulants. Second, these cumulants may be simplified using that
o 144 1424
To =1 2(wo) (5 + pH0y)
O-’LU

and in all cases present

Vow(is J,p) = JON,i+jp + o(1). (S.1.8)

The second relation is readily proven for v = w, as v, (i, j,p) = E[Ny(Xp;)P] + O(h), where
the remainder represents products of expectations. In the case for v # w, we find v51(3, j,p) =
fONy itjp+ O(p'** 4+ h), and in this case p — 0 is assumed. For any term of a cumulant with a rate
of (nh)~Y, (nh)=Y?n,, n2, or p'*? (i.e., the extent of the expansion), these simplifications may be
inserted as the remainder will be negligible. Note that this is exactly why the polynomials pq(}kq)ﬂ do
not simplify, while the qm do. Third, with the cumulants in hand, the terms of the expansion are
determined as described by e.g., Hall (1992a, Chapter 2).

Finally, for traditional bias correction, there are additional terms in the expansion (see discussion
in the main text) representing the covariance of fand B ¢ (denoted by €2;) and the variance of B [
(Q2). We now state their precise forms. These arise from the mismatch between the variance of

the numerator of Ty and the standardization used, o2

2 that is 02, /02, is given by

nhV[f — By]  nhV[f] — 2nhC[f, By] + nhV[By] - th(C[f, By N nhV[By]
nhV[f] nhV[f] - nhV[f]  nhV[f]

This makes clear that £2; and 25 are the constant portions of the last two terms. First, for 21,

Clf.Bf]=E [(nhZK Xhz)) (h UK ka ZL (Xp,i )]
=pt L e [tk () 10 (x
=W [ (X)) L™ ( b,i)]

—bE [h K (X5,)] E [b—lL(’” (Xb,i)} }

= pk%“f {/f(a: — uh) K (u) L (up)du — b/f(x —uh)K du/f ub) L™ (u )du}.

Therefore

_,MClf By

. 1+E,Q
nhV|f]
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where

91:—251?2’3 {/f(x—uh) () L) (up) du—b/fa:—uh du/fw—ub M) (y )du}.

Note v1(2) = o2,. If we did not include Q5 in the Edgeworth expansion, i.e. we stopped at order
p' then we could capture only the leading terms of Q;, as follows, using that kernel integrates

to 1l and p — 0,

91:—221(‘2") {/f(a:—uh) w) L®) (up) du—b/fa:—uh du/f ub)L® (y )du}

KKk ,
= 2, oW {f@)ﬂ“(onlw(mhm]—bf( ) / L® (w)dult +0<b+h>]}

— —2urc 035 LM (0).

Note that this matches the term Hall (1992b) calls wy. We do not do this, for completeness. There

1424

are no other terms of up to order p!™2# so capturing the full contribution of 03 /03 —1 = 02, /o2, —1

is natural and informative.

Turning to s, using the calculations in Section S.I.4.1 (recall £ = £V S), we find that
I 0 @ (x, )
V[By] = TNK,E WE [b LY (Xb,;) } (WE [L (X )D

o% 2 : ; i ’
_r :bK,/é {/f(l‘ — ub) L™ (u)?du — b +2* </ L) () ) (2 — Ub)du> } ;

and hence

nhV(By] _ 10 i R) ()2 1427 -k i ’
——— = oMy where Qy = (’2) /f(a: — ub) L) (u)?du — b2 </ LUE=R) () f ) (g — ub)du> :
41

nhVlj]

The final piece will be b125 f)(2)2[1 4 0(1)] if £ < S. Substituting this is permitted because p'*+24
is the limit of the expansion, though it is not necessary to do, because this term is always higher

order. Fully simplifying would yield

2 -2
Qp = ,U'K,/éﬁKQﬂL(ﬁ),Q?

which can be used in Theorem S.I.1.

S.I.8 Complete Simulation Results

To illustrate the gains from robust bias correction we conduct a Monte Carlo study to compare
undersmoothing, traditional bias correction, and robust bias correction in terms coverage accuracy

and interval length using several data-driven procedures to select the bandwidth. We generate
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n = 500 observations from a density f given by:

Model 1 (Gaussian Density): z «~ N(0,1)

Model 2 (Skewed Unimodal Density): @~ IN(0,1) + 1N (4, (3)°) + 2N (£, (3)°)

Model 3 (Bimodal Density): @ «~ +N (—1, (%)2> + 3N <1, (%)2>

Model 4 (Asymmetric Bimodal Density): x «~ 3N (0,1) + iN (%, (%)2)

We evaluate the density at = {—2,—1,0,1,2}. These models were previously analyzed in

Marron and Wand (1992) and they are plotted in Figure S.I.1. In this simulation study we compare
the performance of the confidence intervals defined by Tyus, The, and Type. For Tys, we take K to

be the Epanechnikov kernel, while bias correction uses the Epanechnikov and MSE-optimal kernels

for K and L®, respectively. The bandwidth & is chosen in three different ways:

(i) population MSE-optimal choice hyse;
(71) estimated ROT optimal coverage error rate Pros.-

(iii) estimated DPI optimal coverage error rate dei.

Empirical coverage and length are reported in Tables S.I.2-S.1.5 (Panel A) using our two pro-
posed data-driven bandwidth selectors, as well as the infeasible hyse. The most obvious finding
is that robust bias correction has accurate coverage for all bandwidth choices in all models. The
intervals are generally longer than for undersmoothing, but neither undersmoothing nor traditional
bias correction yield correct coverage outside of a few special cases (e.g., undersmoothing at the
infeasible MSE-optimal bandwidth in Model 4). The DPI bandwidth selector generally results in
slightly smaller bandwidths (on average). Summary statistics for the two fully data-driven band-
widths are shown in Panel B. The fact that the DPI bandwidth is slightly smaller is born out. It
is also, in general, more variable.

To illustrate the robustness to tuning parameter selection, Figures S.I.2-S.1.9 show coverage
and length for all four models. The dotted vertical line shows the population MSE-optimal band-
width for reference. These figures demonstrate the delicate balance required for undersmoothing to
provide correct coverage, whereas for a wide range of bandwidths robust bias correction provides
correct coverage. Further, interval length is not unduly inflated for bandwidths that provide correct
coverage. Recall that robust bias correction can accommodate, and will optimally employ, a larger
bandwidth, yielding higher precision. Further emphasizing the point of robustness, we depart from
p =1 in Figures S.I.10 and S.I.11 to show coverage and length over a grid of h and p.

The simulation results for local polynomial regression reported in Section S.I1.7 below bear out
these same conclusions and study these issues in more detail, in particular interval length.

All our methods are implemented in R and STATA via the nprobust package, available from
http://sites.google.com/site/nppackages/nprobust (see alsohttp://cran.r-project.org/

package=nprobust). See Calonico et al. (2017) for a complete description.
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Figure S.I.1: Density Functions
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Table S.I.2: Simulations Results for Model 1

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length

US BC RBC US RBC
r=—2
Pse 0.819 82.4 88.0 94.7 0.035 0.042
Prot 0.746 82.6 86.1 93.0 0.037  0.044
haps 0.543 90.1 86.1 92.2 0.043  0.052
r=—1
hmse - - - - - -
Rros 1.224 90.1 83.5 93.7 0.044 0.060
hapi 0.665 93.7 86.6 93.8 0.073  0.093
=0
Pmse 0.842 64.1 78.3 91.3 0.064  0.088
Prot 0.775 73.3 795 91.5 0.069  0.094
haps 0.665 80.7 80.7 90.9 0.080  0.107
r=1
hmse - - - - - -
Rros 1.221 90.0 83.5 93.9 0.044  0.060
haps 0.666 93.9 87.0 94.2 0.073  0.093
r =2
hse 0.819 83.0 88.8 94.9 0.035 0.042
Brot 0.745 83.2 86.8 93.3 0.037  0.044
haps 0.541 90.5 87.0 92.4 0.043  0.052

Panel B: Summary Statistics for the Estimated Bandwidths
Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

r=—-2
flrot 0.819 0.546  0.698 0.741 0.746 0.789 1.11 0.07
izdpi - 0.397  0.462 0.493 0.543 0.544 1.95 0.17
r=—1
ﬁrot - 0.898 1.1 1.17 1.22 1.28 9.42 0.27
iLdpi - 0.357  0.476 0.588 0.665 0.788 2.01 0.25
z=0
fLrot 0.842 0.667  0.756 0.775 0.775 0.795 0.876 0.029
fzdpi - 0.425  0.596 0.637 0.665 0.699 1.79 0.11
r=1
ﬁrot - 0.895 1.1 1.17 1.22 1.28 5.84 0.24
Edpi - 0.356  0.478 0.583 0.666 0.791 2.05 0.25
=2
ﬁrot 0.819 0.55 0.695 0.741 0.745 0.789 1.11 0.071
fldpi - 0.398  0.462 0.494 0.541 0.545 1.95 0.16
Notes:

(i) US = Undersmoothing, BC = Bias Corrected, RBC = Robust Bias Corrected.

(ii) Columns under “Bandwidth” report the average estimated bandwidths choices, as appropriate, for bandwidth h,.
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Table S.I.3: Simulations Results for Model 2

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length

US BC RBC US RBC
r=—2
Pnse 1.005 90.3 90.4 93.9 0.015  0.018
Prot 1.092 94.3 924 95.6 0.015 0.017
haps 1.108 91.8 92.4 96.0 0.015  0.017
r=—1
Pmse 0.942 80.9 87.3 93.9 0.034  0.040
Prot 0.622 91.5 87.6 93.6 0.041  0.049
hapi 0.685 85.5 85.2 91.9 0.040  0.048
=0
Pnse 0.772 772 84.0 93.8 0.063  0.081
Rrot 2.119 8.6 13.3 19.8 0.025 0.041
haps 0.357 94.1 88.6 94.4 0.103  0.127
r=1
Pnse 0.614 419 722 88.0 0.088  0.122
Prot 0.593 49.7 725 87.6 0.091  0.126
hapi 0.457 79.7 81.3 91.5 0.115  0.153
r =2
Pse 0.603 70.6 85.5 92.9 0.061  0.074
Pror 0.913 23.3 53.9 63.4 0.049  0.061
haps 0.324 93.6 88.5 93.9 0.084  0.102

Panel B: Summary Statistics for the Estimated Bandwidths
Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

r=—-2
flrot 1.005 0.775 1 1.09 1.09 1.17 2.44 0.12
izdpi - 0.684 1.01 1.1 1.11 1.2 1.9 0.14
r=—1
ﬁrot 0.942 0472 0.584 0.619 0.622 0.657 0.844 0.055
iLdpi - 0.376  0.528 0.656 0.685 0.774 1.84 0.21
z=0
fLrot 0.772 0.678 1.35 1.69 2.12 2.25 116 2.38
fzdpi - 0.268 0.324 0.342 0.357 0.367 1.38 0.074
r=1
ﬁrot 0.614 0.513  0.578 0.593 0.593 0.607 0.682 0.022
Edpi - 0.371  0.436 0.453 0.457 0.474 0.776 0.033
=2
ﬁrot 0.603 0.529  0.772 0.864 0.913 0.988 5.83 0.27
fldpi - 0.272  0.309 0.321 0.324 0.336 1.03 0.025
Notes:

(i) US = Undersmoothing, BC = Bias Corrected, RBC = Robust Bias Corrected.

(ii) Columns under “Bandwidth” report the average estimated bandwidths choices, as appropriate, for bandwidth h,.
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Table S.I.4: Simulations Results for Model 3

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length

US BC RBC US RBC
r=—2
Pse 0.767 82.7 86.6 93.8 0.047  0.057
Prot 2.843 1.5 36 5.1 0.021 0.029
haps 0.554 89.8 86.8 92.4 0.056  0.067
r=—1
Pnse 0.716 65.6 79.3 89.7 0.070  0.092
Rros 1.204 3.1 29.6 45.4 0.046 0.063
hapi 0.663 72.4 795 89.7 0.075  0.097
=0
Pse 0.695 74.3  83.2 92.6 0.064  0.081
Rrot 1.096 1.2 448 67.2 0.046  0.061
haps 0.431 92.7 87.6 94.3 0.085  0.105
r=1
Pnse 0.716 66.6 79.3 89.8 0.070  0.092
Rros 1.202 2.6 31.0 46.8 0.046 0.063
hapi 0.662 724 793  89.7 0.075  0.097
r =2
Pse 0.767 82.1 86.2 93.7 0.047  0.057
ros 2.829 1.4 35 5.0 0.021 0.029
haps 0.554 89.3 86.0 92.2 0.056  0.067

Panel B: Summary Statistics for the Estimated Bandwidths
Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

r=—-2
flrot 0.767 1.16 1.89 2.29 2.84 3.03 46.7 1.98
izdpi - 0.411 0.494 0.527 0.554 0.573 1.82 0.12
r=—1
ﬁrot 0.716 0.973 1.14 1.19 1.2 1.25 1.86 0.09
iLdpi - 0.572  0.638 0.659 0.663 0.683 0.954 0.037
z=0
fLrot 0.695 0.953 1.07 1.09 1.1 1.12 1.31 0.043
fzdpi - 0.375 0.416 0.428 0.431 0.443 0.604 0.023
r=1
ﬁrot 0.716 0.968 1.14 1.19 1.2 1.25 1.84 0.09
Edpi - 0.565  0.637 0.658 0.662 0.683 1.21 0.037
=2
ﬁrot 0.767 1.24 1.89 2.3 2.83 3.02 119 2.50
fldpi - 0417 0.494 0.526 0.554 0.57 1.83 0.13
Notes:

(i) US = Undersmoothing, BC = Bias Corrected, RBC = Robust Bias Corrected.

(ii) Columns under “Bandwidth” report the average estimated bandwidths choices, as appropriate, for bandwidth h,.
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Table S.I.5: Simulations Results for Model 4

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US BC RBC US RBC
r=-2
hnse 0.853 84.3 88.8 94.4 0.030 0.036
Prot 0.844 78.9 854 91.8 0.030 0.036
ﬁdpi 0.579 91.7 874 92.5 0.036 0.043
r=-—1
hmse - - - - - -
hrot 1.751 77.3  79.0 88.3 0.032 0.044
ﬁdpi 0.823 93.3 87.2 94.5 0.057 0.072
z=0
huse 0.879 74.1 81.1 91.6 0.060 0.080
Prot 1.086 449 66.8 82.7 0.050 0.068
ﬁdpi 0.791 78.4 814 92.0 0.067 0.088
=1
hanse 0.600 81.0 83.1 92.8 0.079 0.101
Brot 0.900 55.5 60.3 80.3 0.058 0.078
ﬁdpi 0.804 59.9 644 86.0 0.066 0.086
T =2
hse 0.526 75.9 85.0 92.5 0.068 0.082
Prot 1.872 2.6 1.0 3.7 0.031  0.042
iLdpi 0.816 36.7 43.2 53.2 0.055 0.067
Panel B: Summary Statistics for the Estimated Bandwidths
Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
r=—-2
hrot 0.853 0.632 0.781 0.839 0.844  0.896 1.25 0.088
ﬁdpi - 0.447  0.515 0.545 0.579  0.589 1.86 0.13
r=-—1
Prot - 1.1 1.4 155  1.75 1.8 16.6 0.83
iLdpi - 0.395 0.659 0.794 0.823 0.934 2.06 0.24
=0
hrot 0.879 0.918 1.04 1.08 1.09 1.12 1.53 0.063
iLdpi - 0.424 0.635 0.757  0.791  0.893 1.99 0.23
=1
ot 0.600 0.787  0.876 0.899 0.9 0.923 1.08 0.036
ﬁdpi - 0.429 0.69 0.768 0.804 0.874 2.03 0.21
=2
ilrot 0.526 1.08 1.43 1.6 1.87 1.89 61 1.57
izdpi - 0.412  0.606 0.795 0.816 0.94 2.01 0.26

Notes:

(i) US = Undersmoothing, BC = Bias Corrected, RBC = Robust Bias Corrected.

(ii) Columns under “Bandwidth” report the average estimated bandwidths choices, as appropriate, for bandwidth h,.
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Figure S.I.10: Empirical Coverage of 95% Confidence Intervals (z = 0)
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Figure S.I.11: Average Interval Length of 95% Confidence Intervals (x = 0)
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Part S.II

Local Polynomial Estimation and Inference

S.II.1 Notation

Local polynomial regression is notationally demanding, and the Edgeworth expansions will be
substantially more so. For ease of reference, we collect all notation here regardless of where it is
introduced and used. Much of the notation is fully restated later, when needed. As such, this
subsection is designed more for reference, and is not easily readable.

Throughout, a subscript p will generally refer to a quantity used to estimate m(z) = E[Y;|X; =
x], while a subscript ¢ will refer to the bias correction portion (the vectors eg and ep;1 below are
notable exceptions to this rule). Recall that p > 1 is odd and ¢ > p may be even or odd.

Throughout this section let X} ; = (X; — x)/h and similarly for X3 ;. The evaluation point is
implicit here.

To save notation, products of functions will be written together, with only one argument. For

example

X~z X~z X, —z\’
(Krpry)(Xni) = K(Xni)rp(Xni)rp(Xns) = K ( - ) p ( - ) p ( - ) ,
and similarly for (Krp)(Xp;), (Lre)(Xs,:), etc.

All expectations are fixed-n calculations. To give concrete examples of this notation (A, i, Ry,
and W), are redefined below):

B = BW[((X0 = ) /WP, (O = ) /WP = =S (B (X)X 1
i=1

and

. Xi _ Xz' o Xi - p+k
Ry = BlApsd) = OBIK ) () X0 =07 [ K ( ””) , ( ) ( m) F(X)dX,
’ supp{X} h h h

Here the range of integration is explicit, but in general it will not be. This is important for boundary
issues, where the notation is generally unchanged, and it is to be understood that moments and
moments of the kernel be replaced by the appropriate truncated version. Continuing this example,

if supp{X} = [0,00) and = = 0, then by a change of variables

Apg = h_l/ (Krp)(th)X,fJgkf(Xi)dXi = /W(Krp)(u)up+kf(—uh)du,
7 supp{X} 7 ’ 0
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whereas if supp{X } = (—00,0] and = = 0, then

0
Rpp = / (Kry) () f(—uh)du.

—0o0

For the remainder of this section, the notation is left generic.
For the proofs (Section S.I1.6) we will frequently abbreviate s = vnh.

S.II.1.1 Estimators, Variances, and Studentized Statistics

To define the estimator m of m and the bias correction, begin by defining:

rp(u) = (Lu,a?, ... uP), Ry =[rp(Xn1),- - s 7p(Xnn)
W, = diag (hilK(Xh,Z-) 1i = 1,...,n), H, = diag (1,h71,h72,...,h7p) , (S.IL.1)
/
Ty = RyWpRy/n,  and  Ayp = RW, | XPYE o X2/,
where diag(a; : @ = 1,...,n) denote the n x n diagonal matrix constructed using the elements
ai,az, - ,ap. Note that in the main text A, 1 is denoted by A,,.

Similarly, define

re(u) = (1L,u,u?, .. uf) Ry = [rq(Xp1),- - 7g(Xpn)]

W, = diag (b"'L(Xp;) :i=1,...,n), Hy =diag (1,b71,67%,...,b79), (S.I1.2)
/

Ty= RyWRy/n,  and Mgy = RyW, [ X015 Xtk m,

These are identical, but substituting ¢, L, and b in place of p, K, and h, respectively. Note that
some dimensions change but other do not: for example, W), and W, are both n xn, but I is (p+1)
square whereas I'; is (¢ + 1).

Denote by eg the (p 4 1)-vector with a one in the first position and zeros in the remaining and
Y = (Y1,---,Y,)". The local polynomial estimator of m(x) = E[Y;|X; = ] is

= eyBy = egH,I') ' RLW,Y /n,

where

. 1 &
Bp = argmin — Y ~(V; — ry(X; — 2)'b)°K (Xp;) = H,T, ' RW,Y/n.
berp+1 TS

If we define R = [rp(X1 — ), - ,7p(Xn — )] and M = [m(X1),...,m(X,)], then we can split

m — m into the variance and bias terms

i —m = egUy L ROW,(Y — M) /n+ eyl L RoW, (M — RB,)/n.
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This will be useful in the course of the proofs.

The conditional bias is given by

E[m|X1, ..., Xn) —m = WP, e+t

T 1),e’OF;1Ap,1 + 0p(RPT1). (S.I1.3)
(Recall that in the main paper, Ay is denoted A,.) This result is valid for p odd, our main focus,
but also for p even at boundary points.

Denote by e,41 the (¢ + 1)-vector with one in the p 4+ 2 position, and zeros in the rest. Then

we estimate the bias as

1

B,, = pPt1p,(0+1)
(p+1)!

el Ap1,  where Pt =[(p+1)le,  H I RLW,Y/n.

The bias corrected estimator can then be written

1 — By, = egHyUy ' ROW,Y /n — WP gD A 1€l HD TP RLW,Y
= el (R,W, — p" T Ayl T RIW,) Y/n,

using the fact that e, | Hy = bP™lel ;.

The fixed-n variances are

ooe = (nh)V[m|X1, -, Xa] = efI) ! (hRR,W,SW,R, /n) T e (S.I1.4)
and
crfbc = (nh)V|m — Em|X1, ooy Xl
= eol'y H(h/n) (ROW, — pPH Apre, T RyW,) S (R, W, — 0P A1), HF;IR;Wq)/rgleo,
(S.IL5)
where

Y =diag(v(X;):i=1,...,n), with v(z) = V[Y|X = z].

These are the closest analogue to the density case, but are still random due to the conditioning

on the covariates. Their respective estimators are
A _ =1 / S —1
62 = ey (AR S, W R, T, /) o
and

Ge = oLy (h/n) (ByW, — o A€l Dy ' RyW) B (R W, — PPHApvle;aJrqu_lRiqu)/F_leo'

rbc P
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The conditional variance matrixes are estimated as

3, = diag(d(X;) : i =1,...,n), with (X)) = (Y — rp(X; — 2)'Bp)?,

and

3, = diag(9(X;) i =1,...,n), with — 6(X;) = (V; — 7(Xi — ) ,)%

The Studentized statistics of interest are then:

Vnh(in —m)

Ous

Vnh(m — By, —m
) Tbc: ( © )a Trbc:

Ous

\/%(rh—Bm—m).

Orbce

Tus =

The main result of this section is an Edgeworth expansion of the distribution function of these

statistics.

S.I1.1.2 Edgeworth Expansion Terms

The terms of the Edgeworth expansion require further notation and discussion. The expressions
are not nearly as compact as in the density case (cf. Section S.1.6).

Define the expectations of I'y, I'y, A, 1, and A,y as fp, fq, Ap’k, and INXng, such as
Iy =E[[,] =E [ (Krpr))(Xn,)] -

These will be used to define nonrandom biases and variances that appear in the expansions.

The biases are defined in Eqn. (S.IL7), and are given by
tha = Vi [ B K (w)ryu) (m(o = uh) = ry(uh)'5,) £ o~ ub)du,
e = Vi [ €GE K (w)ry () (o = uh) = rpia(wh) By i) £ (o — b
— VnhpPtt / gD Ay el (T L(u)rg(u) (m(z — ub) — rq(ub)'By) f(z — ub)du.

Further discussion and leading terms are found in Section S.II1.4.

The fixed-n variances are computed conditionally, and we must replace them with their nonran-
dom analogues (just as 7ys and 7y must be nonrandom). Recalling Equations (S.I1.4) and (S.IL.5),
define

¥, =E[¥,] and U, := hR,W,SW,R,/n,
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and

=1

- - ~ ~ ~ ~ /
(=E[D] and By i=h(RW, = g R D R, ) S (RyWy/n = p R T RW /)

In the course of the proofs, we will also use \i/p = hR;)WpflprRp /n and the analogously-defined

We now give the precise forms of the polynomials in the Edgeworth expansion. As with the
density, there will be both even and odd polynomials. These are not as compact or simple as the
density case. Further, we will not attempt to simplify these functions by making use of limiting
versions of moments. For example, we will not replace A, 1 by f(z) [(K7r,)(u)uP™ du, and similarly
for other pieces. The only simplification made will be the use of i ys(2) in the expansion for Ti.,
which otherwise would require further notation than what is below (along the lines of pjus(z)
below).

First, define the following functions, which depend on n, p, q, h, b, K and L, but this is generally

suppressed:
(X:) = el (K7p) (Xni);

) = Las(Xa) — PPl lf\pleﬁoﬂf*l(ﬁ‘q)(){bi);

)
)

(Xi, X;) = gLy (E[(Krpr, )(Xh,J)] (Krpr, )(Xh,g)) p (K1) (Xn);
)

(
— (Krpry))(Xn ) Ty Ap ey
T (<Krp><xh] Xp“ - E[(Km(xh,j)xz’ﬂ) i1

+ Ryl (BILrgry) (Xo )] = (Lrgry) (X)) g (Lrg) (X,
With this notation, we can write

Ore = E[h™ s (X)*0(X)),

us

Groe = E[h™ 5 (X)*0(X)),

Orbe

Mus = SE [0 (Xa) [m(Xy) — rp(Xi — 2)'By]] |

and

Moe = sk [hilggs(Xi)[m(Xi) —pt1(Xi — @) Bp1a]
A (Be(X0) — (X)) [m(X3) = rg(Xi — )/ 5g) .

We will define the Edgeworth expansion polynomials first for the undersmoothing case. The stan-
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dard Normal density is ¢(z). First, the even polynomials are
Prus(2) = $(2)05 B [h™ 105 (X0)e] {(22% — 1)/6}

and
P3us(2) = —6(2)G5

The absence of p(2) (z) is noteworthy: there is no version of this term for local polynomial estimation,
because ¢; is conditionally mean zero.

Next, the odd polynomials for undersmoothing are defined as follows:

Q1us(2) = ¢(2)5. 2 E [h 1004 ( 1)35] {*/3+72/4+ 57 3)/4}
+ ()5 2E [h 1 <Xz>eis<XuX> 2 {—2(2 - /2}
+¢(z)~;4 [h 10 (XZ)4(5 X;) ] {z (22 —3)/8}
— $(2)55 E :h—lfﬂsmz)?rp(Xhz)r (Krp) (Xna)e?] {2(22 = 1)/2}
— O(2)5 B [ (X)) (X0,) T 2| B [ () (X ) e (Xi)e?] {2(2 — 1)}
- 0(2)55 B B2 00 (X0 rpl(Xn ) Ty () (X)) | {2(22 = 1)/4)
o+ 0(2)5 B (B0 (X1 (X 5) Ty () (X)X rp(Xig) Ty () (X ) 0 (X )<

x {z( (22 — 1)/2}

$(2)55a E [h 10 (Xi) ef] {—2(2* — 3)/24}

3(2)F5s B [0 (Ls (Xi)*0(X3) — B[l (Xi)*0(X0)]) fs (Xi)%] {2(* — 1) /4}
¢(z)5_4E[ W20 (X X)EO( )0 (X5)%e30(Xy)] {z(2* — 3)}

3(2)F5s E [h 20y (X; X)EO( i) (s (X5)%0(X;) — B[l (X;)*0(X)]) 7] {2}
O(2)FlE [ (E8,(X)?0(X0) — B[00 (X0)0(X))°| {~2(% + 1)/8}

P2us(2) = _¢<Z)&1;2Z/23
G3s(2) = 9(2)0s Blh ™ 005 (Xi)e]] (2% /3).

For robust bias correction, both the even polynomials, p1 rpc(2) and p3 rpe(2), and the odd polyno-
mials, ¢1,roc(2), ¢2,r0c(2), and g3 roc(2) are defined in the exact same way, but changing the Gys to

Frves X, (1) to E.(-), K to L, and p to g, and so forth. For ¢ us(2) and g1 rve(2), the seventh term
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can be rewritten by rearranging the terms and factoring the expectation, as follows:

E[h 06 (X5)2rp(Xn ) Ty (K 1p) (X i) o (Xi)rp(Xn ) Ty (K rp) (X i) o (X )€ ek}
:E[h_légs(Xi)s2( )(Xn.s) ;} [ Bl (X )r,,(Xh])rp(th)r—l] (S.IL6)

% B B (K ) (X0 (X1)ed)

The polynomials defined here are for distribution function expansions, and are different from
those used for coverage error. The polynomials g1 us, ¢2,us; and ¢3us and i rbe, G2,rbe, and g3 rbe,
which do mot have an argument, used for coverage error in the main text and in Corollary S.II.1
below, are defined in terms of those given above, which do have an argument. Specifically, the
polynomials above should be doubled, divided by the standard Normal density, and evaluated at

the Normal quantile z, /o, that is,

2

Qko = ——qk,o(2 , k=1,2,3, e =us,rbc
o) ")

Z:ZQ/Q

For traditional bias correction, ¢ius(2), ¢2.us(2), and g3us(2) are used, but such simplification

can not be done for pj pc(2) and p3pe(z), which must be defined as

PLoe(2) = B(2)55 (E [h705(X0)*el] {~ (22 = 1)/6} + E [h™ 0, (X:) Be(X)e¥] {~(2* - 3)/4})
+ 0(2) 05T melE [h g (Xi) b (Xi)e]] {3(2* — 1)/}

and

Pape(2) = —(2)55

Lastly, traditional bias correction also exhibits additional terms in the expansion (see discussion
in the main text) representing the covariance of 7 and Bm (denoted by € pc) and the variance of
B, (Q2,pc). We now state their precise forms. These arise from the mismatch between the variance

of the numerator of Ty and the standardization used, o2, but these are random, and so Qqpc and

us?
Q2 pe must be derived from the nonrandom versions, 6%, and G2, (cf. Section S.1.6; for the same

reason 7),s and 7y must be nonrandom). Recalling the definitions above,
62 _ E[N 0, (X)%0(X))
53 E[pH(X)?0(X))]

_ EpTHAX) + (B(X) — (X)) Po(X)]
B[l 1035 (X)?0(X)]

=1 = 265 E[h ™ {0 (X) (e (X) — L6 (X)) 0 (X)] + G B[R {6 (X) — 35 (X)) 0 (X))
= 1= 2p" G 2 {p P20 (X)) (B (X) — £.(X)) Ju(X)]
+p PG 2B p PR (fpe(X) — £a(X) (X))
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Therefore

D pe = =205l H{p P20, (X) (e (X) — £6 (X)) Ju(X)]
and

Dape = e ED™H{p ™72 (loe(X) — oo (X)) Po(X)).

Remark S.I1.1 (Simplifications). It is possible for the above-defined polynomials to simplify in

special cases. A leading example is in the homoskedastic Gaussian regression model:
Y = m(X;) + &, where g; ~N(0,v).

This model is a common theoretical baseline to study, though over-simplified from an empirical
point of view. In this special case, E[E?] = 0 and thus g3 4s(2) = 0, entirely removing this term from
the Edgeworth expansions. This has little bearing on the conceptual conclusions however, and in

particular the comparison of undersmoothing and robust bias correction. [

S.II.2 Details of Practical Implementation

In the main text we give a direct plug-in (DPI) rule to implement the coverage-error optimal
bandwidth. Here we we give complete details for this procedure as well as document a second
practical choice, based on a rule-of-thumb (ROT) strategy. Both choices yield the optimal coverage
error decay rate at interior and boundary points.

All our methods are implemented in R and STATA via the nprobust package, available from
http://sites.google.com/site/nppackages/nprobust (see alsohttp://cran.r-project.org/
package=nprobust). See Calonico et al. (2017) for a complete description.

As in the density case, the MSE-optimal bandwidth undercovers when used in the undersmooth-

ing confidence interval; that is, Remark S.I.1 applies directly. See also Hall and Horowitz (2013).

S.II.2.1 Bandwidth Choice: Rule-of-Thumb (ROT)

As with the density case, a simple rule-of-thumb based on rescaling the MSE-optimal bandwidth
is:

iL;gE - ﬁ,t‘s‘li n—(P=1)/((2p+3)(p+4)) and ﬁ?gg — iLzrslg n~—P/((2p+3)(p+3))

where ﬁr}fs‘z and hgg‘g denote readily-available implementations of the MSE-optimal bandwidth for
interior and boundary points, respectively. See, e.g., Fan and Gijbels (1996). Again, when p = 1
in the interior, no scaling is needed (hiff = Aimt) but for p > 1 any data-driven MSE-optimal

rot mse
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bandwidth should always be shrunk to improve inference at the boundary (i.e., reduce coverage

errors of the robust bias-corrected confidence intervals).

The ROT selector may be especially attractive for simplicity, if estimating the constants de-

scribed below in the DPI case is prohibitive.

Remark S.1.2 applies to this case as well, though less transparently and without consequences

that are as dramatic.

S.I1.2.2 Bandwidth Choice: Direct Plug-In (DPI)

We now detail the required steps to implement the plug-in bandwidth fzdpi for interior and boundary

points. We always set K = L, p=1, and ¢ = p+ 1. The steps are:

(1)
(2)

*
mse*

As a pilot bandwidth, use ﬁmse: any data-driven version of h

Using this bandwidth, estimate the regression function m(X;) as m(Xi;ﬁmse) = rp(X; —
x) Bp(ﬁmse), where Bp(ﬁmse) is the local polynomial coefficient estimate of order p exactly as

defined in the main text, using the bandwidth ﬁmse.
Form &; = Y; — 11(X; fmse)-

Following Fan and Gijbels (1996, §4.2) we estimate derivatives m®) using a global least

squares polynomial fit of order k + 2. That is, estimate (P t3) (z) as

(p+5)!

P (2) = Wpps (0 +3)! + Blps P+ D 2+ Wlppe 2

where [¥], is the k-th element of the vector 4 that is estimated as

The estimate for mP*+2)(z) is similar, with all indexes incremented down once.
For interior points, both are needed, while only m(Pt2) (x) is required for the boundary.

The estimated polynomials gy roe, k& = 1,2,3 and the bias constants 7i2t and 752 are defined

as follows. The polynomials 1 rbc, ¢2,rbc, and g3rbc, Which do not have an argument, are
defined in terms of those given in Section S.I1.1.2, which do have an argument. Specifically,
the polynomials in Section S.I1.1.2 should be doubled, divided by the standard Normal density,
and evaluated at the Normal quantile z, /o, that is, gk rbe = qb(za/g)*lqk,rbc(za/g). For q1 rbe,
the form given in Eqn. (S.I1.6) should be used.

Note that with the recommended choice of K = L, p = 1, and ¢ = p + 1, the polynomials
Gkxbc, K = 1,2,3 can be read off the expressions for the undersmoothing versions, g us,
k=1,2,3, with p replaced by p + 1.
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The bias terms, for the interior and boundary, are given as follows (dropping remainder
terms). With ¢ = p+ 1, and hence even, and p = 1, the expressions of Section S.I1.4 simplify.
For the interior: nit* = /nhhP 370t with

(p+2)
~in _1m ~ ~ 4~
Moo = h 1M {eon L (Ap 2 — Apieyly lAqJ) }
(p+3)
m - [~ - o e
+ m {eéfp 1 <Ap,3 - Ap71€/p+1rq 1Aq72>} ;

At the boundary: nP2d = /nhhP+27029 with

(p+2)
~bnd _ =1 (% X I 1%
Noe — (p T 2)| {GOFP (APQ — Ap71€p+1r‘q Aq71)} .

t “pnd

The estimates of these, G yoc, kK = 1,2,3 and nm and 7ge¢, are defined by replacing:

(i) h with hpse,
(ii) population expectations with sample averages (see note below),
(iii) residuals g; with &;,
(iv) derivatives m®+2) and m®*3) with their estimators from above,
) limiting matrices f‘p, Ang, etc, with the corresponding sample versions using the band-
width hpge, €.g., I'p is replaced with I'p(hpse) = R;W (hmse)Rp/n, where W, (hmse) =
diag (s K (X = 2)/hase ) ).

(hmse)n ™Y/ ®+4) and hbnd H}l’;f(ﬁmse)nfl/(pﬁ), where

(v

Finally hist = F3nt

Hé;f(hmse> = arg;lin’H_lijrbc + HITHPES) (Ulnt) 42,rbc + + HP3 (Uﬁ?t)% rbc!

while at (or near) the boundary the optimal bandwidth is k%, = H¥ (p)n~/®*+3) where

rbc

Hggf(ﬁmse) = argénin‘Hilfjl,rbc + H1+2(p+2) (Ubnd) QQ rbe T Hp+2( bnd)QS rbc{

These numerical minimizations are easily solved; see note below. Code available from the

authors’ websites performs all the above steps.

Remark S.II1.2 (Notes on computation).

e When numerically solving the above minimization problems, computation will be greatly sped

up by squaring the objective function.

e For step 4 above, in estimating ¢i yvc, the form given in Eqn. (S.I1.6) should be used. The

original form requires evaluating a triple sum, or third order U-statistic, which will be far
slower than the right hand side of Eqn. (S.IL.6).
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e For step 4(ii) above, in estimating §j rvc, and specifically when replacing population expec-
tations with sample averages, we use the appropriate U-statistic forms to reduce bias. There
are several terms which are expectations over two or three observations, and for these the
second or third order U-statistic forms are preferred. For example, when estimating terms
such as

E [ A 200, (X0)2(ry (X ) T3 (B ) (X)) €5

we use

1 i f o B R
nn—1) Z Z [hmfefgbc(Xi)Q(Tp(Xgmse,i)Tp YK Tp)(X,;mse,j))QS? ;
i=1 j#i

where /9, _(X;) is made feasible as in step 4(v).

S.I1.2.3 Alternative Standard Errors

As argued in the main text, using variance forms other than (S.I1.4) and (S.I1.5) can be detrimental
to coverage. Within these forms however, two alternative estimates of ¥ are natural. First, mo-
tivated by the fact that the least-squares residuals are on average too small, the well-known HCk
class of heteroskedasticity consistent estimators can be used; see MacKinnon (2013) for details and
a recent review. In our notation, these are defined as follows. First, 62,-HCO is the estimator
above. Then, for k = 1,2,3, the 62,-HCk estimator is obtained by dividing &% by, respectively,
(n—2tr(Qp) +tr(Q,Qp))/n, (1 —Qpii), and (1 — Qp.ii)?, where Q,;; is the i-th diagonal element of
the projection matrix @, := R,TI'; 1R;Wp /n. The corresponding estimators 62, .-HCk are the same
way, with ¢ in place of p. As is well-known in the literature, these estimators perform better for
small sample sizes, a fact we confirm in our simulation study below.

A second option is to use a nearest-neighbor-based variance estimators with a fixed number of
neighbors, following the ideas of Muller and Stadtmuller (1987); Abadie and Imbens (2008). To
define these, let J be a fixed number and j(i) be the j-th closest observation to X;, j =1,...,J,
and set 0(X;) = Jiﬂ(YZ - Z}-le Yj(;)/J)?. This “estimate” is unbiased (but inconsistent) for v(Xj).

Both types of residual estimators could be handled in our results. The constants will change,
but the rates will not. This is because, in all cases, the errors in estimating v(X;) are no greater
than in the original 7 (z). Inspection of the proof shows that simple modifications allow for the
HCk estimators: only the terms of Eqn. (S.I1.12) will change, and indeed, we conjecture that the
HCE estimators will result in fewer terms and a reduced coverage error. This is consistent with the
improved finite-sample behavior of these estimators and the fact that they are asymptotically equiv-
alent. Accommodating the nearest-neighbor estimates require slightly more work and a modified

version of Assumption S.II.3.
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One crucial property of our method, in the context of Edgeworth expansions, is that the bias
in estimation of ¥ is of the same order as the original m(z). Using other methods may result
in additional terms, with possibly distinct rates, appearing in the Edgeworth expansions. Some
examples that may have this issue are (i) using 9(X;) = (Y; — (x))?; (ii) using local or assuming
global heteroskedasticity; (iii) using other nonparametric estimators for v(X;), relying on new

tuning parameters.

S.II.3 Assumptions

The following assumptions are sufficient for our results. The first two are copied directly from the

main text (see discussion there) and the third is the appropriate Cramér’s condition.

Assumption S.I1.1 (Data-generating process). {(Y1, X1),..., (Yn, X))} is a random sample, where
X, has the absolutely continuous distribution with Lebesgue density f, E[Y8+5\X] < oo for some
0 > 0, and in a neighborhood of x, f and v are continuous and bounded away from zero, m is
S > q+2 times continuously differentiable with bounded derivatives, and m'S) is Holder continuous

with exponent <.

Assumption S.I1.2 (Kernels). The kernels K and L are positive, bounded, even functions, and

with compact support.

Assumption S.I1.3 (Cramér’s Condition). For each § > 0 and all sufficiently small h, the random
variables Zys(u) and Zype(u) defined below obey

sup
teRAM{Z()} ¢ >6

/exp{it’Z(u)}f(z —uh)du| <1—C(x,0)h,

where C(x,8) > 0 is a fized constant, ||t|*> = SE{ZW)} t2, and i = /—1.

The random variables of Assumption S.I1.3 are defined follows. For two kernels K7 and Ko,

two polynomial orders (i.e. positive integers) p; and p2, a bandwidth b, and a scalar p, let

Zon 3 1, 1,92, ) 1= (K (), (1), K () () (=)=, () By), vech (K (w)ry, () ()Y )

and



e (K3 () Ka (tp)ry, (u)ryp, () () € = ub) = 1, (ub) By,))' )

The subscripts are intended to make clear that Z,,(-) collects quantities from the numerator of the
Studentized statistic, while Z,(-) gathers additional variables required for the variance estimation.

With this notation, we define
Zus(w) = (Zin(u; K, p,p, 1, 1), Zy(u; K, K,p,p, b, 1)),

Zoe(u) = (Zm(u; K, p,p+1,h, 1), Zy(u; L, q,q,b,p), vech(K (u)ry(w)uf™) | Zy(u; K, K,p,p, h, 1)/),,

and

Zrwe() = (Zn 0 K p.p + 11 1Y, Zon(i L, ,,b, p)', vech(K (u)rp(u)u™1)
Zo(u; K, K, p,q,0,p), Zo(u; L, L,q,q,b,1), Zy(u; K, L,p,q,b,p))".

Discussion. This notation is quite compact, and while it emphasizes the simplicity of Cramér’s
condition and the fact that it puts mild restrictions on the kernels, it does obscure the full notational
breadth, particularly for Zyu.. I is also mostly repetitive: what holds for the kernel K and order
p fit must also hold for L and ¢, and for their squares and cross products. To make this clear, we

can expand all the Z,, and Z,, to write out the full random variables as

) (m(z —uh) = rp(uh)'By), vech(K (u)rp(u)ry(u)’),
Jrp(u)'e?), vech(K (u)*rp(u)rp(u)v(z — uh))’

vech(K (u)?rp(u)rp(u)'e(m(z — uh) — rp(uh)'By))’, vech(K (u)rp(u)rp(u)'rp(u)’)',
)rp(w)

"y, vech(K (u)2ry(u)ry(u)'rp(w) (e — uh) = ry(uh) 5,)')

N
2]
—~
S
~—
|
/N
b
S
~—
’1;3
—~
S
~
M
S
=
bS]
—~

Zno(u) = (K (urp(u)'z, vech(K (u)ry(u)ry ()",
(u)?rp () ()22, vech(K (u)ry (u)ry(u) v(w — uh))',
vech(K ()1 (u)ry (u)'e(m(x — uh) = ry(uh)'5,))', veeh(K (u)ry(u)ry(u)'ry(u)')'
() ?rp () () 1 (10)'2)', veeh (K (u)ry(u)ry(u)'ry(u) e(m(z — uh) = ry(uh) B,))
(2= uh) = 11 (uh) Bps1), Llup)rg(up)'s, vech(L(up)ry(up)ry(up))'
veeh (K (u)rp(u)u? 1Y, L(up)ry(up) (m(x — uh) — rg(uh) By) )

and

Zype(u) = (Zbc(u)', vech(K (u)?r,(u)ry(u)'e?), vech(K (u)rpy(u)ry(w)v(z — ub))’,
vech(K (u)?rp (u)ry(u)'e(m(z — ub) — rq(ub)'By))', vech(K (u)?rp(u)ry(u)'re(up)')',
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K (u)?ry(u)rp(u)'rg(up)'e)’, vech(K (u)*rp(u)ry(u)rq(up)'e(m(z — ub) — rq(ub)'B,))',
(w)?rq(u)rq(u)'e®)’, vech(L(u)?rq(u)rq(u)'v(z — ub)),
vech(L(u)*rq(u)rq(u)'e(m(z — ub) — rq(ub)'B,))', vech(L(u)?rg(u)rg(u)'rg(u)’)’
(w)?rq(w)rq(u)'rg(u)'e)’, vech(L(u)*rq(u)rq(u)'re(u)'e(m(z —u

(
(
(
vech(L(u (w — ub) — ry(ub)'8,))’,
vech (K (u) L(up)ry (u)ry(up) ), vech(K (u) L(up)ry(u)ry(up) v(a — b)),
vech(K (u)L(up)ry(w)ry(up)'e(m(x — ub) — rg(ub) 8,))', veeh(L(u)?ry(w)ry(u)'ry(u)'),
vech(K (u) L{up)ry(u)ry (up)'ry(u)'<)
vech (K (u) L (up)rp ()7 (up) g (up) e(m(x — ub) — r,(ub) B,))' )

Finally, the precise random variables Zys(u), Zvc(u), and Zypc(u) used can be replaced with
slightly different constructions without altering the conclusions of Theorem S.II.1: there are other
potential functions 7' that satisfy Eqn. (S.IL.8) in the proof. Such changes necessarily involve

asymptotically negligible terms, and do not materially alter the severity of the restrictions imposed.

Remark S.I1.3 (Sufficient Conditions for Cramér’s Condition). Assumption S.I1.3 is a high level
condition, but one that is fairly mild. It is essentially a continuity requirement, and is discussed
at length by (among others) Bhattacharya and Rao (1976), Bhattacharya and Ghosh (1978), and
Hall (1992a). For a recent work in econometrics, the present condition can be compared to that
employed by Kline and Santos (2012) for parametric regression (the role of the covariates is here
played by r,(Xp;)): ours is more complex due to the nonparametric smoothing bias and the fact
that the expansion is carried out to higher order.

It is straightforward to provide sufficient conditions for Assumption S.I1.3, given that Assump-
tions S.IT.1 and S.IT.2 hold. In particular, if we additionally assume that (1, vech(K (u)ry(u)ry(u)’)’)’
comprises a linearly independent set of functions on [—1,1], then it holds Zys(u) has components
that are nondegenerate and absolutely continuous, and this will imply that Assumption S.I1.3 holds
for Zys(u), by arguing as in Bhattacharya and Ghosh (1978, Lemma 2.2) and Hall (1992a, p. 65).
This is precisely the approach taken by Chen and Qin (2002), when studying undersmoothed lo-
cal linear regression. If the linear independence continues to hold when the set of functions is
augmented with vech(L(u)rq(u)rq(u)’), then Zyc(u) and Zype(u) satisfy Assumption S.I1.3 as well.

At heart, these are requirements on the kernel functions, just as in Assumption S.I.3 in the
density case. The uniform kernel is again ruled out. See Section S.I.3. Further, note that if
these sets of functions are not linearly independent, there will exist a there exists a smaller set of
functions which are linearly independent and can replace the original set while leaving the value of
the statistic unchanged (see Bhattacharya and Ghosh (1978, p. 442)). |

S.I1.4 Bias

We will not present a detailed discussion of bias issues, along the lines of Section S.1.4.1, for brevity;

we focus only on the case of nonbinding smoothness.
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The biases nys and m,c are not as conceptually simple as in the density case. The closest
parallel to the density case would be (for example) 1y = vnh(E[i2] —m), but this can not be used
due to the presence of I'; I inside the expectation, and the next natural choice, the conditional bias
M(E[m|X 1,...Xp|—m), is still random. Instead, nys and 7, are biases computed after replacing

Iy, I'y, and A, 1 with their expectations, denoted fp, f‘q, and /~\p71. We thus define

Tas = M/egf;IK(u)rp(u) (m(az —uh) — Tp(uh)’ﬁp) f(x — uh)du,
Noc = \/@/e’ofle(U)Tp(U) (m(x —uh) — Tp—&-l(Uh)/Bp—s-l) f(x —uh)du

— \/%pp+1 /egf;1/~Xp,1e;3+1f‘;1L(u)rq(u) (m(;v — ub) — rq(ub)lﬁq) f(x — ub)du.
(S.IL.7)

For the generic results of coverage error or the generic Edgeworth expansions of Theorem S.1I.1
below, the above definitions of n,s and ny. are suitable. For the Corollaries detailing specific
cases, and to understand the behavior at different points, it is useful to make the leading terms
precise, that is, analogues of Equations (S.I.2) and (S.I.3). We must consider interior and boundary
point estimation, and even and odd gq. We depart slightly from other terms of the expansion in
that we do retain only the leading term for some pieces. This is done in order to capture the
rate of convergence explicitly and to give practicable results. These results are derived by Fan and
Gijbels (1996, Section 3.7) and similar calculations (though our expressions differ slightly as fixed-n
expectations are retained as much as possible).

Since p is odd, both at boundary and interior points we have

p+1
Nas = \/Tﬁhpﬂ(?;:_l))!e{)f;l]\p,l [1+o0(1)].

Moving to e, consider the first term, which in the present notation is: vnhE[R ™10 (X)(m(X)—

Tp+1(X — )’ Bps1)]. With p+ 1 even, we find that in the interior the leading terms are

m@P+2) ) m®+3) _

Vv nhhp+3€6f;1 <(p—|—2)!Ap’2h_ + (p—i—?))!Ap’3> [1 + 0(1)] s

due to the well-known symmetry properties of local polynomials that result in the cancellation of
the leading terms of f; L and Ang. The rate of h?*3 accounts for this. At the boundary, no such
cancellation occurs and we have only

m(p+2)

V nhhp+2me6f;11’ip72 [1 -+ 0(1)] .
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Next, turn to the bias of the bias estimate:
Vnhpp+1661~“;11~&p7le;+1f;1 /L(u)rq(u) (m(z — ub) — rq(ub)'By) f(z — ub)du.

If ¢ is odd (so that ¢ — (p+ 1) is also odd), then at the interior or boundary the leading term will
be

(¢+1) -
VnhbTH1 ppt1 (m+ 3 el R aeh Ty Ry 1 [L+ 0(1)] < VnhhPHp1 P,
q !

The same expression applies at the boundary for ¢ even. However, for the interior, if ¢ is even,
which it is in the leading case of ¢ = p+ 1, then we again have cancellation of certain leading terms,

resulting in the bias of the bias estimate being
me+2pp+l /f—lA / f—l m((ﬁl) ]\ b—l + m(q+2) ]\ [1 + (1)] mhp+1bq+1—p
n e e —_— —_— o(1)] < vn .
0t p p1€pti1tg (q+ 1)! q,1 (q+ 2)! q,2
Combining all these results, we find the following. For an interior point 72* = v/nhh?*3 [fi2 4+ o(1)],

where, if ¢ is even

- (p+2) _ m@+3) _
~int IF—l m A h—l
p <<p+2>! p2lt T g

(g+1) (g+2)
= (pF) =1%o =1 T 1 -1, M A
p~ b eOFp AP71€p+1Fq ((q+ 1)!A(1,1b + <q + 2)!Aq72>7

while if ¢ is odd,

. - (+2) _ m@+3) _ mlatl) -
~int __ 6/ F—l (mA h—l + 71& > _ —qu—(p+2)76/ F_lA 6/ F—IA .
Toe 0+ p (p + 2)! p,2 (p n 3)! p,3 p (C] T 1)! 0t p plCp1tq 43g1

At the boundary, for any g, ng2® = /nhh?*? [722% + o(1)], with

me+2) )m(q+1)

66I‘;1AP72 . pflbqf(erl

~bnd —
Moe = oy 2!

I =14 / P—1x
WEOFP Ap71€p+1rq Aq’l.

S.IL.5 Main Result: Edgeworth Expansion

We now state our generic Edgeworth expansion, from whence the coverage probability expansion
results follow immediately. We have opted to state separate results for undersmoothing, bias
correction, and robust bias correction, rather than the unified statement of Theorem S.I.1, for
clarity. The unified structure is still present, and will be used in the proof of the result below, but
is too cumbersome to use here. The Standard Normal distribution and density functions are ®(z)

and ¢(z), respectively.
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Theorem S.IL.1. Let Assumptions S.II.1, S.I11.2, and S.II.3 hold, and assume nh/log(n) — co.
(a) If nuslog(nh) — 0, then for

1 1 Thas
Fus = ~—F7—P1l,us usP3,us —7 {1,us 2 us us s
(Z) (Z) + mpl, (Z) + TusP3, (Z) + nth (Z) + Masq2, (Z) + \/’f%q& (Z)

we have

sup |P[Tys < 2] — Fus(2)| = 0 <(nh)71 + (nh)*l/znus + 7735) .
z€R

(b) If noc log(nh) — 0 and p — 0, then for

1 1 Thoc
Fbc(z) = (I)(Z) + mpl,bc(z) + T]bcp?),bc(z) + ﬁQl,us(z) + WgcCIz,bc(Z) + \/%q&bc(z)

¢(2)

— PP+ Perle)TZ,

we have

sup [BlTue < 2] = Foc(2)| = 0 ((nh) ™"+ (nh) e -+ p 4204V )
zE

(c) If mclog(nh) — 0 and p — p < oo, then for

Thoc

1 1
Frbc(Z) = (I)(Z) + \/ﬁpl,rbc(z) + nbcp?),rbc(z) + %QLIbc (Z) + ngcqlrbc(z) + mq&rbc(z)u
we have

suﬂg IP[Trve < 2] — Froe(2)| =0 ((nh)_1 + (nh)_l/anc + ngc) .
ze

S.II.5.1 Coverage Error for Undersmoothing

For undersmoothing estimators, we have the following result, which is valid for both interior and
boundary points, with moments appropriately truncated if necessary. This result is the analogue of
the robust bias correction corollary in the main text, and follows directly from the generic theorem
there or Theorem S.II.1 above. Exponents such as 1+ 2(p + 1) are intentionally not simplified to
ease comparison to other results, particularly the density case.

The polynomials g1 us, ¢2,us, and g3 s, which do not have an argument, are defined in terms of
those given in Section S.I1.1.2 and used in Theorem S.II.1, which do have an argument. Specifically,
the polynomials in Section S.I1.1.2 and Theorem S.I1.1 should be doubled, divided by the standard

Normal density, and evaluated at the Normal quantile z, /o, that is,

2
Qk.us ‘= 7~ 4kus(? , k=1,2,3.
o) deas2)

Z:ZQ/Q
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Corollary S.II.1 (Undersmoothing). Let the conditions of Theorem S.I1.1(a) hold. Then

1 2 o 2
Plm € Ius] =1—a+ {nhql,us + nhl AP (m(”“)) (€6F; "Apa/(p+ 1)!) 02,05

4 pptl <m<p+1>) (egf;uim/(p + 1)!) q37us}¢(zg) {1+0(1)}.

In particular, if ki, = Hn~ Y0+ then Plm € Is] = 1 — o+ O(n~PHD/A+@+0)) yphere

u

2 ~ - 2
H_1q1,us + H1+2(p+1) (m(P-H)) (ei)r;lAp,l/(p_F 1)|> (2,08

H;, = arg min
H
4+ grtl (m(p+1)> (ef)f;l]xp,l/(p + 1)!) qg,us‘,

S.I1.6 Proof of Main Result

We will first prove Theorem S.II.1(a), as it is notationally simplest. From a technical and con-
ceptual point of view, proving the remainder of Theorem S.II.1 is identical, simply more involved
notationally due to the additional complexity of the bias correction. Outlines of these proofs are

found below.

S.11.6.1 Proof of Theorem S.I1.1(a)
Let s = v/nh.

Throughout this proof, we will generally omit the subscripts us and p when this causes no

confusion. This entire proof focuses on the undersmoothing statistic, Tys = 6y

s(m — m), and
since bias correction is not involved at all, the associated constructions such as I'y, W, etc, do not
appear, and hence there is no need to carry the additional notation to distinguish W), from W,, or
Ous from Gy, for example, and we will simply write I' for I'y,, W for W), & for 0ys, etc.

Our goal is to expand P[Tys < 2], where Ty = 6~ s(7i —m). The proof proceeds by identifying
a smooth function T' = T'(z) such that, for the random variable Zys := Zys(u) that obeys Cramér’s

condition (Assumption S.I1.3), T(E[Zys]) = 0 and

P[Tus < 2] =P[T(Zys) < 2] + o(s2+ s in+n?), (S.IL.8)

where Z = Y7 | Z;/n and Z is a known, nonrandom quantity that depends on the original quantile
z and the remainder Tys — 7. An Edgeworth expansion for 7" holds under Assumption S.I1.3, and
a Taylor expansion of this function around Z yields the final result. As in the density case, Z will
capture the bias terms of Tys: in that case Z = z — 1/, but here bias is present in both the
numerator and the Studentization.

To begin, define the notation R = [r,(X1 — z), - ,7p(X, — 2)]" and M = [m(X1),...,m(X,)],
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and use this to split T into variance and bias terms, as follows:
T =6"tsefI ' RW (Y — M)/n+ 6 seyTU ' R'W (M — RB)/n.
We use this decomposition to rewrite P[Tys < z] as

P[Tys < 2] =P[Tus— 6 'n<z—5"n]

=P
=P [{67 seqT "R'W(Y — M)/n+ 6 'setTU '"R'W(M — RB)/n— 6 'n} < z—6 1]
=P [{&_lse{)F_lR’W(Y — M)/n

+ 6 tsefl 'R'W (M — RB)/n — 671

+5 el (r-l . f—l) R'W (M — RB)/n (S.IL.9)

+ (67 =6 segl ' R'W (Y — M)/n

+ ((3_1 - 5_1) sepgl 'R'W (M — Rﬁ)/n} <z- 6_117] .

The first three lines in the last equality obey the desired properties of T by the orthogonality of ;,
the definition of 7ys in Eqn. (S.I1.7) as E [segfflR'W(M - Rﬂ)/n} , and the fact that I~' —T—1 =

! (f - F) I'~!. For the final two (which are Tys — 6 ts(m—m) = 6~ — 5 1s(1h —m)), we must
expand the difference 61 — 5. Accounting for the resulting terms will constitute the bulk of the
remainder of the proof, as well as complete the construction of Z and the remainder terms of Eqn.

(S.IL.8).2
To begin, with 62 = egf_lkilf_leo defined in Section S.I1.1.2,

11 /62\VY* 1 52 — 52\ /2
—_ = — —_— = — 1
L))

and hence a Taylor expansion gives

. 1&2—&2+3 52 -62\% 115 [(62-52\57
2 52 s\ &2 318 52 a7 |’

for a point 52 € [62,6?], and so

1

o

SR

(S.IL.10)

55 16 o7

We thus focus on 6% — 52. Recall the definition of ¥ = hR'WXW R/n. Then define the two terms

2Technically, to obtain a T with the desired properties, one need not expand 6~ — 6~ for the variance term:

that is, in Eqn. (S.11.9), 6 "seqI " R'W(Y — M)/n and (67" — &7 ") segI' "R'W (Y — M) /n may be collapsed. This
requires strengthening Cramér’s condition gsee Section S.I1.3), and since 6~ —& ' must be accounted for in the final
bias term, (67" — 6~ ") segI' ' R'W (M — R)/n, there is little reason not to do both terms.
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Aq and As through the following:
52— 5% = el (xp - qz) Tleg + (egr—lxi/r—leo - egf—liff—leo) — Ay + Ay, (SIL1D)
For Ay, recall that &; = y; — rp(X; — x)’Bp and so
1 n
V= Z(K%pr;,)(xh,i) {62 —v(X;)}

ey Z 2rpry) (Xn.i) {(yz —rp(Xi — ) ﬁp) - U(Xi)}

n

1 ~ T\ 2
= = 3 (K (X) {(ei + [m(X0) = rp(Xi = ) By] +1p(Xi — @) |8, = By]) - v(X»}
i=1
=: A171 + Al,g + A1,3 + A174 + A175 + A1,6 + A1,7 + A178, (S.H.12)
where
1 n
A = nh;(K rprn) (Xn,) {ef —v(Xy)},

is due to the approximation of the (average over the) conditional variance by the squared residuals
(i.e. Ay, is the sole remainder that would arise if the true residuals were known and used in place
of €2), and, using r,(X; — z)'f = rp(X; — ) H,U 'R'WY/n = r,(X,,;) T 'R'WY/n, the terms
Arg, k=2,3,...,8 are:

T
A1,2 = % Z( 7ﬁpr Xhz {252 X ) - Tp( ) IBP]}
=1

1 ¢ ~ .
Arg=— D (K2ryry))(Xna) {=2eimp(Xn) } T RW(Y = RB) /n,
=1

Ay = % Z( ror) (X)) {—2[m(X;) — rp(X; — @) Bplry(Xn) T T RW (Y — M) /n,
A= — Z N Xp )T ' RW (Y — M) /n [(Y = M) /n+2(M — RB)/n] WRL ™ 'ry(Xp,),
A = h Z Tpr (Xn z)[ (Xi) = rp(X; ) Bp] )

A= % Z(KQT’pT‘;’f’;)(Xh,i) {—2[m(X;) — rp(Xi — 2)'B,]} T'R'W (M — RB)/n,
=1
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and

n

1 _ . . _
Arg = — Z(K%pr;,r;)(xhvi)r YRW (M — RB)/n])[(M — RB) /nW RIT 1r,(Xp.4).
i=1
With this notation, we can write A; = eI~} (\i’ - @) [leg = eIt (Zz 1A k;) I'leyg. The
terms Ay 1 to A; 5 will be incorporated into T: notice that these terms obey Aj = Ay i( Zys) and
Ay ,(E[Zys]) = 0, and hence these properties will be inherited in the final two lines of Eqn. (S.I1.9).

However, A;6, A17, and Ay g do not have these properties, and will thus be incorporated into Z

and the remainder. Details are below.

Turning to Ay in Eqn. (S.I1.11), using the identity I'~! — -t=r-1 (f‘ — F) I'! and that T
and ¥ are symmetric, we find that
Ay = efl 7T e — epT 71U e
= ef)l“_1 (\if — \if) I leg + el (F_l — f_l) “leg + o < ) UTLeg
— 01 (qf - \I/) T—leg — e (r - f) 1§ <r + I )
All of these terms obey the required properties of T'.
We now collect the terms from expanding 6= — =1 and return to Eqn. (S.IL9). Plugging
the terms A; 1—-A; g and Aj into the Taylor expansion in Eqn. (S.IL1.10), by way of Eqn. (S.IL.11),

and collecting terms appropriately (i.e. those that belong in T as described above), we have the

following, which picks up from Eqn. (S.I1.9) and is a precursor to Eqn. (S.IL.8):
P[Tys < 2] = P [T(Zus) +U < 2} . (S.IL.13)

In this statement, we have made the following constructions:

T=6"tsetI ' RW (Y — M)/n
+ 6 tsefU ' R'W(M — RB)/n — 671
+ 5 1sé) <I‘_1 - f—1> R'W (M — RB)/n
3 _ _
+ { T |:€0P <Z Al k) 60 + A2i| + &? [66F 1A171F 160 + A2:|2}

x {sehD RW (Y = M) /n -+ sehT ™ R'W (M — RB)/n},

. o\ 3
_ L -1 3 [ rp-1 8 12 5 (6757
U= {—2&3 (A1g+ A7+ A1) T Teg+ 355 [eOI’ <Zk:2 A1,k> T 60} ~ 16 =

X {segr—lR’W(Y ~ M)/n+ se)DIR'W (M — RB) /n}
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ot (Al,ﬁ + [11,7 + Al,S) fl@o} 1,

CEy PR
B 263

In U and Zz, each lel,k is A1 where all elements have been replaced by their respective fixed-n

and

ARt (1211,6 + 121177 + ALg) 1:‘160} 7.

expected values, that is,

Aig =E[A1g) = E [h*l(K ) (Xna) [m(X3) = (X — 2)'8,)°]
A = 2B (W (K2rprry) (Xng) [m(Xa) = (X = 2)' By |

x rflE[w(Krp)(Xh,ﬂ [m(2X5) =X~ 2)'8,].
and

1211,8 =E [h_l(K pTp )(Xh J)E [h_lrp(Xh,i)lf_l(Krp)(Xh,j) [m(XJ) - rp(X Bp ’X} }

The next step in the proof is to show that, for 7, = max{s~2 n? hP*!} (i.e., the slowest
decaying), it holds that

—P[|U| > ry] — 0, for some 7, = o(ry). (S.11.14)

*

This result is established by Lemma S.I1.4 in Section S.I1.6.3 below. This, together with Eqn.
(S.I1.13), implies Eqn. (S.IL.8).

Under Assumption S.I1.3, an Edgeworth expansion holds for 7" up to o(s72+ s~y +n?). Thus,
for a smooth function G(z), we have P[T < z] = G(2) 4 o(s~2 + s~'n + 1?). Therefore, a Taylor

expansion gives

- 1 - - -
PT < 2] = G(z) - GY(z) {&1 ~gzzcol <A1,6 + A7+ Al,s) rleo} +o(s 2 +s 'n+n?),
o
which together with Eqn. (S.IL.8) establishes the validity of the Edgeworth expansion. The terms

of the expansion are computed in Section S.I1.6.4 below. 0

S.I1.6.2 Proof of Theorem S.I1.1(b) & (c)

To prove parts (b) and (c) of Theorem S.II.1 the same steps are required, and so we will not
pursue all the details here. Indeed, the same expansions are performed and the same bounds
computed on objects which are conceptually similar, only taking into account the bias correction
(in the numerator for (b), and also in the denominator for (c)). The bias correction will result in

essentially two changes: first, many more terms like I' — I" appear, and second, the bias expressions
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and rates change. To illustrate, we will list several key points where these changes manifest. This
list is not exhaustive, but it will show that the same methods used above still apply.

First, for the numerator of Ty, and Ty, recall that the estimator m is
i = { et Ry W, Y/,
while the bias corrected estimator is
= By = {ehT, " (RYW, = o Mg Ty RW) Y /.

Comparing these two expressions, it can be seen that the terms in the proof above that involve
I',—T', will now additionally involve T —f‘q and Ap,1— A, 1, whereas those that with efT'; R} W), will

now have eOI‘ ! (R’ Wy —pP 1Ap,1ep 1 1R;Wq> instead. To give a concrete example, consider
the third line of Eqn. (S.I1.9),

Faasely (T3 = T51) RyW, (M — Ry B8,) /n,
which becomes a piece of the function T'. For part (b) Theorem S.II.1, treating Ty, this will become

Tas 50 (F_ ;71> R;;Wp(M — Rp1Bpi1)/n
— seppt! (r;lAp,le;Hrq—l = T Ap e U7 ) RyWy(M = Ry /.
and part (c) will have the same but with 6. Then, since
T Apaeh Tyt =T Ryael (Tt = (r L) Apaepaly!
+ f‘;1 (Ap,l - ]\pﬂ) e;HP;l + f‘gl*f\nlegﬂ (Fgl o fgl) ’
this term is handled identically, since the appropriate Cramér’s condition is assumed.

Consider now the denominator of the Studentized statistics. For part (b), there is no change

as 62, is still used, and so the terms involving A1 and Ay will be identical. However, for Tryc,

we must account for changes of the above form, but also that the residuals are estimated with the
degree ¢ fit: &; = y; — rg(X; — x)’ Bq instead of degree p. With these changes in mind, the analogue
of Eqn. (S.IL.11) will be

620 — 52c = €T ! (\ifq - \i:q) T o + (eﬁf;l\iqugleo - eéf;I\quf;Ieo) . (S.IL.15)

The second term will proceed as above, though \ilp — \i'p will be replaced by

0y~ qznhz{e& DBe(X0)0(X) — B | B (X) B () v(Xy)] |
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where #0.(X;) = (Krp)(Xn,) — pp+1[~\p71f‘;1(Lrp)(th7i) (cf. Section S.I1.1.2, the function £,

therein is £)_(X;) = eéf;lggc(Xi)). To use similar notation,

;é?@<W<Y%%M@M&%MMH

-, —

Then, expanding £, (X;) shows that ¥, — ¥, is equal to

n

(B = ) P T S () X)) — B [(E2rar) ) o60] T
= DS () (X i) (L) (X0 (X0) = E [(K) (X0 (L) (0 X0 )0 (X))} T R,

and since all these terms still obey the appropriate Cramér’s condition, the same steps apply. (The
extra factor of p in p?®P+tD+1 and p@P+D+1 accounts for the fact that 62, is scaled by (nh) instead
of (nb), but the W, matrixes contribute a b=1.)

The first term of Eqn. (S.I1.15) will also follow by the same method as in the prior proof, but
more care must be taken as many more terms will be present because W, — ¥, consists of the
following three terms, representing the variance of 1, the variance of ém, and their covariance,
respectively:

Wy — By = bW, (S4 = 2) WyRy/n
BN T (WS Wy Ry ) Ty Ay 1 = hp? DR, Tt (ROW W, R,) TR,/
= 2" R Wy (SgWo R, A T = SW R, A, ) /.

The first of these three is as in the prior proof, and yields the same A;1-A; g, only with the bias
of a g-degree fit: m(X;) — ry(X; — x)'By. If we define

U, = nbz 2rgrl) (X )v(X)

then the second term of \ffq - \ifq is equal to

p1+2(p+1 A F {nl Z sz { 22 U(Xz)}} F;lAp,l
+p1+2(p+1 <A 1—1~X ) I\I/F 1Ap1
o R, (T =Tt ) Ty A

+p1+2(p+1)A f‘ \ij (Fq_ _Fq—l) Ap,l

i p1+2(p+1)]\ F \il fq—l (Ap,l — /~\p,1> .
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The first of these terms will also give rise to versions of A 1-A; g, only with the bias of a g-degree
fit and changing K to L, p to q, h to b, etc, and will thus be treated exactly as above. The rest
of these are incorporated into Trbc, similar to how As is treated, because Cramér’s condition is
satisfied. The third and final piece of \ilq — \ilq is equal to

1 & . _
— 2P D) {nh Z(Krp)(Xh,z’)(LT;)(Xh,m) {& - U(Xi)}} |
=1

=2t (1t =T ) A

- 2p1+(p+1)\iqu;1 <Ap71 _ Ap,1> 7

and thus is entirely analogous, with yet another version of Aj1-A; g defined for the remainder in
the first line, and the second two easily incorporated into Zf’rbc.

From these arguments, it is clear that the analogue of Lemma S.I1.4 will hold for these cases as
well: the same fundamental pieces are involved, and thus the same arguments will apply, just as

above.

S.I1.6.3 Lemmas

Our proof of Theorem S.II.1 relies on the following lemmas. The first gives generic results used
to derive rate bounds on the probability of deviations of the necessary terms. Some such results
are collected in Lemma S.I1.2. Lemma S.I1.4 shows how to use the previous results to establish
negligibility of the remainder terms required for Eqn. (S.I1.14).

As above, we will generally omit the details required for Theorem S.II.1 parts (b) and (c), to
save space. These are entirely analogous, as can be seen from the steps in Lemma S.I1.2. Indeed,
the first results are stated in terms of the kernel K and bandwidth A, but continue to hold for L
and b under the obvious substitutions and appropriate assumptions.

Throughout proofs C' shall be a generic conformable constant that may take different values in

different places. If more than one constant is needed, Ci, Co, ..., will be used.

Lemma S.I1.1. Let the conditions of Theorem S.II.1 hold and let g(-) and t(-) be continuous scalar

functions.

(a) For some § > 0,

s°P [

(b) For some 6 > 0,

$°P [

s° Z {(K1)(Xn,)9(Xi) — E[(Kt)(Xn,:)9(Xi)]}
=1

> 65! log(s)1/2] — 0.

st Z; {(Kt)(Xni)g(Xi)ei}

> 610g(s)1/2] — 0.
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The same holds with €2 — v(X;) in place of &;, since it is conditionally mean zero and has

more than four moments.

(c) For any § > 0, an integer k, and any v > 0,

‘22 (K)(Xn0)g(X:) [m(X) = (X — 2)'5,)" >6h<’“—”<p+1>1og<sw] 0.

hp+1

(d) For any 6 >0 and any v > 0,

> shPHl log(s)7] — 0.

s Z(Kt)(Xh,i)g(Xi)& [m(X;) — rp(Xs — )/ By

(e) For any d >0, an integer k, and any v > 0,

2P|:

2{(Kt><Xh,z->g<Xi><m<X ) = rp(Xi - 2) B
-k [(Kt)(Xh,i)g(Xi)(m(Xi) —rp(Xi — xyﬁp)ﬂ }‘ > gnr ey log(s)”| — 0.

Proof of Lemma S.11.1(a). Because the kernel function has compact support and ¢ and g are con-

tinuous, we have
(K1) (Xh,i)g(Xi) — B[(Kt)(Xn:)g9(Xs)]| < Ch.
Further, by a change of variables and using the assumptions on f, g and ¢:

V[(Kt)(Xn:)9(X:)] < E [(Kt)(Xp,:)?9(Xi) / FX) (K)(Xp,)?9(X:)?d X

= h/f(:p —uh)g(x — uh)(Kt)(u)?du < Coh.

Therefore, by Bernstein’s inequality

|

4y (5e—1 1/22
oseny | (05 og(s) /)2
Cas? + C1525s 1 1og(s)1/2/3

52 log(s)/2
= 2exp{2log(s)} exp { Cy + C16s71 log(s)1/2/3}

= 2exp {108;(3) {2 T O+ 01555—21/120g(8)1/2/3] } ’

> 65! log(s)1/2]

2 3 ((RO(X)9(X0) ~ EI(K)(X)a(X0)])
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which vanishes for any § large enough, as s~ log(s)'/2 — 0.

Proof of Lemma S.I1.1(b). For a sequence r,, — oo to be given later, define
H; = 571 (K1) (X3,0)g(X3) (Yil{Y; <o} — E[YiL{Y; <} [ Xi))

and
Ti = s~ (K1)(Xni)g(Xs) (V{Y: > 7o} — E[Y;L{Y; > ra} | Xi]).

By the conditions on ¢(-) and ¢(-) and the kernel function,
|H;| < Cys~ 'y,

and

=5 2h /(Kt)(u)Q(gUf)(x — uh)du
S CQ/TL

Therefore, by Bernstein’s inequality

s$°P [ iH

i=1

1/2

> §log(s) 52 log(s)/2 }

Co + C15~ 1,8 log(s)/2/3

52 log(s)/2
< Zexp{2log(s)} exp {_ Cy + Cys71r,0 log(s)1/2/3}

<2e log(s) |2 /2
X _
= SO s Co + C1s~rpdlog(s)t/2/3] |’

< 242 exp {—

1/2

which vanishes for ¢ large enough as long as s~'r, log(s)!/? does not diverge.

Next, by Markov’s inequality and the moment condition on Y of Assumption S.II.1

n 2

- 1
2p T;| > dlog(s)/?| < s*——F T
s Zz; > 0 log(s) <s Tog(s) ;
<1 uE [77]
— 62log(s) ‘
2 1

< S lon(s) " [sTH(E ) (X3,0)9(X0) YiL{Y; > )]

69



2 ].
2~
— 6%log(s)
gL
— §2log(s)
<2t
62 log(s)
o_ &
~ 02 log(s)r%7

ns2E [(Kt)(Xn:)?g(Xi)?Y21{Y; > rn}]
ns”2E [(K0)(Xn) g (X0 i,

ns~2(Chr; %)

which vanishes if s2log(s) " rn® — 0.

It thus remains to choose 7, such that s 17, log(s)/2 does not diverge and s2 log(s)~'r,¢ — 0.

This can be accomplished by setting r,, = s7 for any 2/§ < v < 1, which is possible as £ > 2. [

Proof of Lemma S.I1.1(c). By Markov’s inequality

hp+1

—22 (Kt)(Xn.)g(X,) [m(X:) — rp(X; — 2)'8,)" >5h(k_1)(p+1)log(s)7]

1 1
= hrt1 §p(k=1(p+1) 1og(s)

= 5hk(p+1)llog(s)v KR [h_l(Kt)(Xh,i)g(Xz’) [R7P 7 m(X) = (X — x)'ﬁp)ﬂ

= O(log(s)™7) = o(1).

B [h (K4 (X0,)9(X0) [m(X0) = (X — 2)'5,) "]

This relies on the following calculation, which uses the conditions placed on m(-):

E [h_l ((Kt)(Xni)g(Xi)ei) [m(Xs) — rp(Xi — )’ 5y] ]
=h / (9 0) (X0 (K1) (Xn,) [m(X) = rp(Xi =)' 3y]" dX;
m®+)(z)
_ h—l /(gf’l})(Xl)(Kt)(Xh,z) ((p—l—l' —x p"rl) dX;

p+1) "
= HI (o) () (1) () wp) ax,
= CH DI (o) (X (1) (X, >X,’i<f“>dxz

= ChFP+Y) / (gfv)(x — uh)(Kt)(uw)uFP+D dy

= pk+1), O

Proof of Lemma S.I1.1(d). By Markov’s inequality, since ¢; is conditionally mean zero, we have

s Z(Kf)(Xh,i)g(Xi)& [m(X;) —rp(Xs — )/ By

> §hPt! 1og(s)7]
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< 5h2(p+1)110g( )21 SzE [h (K)(Xn,0)9(Xi)en)? [m(X:) — rp(Xi — ) By] 2}

< s2p2(p+1) - 2 1) pt ) )
= §s2h2+D) 1og(s)vE[ ()X )g(X0)e:)? [0 m(X) = (X = ) 5,)]]

= log(s)™* — 0,

where we rely on the same argument as above to compute the bias rate. O
Proof of Lemma S.I1.1(e). Follows from identical steps to S.IL.1(d). O

To illustrate how the above Lemma is used for the objects under study, we present the following
collection of results. This is not meant to be an exhaustive list of all such results needed to prove

all parts of Theorem S.I1.1, but any and all omitted terms follow by identical reasoning.
Lemma S.I1.2. Let the conditions of Theorem S.11.1 hold.

(a) For some & > 0, r;'P|T, — Tp| > s~ log(s)'/?] — 0. Consequently, there exists a constant
Cr < oo such that P[T,' > 2Ct] = o(s™2) and so the prior rate result holds for [T — f;ll

as well. Finally, these same results hold for I'y as well.
(b) For some § >0, 7, 'P[|[Ap1 — Ay 1| > s~ Hlog(s)/?] — 0.

(c) For some 6 >0,

$°P [

(d) For any d >0 and v >0,

hp—l—l [

(e) There is some constant Cy such that P[¥, > 2Cy] = o(s~2).

st Z {(Krp)(Xni)ei}

=1

> 5log(s)1/2] =0

_QZ{KTP (Xh,i) [ m(Xi) — rp(Xi )ﬂp]}

> 5log(s)7] — 0.

Proof of Lemma S.I1.2(a). A typical element of I'), — fp is, for some integer k < 2p,

o Z{ (Xp)XE; —E |K [ (XM)I}’L“J} }

Therefore, the result follows by applying Lemma S.I1.1(a) to each element. Next, note that under

the maintained assumptions

—

b= E [h ) (Kryr')(Xp)] = b1 / () (X2) (X)X, = / (K ry)(u) f(z — ul)du
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is bounded away from zero and infinity for n large enough. Therefore, there is a Cr < co such that
T, < Cr and then

P, >20r] =P (15" - T;1) + ;' > 20y
<P [F;l — f;l > 571 log(s)lﬂ] +P [f;l > 20T — s~ log(s)'/?

= o(s72).

The third result follows from these two and the identity I',! — f; L=T,1(T, - r,)r,t.

P
Finally, for I';, the identical steps apply with L, ¢, and b in place of K, p, and h. O
Proof of Lemma S.I1.2(b). Follows from identical steps to the previous result. O

Proof of Lemma S.11.2(c). Follows from identical steps, but using Lemma S.IL.1(b) in place of
Lemma S.II.1(a). O

Proof of Lemma S.11.2(d). Follows from identical steps, but using Lemma S.IL.1(c) in place of
Lemma S.II.1(a). O

Proof of Lemma S.I1.2(e). A typical element of \i/p is

1 n

nh 4
=1

(KQTPT;;)(Xh,i)U(Xi)a

and hence under the maintained assumptions the result follows just as the comparable result on
r,. O

We next state, without proof, the following fact about the rates appearing in all these Lemmas,

which follows from elementary inequalities.

Lemma S.IL.3. If r; = O(r}) and ro = O(r}), for sequences of positive numbers r1, v}y, r2, and
rh and if a sequence of nonnegative random variables obeys (r1) " P[U,, > 12] — 0 it also holds that
(r)"IP[U, > 7] — 0.

In particular, since r, = max{s~2,n? s~ 'n} is defined as the slowest vanishing of the rates,
then r{ 'P|U’| > 7] = o(1) implies 7 'P|U’| > 7] = o(1), for r1 equal to any of s2, n?, or s~ 'n.
Similarly, rn, may be chosen as any sequence that obeys r, = o(ry). Thus, for different pieces of U

defined in Eqn. (S.I1.14), we may make different choices for these two sequences, as convenient.

The next Lemma proves Eqn. (S.I1.14), a crucial step in the proof of Theorem S.I1.1(a). Because

this result only involves undersmoothing, we will omit the subscript p as above.

Lemma S.I1.4. Let the conditions of Theorem S.I11.1(a) hold. Then Eqn. (S.11.14) holds, namely,

for some r,, = o(r)

1

*
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Proof. Recall the definition:

1 _ _ 3 _ 8 1 12
U = {_25-3 6/0F 1 (A1,6 + A1,7 + Al’g) T 160 + ﬁ |:€6F 1 (Zk:Q Al,k) T 160:| — 1—6_7

X {segr—lR’W(Y — M)/n+ se)DIR'W (M — RB) /n}

1 e/« Ne
- {—2&366F ! (A1,6+A1,7+A1,8>F 160} 7.

To fully prove the claim of the lemma, we must fully expand U and bound each piece. First, we
present complete details on two terms. The remainder are entirely analogous, as discussed below.

Consider the pieces involving A; g, namely:
e{)I‘_lAwF_leo{se{)F_lR’W(Y ~ M)/n+ se)DIR'W (M — RB) /n} — eh TV Ay g g .
The first of these is
ehD 1Ay gD Tegseh I\ R'W (Y — M) /n = eI~ (ALG - Al,ﬁ) I legseh D" R'W (Y — M) /n
+é) (F—l - f—l) Ay gD egseh DL R'W (Y — M)/n
+ ey A (P*l - f*l) eose)\ T\ R'W (Y — M)/n
+ ehPLA; 6T Legsel (r-l - f—l) RW(Y — M)/n
+epl 7 Ay T Legsef, T I R'W (Y — M) /n.
=Ui1+Ui2+Ui3+Uia+Us

We now bound each remainder in turn. First, for 7, = h?*1log(s)~/2, we have

$°P U11] > ] = $°P { eéF_l <A176 — A1,6> F_leoseéf_lR'W(Y — M)/n‘ > ’I“n}

< §°P [80% ‘ALG — Al,g) > log(s)_l/an]

+ 57 | |s7H Y {(Krp) (Xna)ei}| > log(s)/?| + %3P [T,! > 2Cr]
=1
= 52 3 _A 2(p+1) g "n
=sP {86} ’Al’ﬁ ALG‘ > h log(s) 2D log(s)l/Qﬂ] +o(1)

= o(1),

because h=2PtDr, log(s)~1/2=7 = A=t 1og(s) 177 — .

Next, since /Nlm = W20+ for 1, = hPt1 log(s)~1/2.

sS*P(|Ura| > rp) = s°P { o (I’fl - ffl) Ay T tegsep T 'R W (Y — M)/n‘ > T‘n]
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sy {(Krp)(Xna)ei)

=1

> 571 log(s)l/ﬂ + s%2P [Fgl > 20|

< SQP 40% 1211,6’

> slog(s)_l/grn]

+ 5P Hr—l _

1/2 STn

h2(+1) log(s) +oll)

> log(s)

= P [ACE [s 1) {(Krp)(Xns)ei}
i—1

because sr,h 2P log(s) ™1 = sh~ Pt log(s)73/2 — co. Terms Uj 3 and U 4 are nearly identically
treated.
Let 7, = h?*1log(s)~"/2. Then since 1211,6 = p2P+1)

P (|Uy 5| > 1) = s°P

epT 1Ay T LegsepT I RW (Y — M)/n‘ > rn}

> rn]

> log(s)

< SQIP 01:—3\ ‘A1,6‘

5T (K1) (Xn)ei}
i—1

<s*P |C}

s Z {(Kt)(Xn4)g(Xi)ei}

2(p+1
— h2(p+1)

1/2 log(s)l/QTn]

because h=2P*tr, log(s)~1/2 = h=P+) Jog(s)~! — oo.

Thus, since 6! is bounded away from zero, we find that

1
s*P H 553 epT Ay 6T LegseaU ' R'W (Y — M) /n

>rn] — 0.

Turning our attention to the second term, we have
epT 1Ay 6T tegsegTU ' R'W (M — RB) /n — epT "t Ay 6T Legn
= epT ™ (Av — Aug) T eosegT " R'W (M — RB)/n
+ eI Ay 6T tegseyI ™ (RW(M — RB)/n — E [RW(M — RB)/n])
+é) (r—l . f—l) Ay T Yegse)T ' [R'W (M — RB)/n]
+ el T Ay g (F—l - f—l) cosehl "V E [R'W (M — RB)/n]
+ ehTLA; 6T Legse) (r—l - f—l) E [R'W (M — RB)/n]

=:Uz1 + U2+ U3+ Usy + Usjs.
For r, = h?T11og(s)~!, we have

ri P (|Ugs| > ) = 77 'P [eBI‘_l (ALG - 1211,6> I legset ' R'W (M — RB)/n > rp
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<r;'P [80158 ’Am - Al,ﬁ‘ > sh*®*D log(s)" sh2(+1) 1og(s)27]

ol L
+rlP [ nh Z {(Krp)(Xh,i) [m(X ) —rp(Xi — ) 51’]} > log(S)vl
i=1
+r713P [0 > 207
9 3 g 2(p+1) o "'n
S s°P |:8CFS ‘Alv() Alvﬁ‘ > Sh lOg(S) ShQ(p+1) 10g(8)27:|

+ h*(erl)P

nilh Z {(Krp)(Xn,i) [m(X;) — rp(Xi — z)'Bp] }| > IOg(S)Wl
+ %3P [I,! > 2Cr]
= o(1),

because sh?PH)r11og(s)?7 = shP*1log(s)!™27 — 0 by the conditions on 7 placed in the theorem.
Next, with 7, = h?*!log(s)~" and using A; ¢ =< h*P*+1 | we have

P(U2a] > 1] = 1 'P || gD AvgT eosel ™ (R'W(M — RB)/n — E [RW(M — RB)/n])| > 1]

s Y B (X0) [m(X) — 1y (X — 2]

< ’I“*_llP) |:80§ ‘1211,6)
i=1

—E [(Krp)(Xh,i) [m(X ) = rp(Xi — ) Bp“ }‘ > rn]

+r 13P [F;l > 2Cr |

572 Z{(Krp)(Xh,i) [m(X ) — Tp( —z) BP]

< $°P [80%
i=1

—E [(Krp)(Xn) [m(Xs) — rp(Xi — 2)'5y] ] }’ > hPH 10g(5)7;w1w}

+5°3P [[,' > 2Cr]
=o0(1),

because r,h 3P +1) log(s)™7 = h—2(p+1) log(s)~1=7 = oo.
Third, as A, 6 = = h2(+D) and E [R/W(M — RB)/n] = WP+ if we choose r,, = h?+!log(s)~!,

- B . B ST
PHUQS’ > Tn] S r 1IP> |:4C%S ‘F 1_ T 1’ > S 110g(8)1/2 h3(p+1) 10g(3)1/2:|
+r 2P [0, > 207
< 2P [4(3'12 ’1“*1 _ f*l‘ > s 1log(s)/? h3(p+1):n ( )1/2]
og(s

+s%2P [T," > 2Cr]
= 0(1)7
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because r,h =3P log(s)1/2 = B2+ Jog(s)"1=1/2 — 0o. The terms Us 3 and Us 5 are handled
identically.

Thus, since 6! is bounded away from zero, we find that

1 . O
s*P H 553 eoD AL 6T tegsegTU T R'W (M — RB) /n — egT ™t Ay 6T egn

> rn] — 0.

The same type of arguments, though notationally more challenging, will show that the remainder
of U obeys the same bounds. Note that the rest of the terms are even higher order, involving either
Aq,7 and Ay g, or the square or cube of the other errors. It is for this reason that only the “leading”

three terms need be centered, that is, why only

1 = 1/~ ~ ~ =
— {_253 66F 1 <A176 + A1,7 + A178> I 160} n
appears in Z. ]

S.11.6.4 Computing the Terms of the Expansion

Identifying the terms of the expansion is a matter of straightforward, if tedious, calculation. The
first four cumulants of the Studentized statistics must be calculated (due to James and Mayne
(1962)), which are functions of the first four moments. In what follows, we give a short summary.
Note well that we always discard higher-order terms for brevity, and to save notation we will write
2 to stand in for “equal up to o((nh)~* 4 (nh)~?n +n?)”, and including o(p' 2P+ 1) for T..

The computations will be aided by putting all three estimators into a common structure. In
2

us’

close parallel to the density case, let us define m; := m and Mo = M — My, a% = 0%, and

03 := 0%, so that subscripts 1 and 2 generically stand in for undersmoothing and bias correction,

respectively. With this in mind, we write
Tus = T1,17 Tbc = T2,17 and Trbc - T2,27

again paralleling the density case, so that the first subscript refers to the numerator and the second

to the denominator. In the same vein, with some abuse of notation, we will also use® rq(u) = r,(u),

ro(u) = rq(u), Ki(u) = K(u), Ko(u) = L(u), h1 = h, and hy = b, as well as

A(X3) = 5(X0),
0(Xi, Xj) = Ly (X, Xj),
05(Xi) = Lo (X0),
03(Xi, Xj) = b (Xi, X5).

For the purpose of computing the expansion terms (i.e. moments of the two sides agree up to

3Throughout Section S.II, we use only generic polynomial orders p and g, and so this notation will not conflict
with the local linear or local quadratic fits, which would also be denoted r1(u) and r2(u), respectively.
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the requisite order), recalling the Taylor series expansion above, we will use

1 3 9
va% 1_f w Vw Vw o~A w w w
: { 552 Wi+ Vi + Vo) + o5 (W,1+V,1+V,2)}

2
w w

G0 {By1 + Eyo+ Ey3+ By1},

where we define, for v € {1, 2},
e S
v,2 nh ATEY) ZZEI XuX Eis

21]1

v,3 nh T1\3 22262 Xzanka)gu

=1 j=1k=1

where the final line defines ¢2,(X;, X;, X;) in the obvious way following £.,. To concretize the
notation, for undersmoothing we are defining

Ei1 = segl) ' ROW,(Y — M) /n,
Eio = segI') (T, — Tp)L, 'Ry W,(Y — M) /n,

)

B3 = segl,) (T — Tp)T, {(T, — Tp)T, ' ROW, (Y — M) /n.

) p

In a similar way,

Woa = — Z {0(X)2 (2 — (X))} — n2h2 ZZ {zo 2y (X, 1) f‘;l(erv)(XhM)eiej}

i=1 j=1
n3h3 Z {EO TU th ) f;l(KUTU)(Xhmi)&‘jEk} ,
=1 j=1 k=1
1™
Var = 2 S {0(X)*0(X0)? ~ E[R(X)*0(X0)]} +25ry 30K XK (X)),
=1 = 1_] 1
VU,Q = n3h3 Zzzél XZaX X27Xk) 3h3 Zzzeg Xi, X )eg(Xl)’U(Xl)v
i=1 j=1 k=1 i=1 j=1 k=1

and specifically for undersmoothing and bias correction, let

Bll—S*ZEO X;) = rp(Xi — 2)'By]

and
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Note that Ths = E[Bl,l] and Toec = E[Bg’l].

Straightforward moment calculations yield

1
252

w

E [Ww,lEv,l] 5

1
E[T?,] < —E[E}, + Ely+2E,1Ey 2 + 2E,1F, 3

VW &120
1
~ =E (Wt B}y 4 VwiEpy + Vo B2 + 2V 1Ey 1 By s
w
1 1 1
+ =B [Wo ES s+ Va1 Eoy] + = E[By] - — E[Wu1Eu1Bul,
Ow Uw Ow
3 10 1 3 3
E[T,u] = =B [Eu] = 525 B [WunBo] + =3B [Ey1 Bu]
w w w
and
1
E[T;l,w] o

E [E41 + 4E1, 1Epo+ 4E§71Ev,3 + 6E371E§,3]
2

— —E [WuwniE} + VuiEy ) + 4V 1 ES 1 Eyg + V2 Ey 1

=6
+ %E (W By + Vi 1Ey ]

i 3 _ i 3 E 2 p2
+—E [Ey1Bui] ¢ E (W B2 Byq] + —E [E2,B2,].

Computing each term in turn, we have

E[By1] = 1o,

E [Wi1Ep1] Z s 'E [h710(X;)200(X0)e)]
E[EZ,] =57,

E[Ey1Ey2] < s7°E [h7 10 ( Xy, X)00(X0)e?]

E[E;,] = s 'E [h20,(X, X;)%;]
sT°E [h205( X, X, X5)00(X,)ed]

I

E[W.,1E2,] £ 3—2{15 (R0 (X)200(X,)? (F — v(X5)?)]
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= 2528 [ (X0)Pr (X ) Tt (Kura) (X, )2

— 4B (W (XX (X ) T 22 B[R (K (X ) 6(Xi)e2]

B 2
£ [0 (oo 2 () K0.) <]

+E [hlﬂ&(xm (E [h1rp<Xh,j>’fp1<Krp><Xh,i>eﬁs<Xi>e%er})2] }
E Vi B2,] 2 572 [ (6, (X0)P0(Xs) — E[0,(X) (X)) €9(X,) %3]

+262E [V (X4, X)) 00, (X)v(X3)] }
E Vi1 o1 Ev2) = 3_2{13 [0 (60,(X5)?0(X;) — B[l (X5)*0(X;)]) €6(Xs, X;)60(Xi)ed ]

+ 28 (AP0 (Xi, X)X, X5) 00X (X )u(X)eF] b,
E [h2 (64 (X,, X;)2 +2€12U(Xi,X-,X-))v(XZ-)]},
2B 116, (X0)* (e = v(X0)?)] + 2B [ (X060, (X)),
(B [n1 (& (xa0(X0) — B, (X0)P0(X) ]
4E [h2 (65(X;)20(X;) — B[00 (X;)20(X5)]) 0, (X5, Xa) 0o, (X;)v(X;)]
AE [P0, (Xi, X ) (Xi)v(Xi) by (X, X)L, (X )0 (X)) }
(W, Ev1] E[Bya],
= sTE [h0(X0)’e]

] £;

| ZE [Eg JE[WyaiEua],

| =35, + s 2B [0 (X)) ]
E [Eg,lEvJ] = s7266.E [h (X, X)) (Xi)er]
E [E3 Eys] < s 2367E [h200( X, X5, X;)00(Xi)e]

] *2{&31@ [h201 (X, X;)%€2] + 2B [h301 (X, X0 (X, X)) (X )00 (X )es gk]}

1] —2{1@ [ H0,(X)%00(X)ed | E [ H9(X;) €} | + 6E [Egl]E[Ww,lEgJ]},

10] 2572526 B [0 (65,(X0) 0(Xs) — EIE, (X,)%0(X3)]) £(X0)%)

+2F [h7 200, (X, X )00, (Xa) 09(X;)?50(X,)] + E [0, (X, Xi)00,(X)v(X5)] }

E [Vu1E} 1 Ey2] < 3E [E) 1] E Vi1 Es1Eo 2]
E [Vw2FE, ] = 3E [E2||E [V E2,],
E[WgiEs,] = 3E [ES ] E WS ELL],
E[Vi1E,.] = 3E[E},] E [V, B ]

The expansion now follows, formally, from the following steps. First, combining the above
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moments into cumulants. Second, these cumulants may be simplified using that

= 1+ T(wv) (pFI0 e+ 2000, )

ng ‘ eqw

and that in all cases present products such as £9 (X;)*£9(X;)*2 and £ (X;, X;)¥101(X;, X;)*2 may
be replaced with £0(X;)®**2 and £1(X;, X;)*1+k2, respectively, provided the arguments match.
This is immediate for v = w, and for v # w, follows because p — 0 is assumed. This is the
analogous step to Eqn. (S.I.8) in the density case. For any term of a cumulant with a rate of
(nh)~Y, (nh)=Y2n,, n2, or p*+2P+1) (ie., the extent of the expansion), these simplifications may
be inserted as the remainder will be negligible. Third, with the cumulants in hand, the terms of

the expansion are determined as described by e.g., (Hall, 1992a, Chapter 2).

S.II.7 Complete Simulation Results

In this section we present the results of a simulation study addressing the finite-sample performance
of the methods described in the main paper. As with the density estimator, we report empirical
coverage probabilities and average interval length of nominal 95% confidence interval for different
estimators of a regression functions m(x) evaluated at values x = {-2/3,-1/3,0,1/3,2/3}. For

each replication, the data is generated as i.i.d. draws, ¢ = 1,2,...,n, n = 500 as follows:
Y =m(z) +¢, z~ U-1,1], e ~N(0,1)

Model 1: m(x) = sin(4x) + 2 exp{—64z?}
Model 2: m(x) = 2z + 2 exp{—6422}
Model 3: m(x) = 0.3 exp{—4(2z + 1)?} + 0.7 exp{—16(2z — 1)?}

Model 4: m(x) = x + 5¢(10x)
B sin(3mwx/2)
1+ 1822[sgn(z) + 1]

. B sin(mx/2)
Model 6: m(x) - 1+ 23}2[.99”(-73) + 1]

Model 5: m(x)

Models 1 to 3 were used by Fan and Gijbels (1996) and Cattaneo and Farrell (2013), while Models
4 to 6 are from Hall and Horowitz (2013), with some originally studied by Berry et al. (2002). The
regression functions are plotted in Figure S.II.1 together with the evaluation points used.

We compute confidence intervals for m(z) using five alternative approaches:
US: local-linear estimator using a conventional approach based on undersmoothing (I,s).

Locfit: local lineal estimator computed using default options in the R package locfit (see Loader

(2013) for implementation details).
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BC: traditional bias corrected estimator using a local-linear estimator with local-quadratic bias-

correction, and p =1 (fyc).

HH: local linear estimator using the bootstrapped confidence bands introduced in Hall and Horowitz
(2013) (see Remark S.II.4 below for additional implementation details).

RBC: our proposed local-linear estimator with local-quadratic bias-correction and p = 1 using

robust standard errors ([ppc).
In all cases the Epanechnikov kernel is used. The bandwidth h is chosen in three different ways:
(i) population MSE-optimal choice hyse;
(ii) estimated ROT optimal coverage error rate Pros.-

(i4i) estimated DPI optimal coverage error rate izdpi.

2

7vc We consider HC3 plug-in residuals when

For the construction of the variance estimators 62, and &
forming the ¥ matrix. In Table S.I1.9 we report empirical coverage and average interval length of
RBC 95% Confidence Intervals (only for Model 5) using hpse for different variance estimators. The
results reflect the robustness of the findings to this choice.

The results are presented in detail in the tables and figures below to give a complete picture
of the performance of robust bias correction. First, Tables S.II.1-S.I1.6 show, for each regression
model, respectively, the performance of the five methods above, in terms of empirical coverage
and interval length, for all evaluation points and bandwidth choices (recall that I,s and Iy have
the same length). Panel A of each shows the coverage and length, while Panel B gives summary
statistics for the two fully data-driven bandwidths. Note that in some cases, the population MSE-
optimal bandwidth is not defined or is not computable numerically; usually because the bias is too
small or other values are too extreme.

The broad conclusion from these tables is that robust bias correction provides excellent coverage
and that the data-driven bandwidths perform well and are numerically stable. In almost all cases
robust bias correction provides correct coverage, whereas the other methods often, but not always,
fail to do so. In cases where there is little to no bias all the methods give good coverage. This
can be seen in results for Models 2 and 4, at |z| = 2/3, far enough away from the “hump” in the
center of each, where the true regression function is (nearly) linear. But despite the encouraging
results away from the center, only robust bias correction yields good coverage closer to the center
(|x] = 1/3), when there is more bias. Going further, considering = = 0, the center of the sharp peak
in these models, we see that even robust bias correction fails to provide accurate coverage for ﬁrot,
although dei performs slightly better. At this point, for these models, the bias is too extreme even
for robust bias correction to overcome. The results for the other models yield similar lessons.

It is somewhat more difficult to compare interval length using these tables. The comparison is
invited for a fixed bandwidth, in which case, by construction, undersmoothing will have a shorter

length. However, this ignores the fact that robust bias correction can accommodate a larger range
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of bandwidths, and in particular will optimally use a larger bandwidth. For example, robust
bias correction has excellent coverage in many cases for fzrot, which is in this case a data-driven
MSE-optimal choice (i.e. they coincide). This bandwidth is generally larger than iLdpi, and hence
undersmoothing generally covers better with the latter. However, if you compare the length of
Ius(ﬁrot) to the length of Ius(ﬁdpi), we see that robust bias correction compares favorably in terms
of length.

Both to better make this point and to illustrate the robustness of Ipc to tuning parameter
selection, Figures S.I1.2-S.I1.13 show empirical coverage and length for all six models, and all
evaluation points, across a range of bandwidths. The dotted vertical line shows the population
MSE-optimal bandwidth (whenever available) for reference. The coverage figures highlight the
delicate balance required for undersmoothing to provide correct coverage, and the generally poor
performance of traditional bias correction, but show that for a wide range of bandwidths robust bias
correction provides correct coverage. Further, interval length is not unduly inflated for bandwidths
that provide correct coverage. Again, by construction, undersmoothing will yield shorter intervals
for a fixed bandwidth, and this is clear from Figures S.I1.8-S.I1.13, but it is also clear that robust
bias correction can use much larger bandwidths while still maintaining correct coverage.

To further illustrate this idea, in Tables S.I1.7-S.I1.8 we compare average interval length of US
and RBC 95% confidence intervals but at different bandwidths. First, in Table S.II.7 we compute
average interval length at the largest bandwidth that provides close to correct coverage for each
method separately. Note that in all cases these bandwidths are not feasible: these are ex-post
findings. Next, in Table S.I1.8 we evaluate the performance of US and RBC confidence intervals at
certain alternative bandwidths likely to be chosen in practice. First, we evaluate the performance
of US confidence intervals at h = Migse for A = {0.5;0.7}. We then compare the performance with
RBC confidence intervals computed using the optimal, fully data-driven choices iLrot and ﬁdpi.
Both tables reflect that, once we control for coverage, intervals lengths do not differ systematically
between both approaches.

Figures S.I1.14-S.I1.19 make this same point in a different way. For a range of bandwidths, as
in the previous figures, we show the “average position” of I, and I, where the center of the
bar is placed at the average bias and the length of each bar is the average interval length across
the simulations. The bars are then color-coded by coverage (green bars having good coverage,
fading to red showing undercoverage). These make visually clear that although undersmoothing
provides shorter intervals in general, that this comes at the expense of coverage, while robust bias
correction provides good coverage for a range of bandwidths, many of which are “large” enough to
yield narrow intervals.

All our methods are implemented in R and STATA via the nprobust package, available from
http://sites.google.com/site/nppackages/nprobust (see also http://cran.r-project.org/

package=nprobust). See Calonico et al. (2017) for a complete description.

Remark S.I1.4 (Implementation of Hall and Horowitz (2013)). The column HH computes the

bootstrapped confidence bands introduced in Hall and Horowitz (2013), following as close as pos-

82


http://sites.google.com/site/nppackages/nprobust
http://cran.r-project.org/package=nprobust
http://cran.r-project.org/package=nprobust

sible their implementation choices. First, we estimate m(z) using a local linear estimator using
the Epanechnikov kernel for our previously discussed bandwidth choices. Standard errors are cal-
culated using their proposed variance estimator 6%, = k5?2/ fx(z) where k = [ K? and fx(x)
is a standard kernel density estimator using a data-driven bandwidth choice h;. Then, we use
the same estimator for the error variance 6% = Y I | é?/n and &, = &, — &, & = Y; — m(X,),
e=n"1t3""  &. Next, we take generate B = 500 bootstrap samples Z* = {(X;,Y;*)},1 <i < n,
where Y* = m(X;) + ¢, with £} obtained by sampling with replacement from the {&;},1 <1i <mn.
With these bootstrap samples we can construct the final confidence bands using the adjusted crit-
ical values that approximates the estimated coverage error with the selected one. Following their
recommendation, the final critical values are taken to be the &-level quantile (for £ = 0.1) obtained
by repeating this exercise over a grid of evaluation points, which we choose to be the sequence

{21,..,an} = {~0.9,-0.8, ...,0, ...,0.8,0.9}. (]
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Table S.II.1: Simulations Results for Model 1

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC
x=-2/3
hase 0.478 56.1 76.5 83.6 30.5 94.8 0.302 0.330 0.198 0.422
ot 0.201 93.6 943 838 943 95.2 0.440 0479 0.468 0.631
ﬁdpi 0.177 95.0 95.0 83.6 97.1 94.7 0.467 0.507 0.515 0.669
x=-1/3
hase 0.331 49 312 821 19 931 0.357 0.377 0.277 0.488
ot 0.488 3.1 88 53.0 25 627 0.327 0.326 0.199 0.417
dei 0.319 24.5 470 81.0 203 919 0.366 0.387 0.298 0.504
z =0
hase 0.115 52.7 729 833 61.7 93.6 0.596 0.625 0.665 0.826
ot 0.464 0.0 0.0 0.0 00 0.0 0.354 0.328 0.199 0.462
fzdpi 0.238 1.9 4.1 439 22 559 0.464 0.444 0.398 0.591
x=1/3
hnse 0.383 92.1 942 779 821 914 0.318 0.354 0.239 0.455
ot 0.340 94.1 945 79.0 874 929 0.340 0.378 0.280 0.488
dei 0.314 95.3 955 776 906 919 0.351 0.388 0.298 0.504
x=2/3
hase 0.478 58.8 78.2 83.0 324 945 0.302 0.331 0.198 0.423
ot 0.289 88.6 922 825 824 943 0.366 0.403 0.325 0.525
ﬁdpi 0.219 92.4 93.7 823 922 944 0.422 0.462 0.431 0.606
Panel B: Summary Statistics for the Estimated Bandwidths
Pop. Par.  Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
x=-2/3
Brot 0.478 0.158  0.183 0.191 0.201  0.201 0.671 0.049
ﬁdpi - 0.0513  0.166 0.178  0.177 0.19 0.32 0.024
x=-1/3
Prot 0.331 0.223  0.401 0.497 0.488  0.576 0.73 0.109
ﬁdpi - 0.0827  0.284 0.312 0.319 0.343  0.577 0.064
z=0
Prot 0.115 0.32 0.433 0.462 0.464 0491 0.676 0.046
ﬁdpi - 0.0661  0.212 0.24 0.238 0.265  0.577 0.046
x=1/3
ot 0.383 0.206  0.281 0.337 0.34 0.39 0.65 0.067
ﬁdpi - 0.0782  0.291 0.313 0.314 0.336 0.576 0.044
x=2/3
ot 0.478 0.211 0.254 0.279 0.289 0.318 0.505 0.045
depi - 0.0667  0.196 0.212 0.219 0.233  0.577 0.044
Notes:

(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width h,.
(iii) The population MSE-optimal choice hgse coincides with the population ROT optimal coverage error rate hipg.

(iv) For some evaluation points, hnse is not well defined so it was left missing.



Table S.I1.2: Simulations Results for Model 2

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC
x=-2/3
hmse - - - - - - - - - -
ot 0.325 95.2 956 83.7 873 954 0.351 0.388 0.282 0.504
ﬁdpi 0.205 95.2 955 832 944 953 0.433 0473 0.421 0.622
x=-1/3
hnse 0.706 0.0 0.5 1.5 0.0 438 0.254 0.268 0.122 0.356
ot 0.461 1.1 180 835 0.2 94.7 0.304 0.327 0.188 0.418
dei 0.440 139 336 69.0 82 842 0.311 0.336 0.203 0.432
z =0
hase 0.115 52.7 72.8 833 49.7 93.6 0.596 0.625 0.576 0.826
ot 0.495 0.0 0.0 0.0 00 0.0 0.341 0.315 0.174 0.451
ﬁdpi 0.238 2.3 4.3 436 21 553 0.464 0.444 0.370 0.591
x=1/3
hnse 0.706 0.0 0.4 1.7 0.0 51 0.254 0.268 0.122 0.356
ot 0.461 1.0 184 827 0.1 93.7 0.303 0.326 0.188 0.417
dei 0.440 140 33.0 687 84 839 0.311 0.336 0.202 0.430
x=2/3
hmse - - - - - - - - - -
ot 0.325 94.8 954 822 870 94.3 0.351 0.388 0.282 0.504
ﬂdpi 0.205 94.9 94.8 821 94.1 939 0.434 0.473 0421 0.623
Panel B: Summary Statistics for the Estimated Bandwidths
Pop. Par.  Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
x=-2/3
ot - 0.205 0.261 0.292 0325 0377  0.583 0.083
ﬁdpi - 0.0647  0.19 0.205 0.205 0.221  0.356 0.026
x=-1/3
Prot 0.706 0.32 0.43 0.458 0.461  0.488 0.69 0.043
ﬁdpi - 0.151 0.379 0.426 0.44 0.5 0.577 0.081
z=0
Prot 0.115 0.395 0.469 0.492 0.495 0.518 0.67 0.037
ﬁdpi - 0.0585  0.212 0.241 0.238 0.266  0.385 0.045
x=1/3
ot 0.706 0.309 0.432 0.457 0.461  0.487  0.666 0.043
ﬁdpi - 0.178 0.38 0.427 0.44 0.499  0.577 0.081
x=2/3
ot - 0.207 0.261 0.294 0.325 0.379  0.568 0.083
depi - 0.0459 0.19 0.205 0.205 0.221 0.373 0.026
Notes:

(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width h,.
(iii) The population MSE-optimal choice hgse coincides with the population ROT optimal coverage error rate hipg.

(iv) For some evaluation points, hnse is not well defined so it was left missing.



Table S.II.3: Simulations Results for Model 3

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC
x=-2/3
hase 1.235 86.3 86.3 875 29.8 8&7.7 0.285 0.298 0.078 0.286
ot 0.530 91.3 91.7 86.3 64.8 95.5 0.299 0.313 0.166 0.406
ﬁdpi 0.266 949 95.0 83.1 881 95.5 0.380 0.412 0.309 0.546
x=-1/3
hase 1.235 83.2 812 672 327 818 0.206 0.210 0.070 0.266
ot 0.697 80.6 86.4 822 439 944 0.233 0.253 0.116 0.336
dei 0.493 90.2 932 826 67.7 948 0.278 0.303 0.166 0.400
z =0
hase 0.976 13.8 198 403 1.3 63.2 0.198 0.215 0.082 0.283
ot 0.696 342 653 846 7.9 96.0 0.234 0.254 0.116 0.334
izdpi 0.354 93.2 94.7 828 799 955 0.327 0.356 0.231 0.470
x=1/3
hnse 0.246 77.8 852 79.0 674 92.6 0.393 0.424 0.327 0.562
ot 0.697 86.0 824 49.2 51.2 721 0.237 0.253 0.116 0.343
dei 0.491 75.0 68.2 479 453 714 0.282 0.303 0.167 0.406
x=2/3
hase 0.246 78.3 856 79.6 67.1 93.0 0.394 0.425 0.327 0.565
ot 0.504 78.2 76.2 46.5 475 69.2 0.309 0.321 0.177 0.424
ﬁdpi 0.267 76.9 84.1 778 63.5 91.7 0.381 0.412 0.308 0.547
Panel B: Summary Statistics for the Estimated Bandwidths
Pop. Par.  Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
x=-2/3
ot - 0.25 0.436 0.529 0.53 0.617  0.822 0.119
ﬁdpi - 0.0666  0.242 0.262 0.266 0.283  0.576 0.043
x=-1/3
Prot - 0.495 0.667 0.703 0.697 0.732  0.833 0.050
ﬁdpi - 0.276 0.439 0.492 0493 0.571  0.577 0.068
z=0
Prot 0.976 0.484  0.667 0.704 0.696 0.731  0.826 0.051
ﬁdpi - 0.125 0.326 0.347 0.354 0373  0.577 0.046
x=1/3
ot 0.246 0.469  0.665 0.703 0.697 0.734  0.862 0.052
ﬁdpi - 0.201 0.436 0.49 0.491 0.57 0.577 0.069
x=2/3
ot 0.246 0.222  0.392 0.497 0.504  0.609 0.836 0.132
depi - 0.0659  0.243 0.262  0.267 0.284  0.577 0.045
Notes:

(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width h,.
(iii) The population MSE-optimal choice hgse coincides with the population ROT optimal coverage error rate hipg.

(iv) For some evaluation points, hnse is not well defined so it was left missing.



Table S.II.4: Simulations Results for Model 4

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC
x=-2/3
Pnse - - - - - - - - - -
ot 0.309 95.2 955 835 885 954 0.358 0.394 0.295 0.515
ﬁdpi 0.200 95.2 953 832 94.7 953 0.439 0.478 0.431 0.630
x=-1/3
hnse 0.466 0.5 85 762 0.0 89.8 0.301 0.323 0.185 0.413
ot 0.441 0.8 140 826 0.1 94.2 0.309 0.332 0.197 0.426
dei 0.432 105 271 679 6.3 825 0.314 0.337 0.207 0.435
z =0
hase 0.128 52.4 73.0 834 51.0 939 0.564 0.593 0.559 0.785
ot 0.473 0.0 0.0 0.0 00 0.1 0.348 0.321 0.183 0.447
izdpi 0.233 3.2 74 585 3.1 720 0.457 0.447 0.378 0.592
x=1/3
hnse 0.466 0.5 9.2 750 0.1 894 0.301 0.322 0.185 0.412
ot 0.441 0.6 151 81.7 0.0 932 0.309 0.332 0.197 0.425
dei 0.433 104 267 67.0 6.1 825 0.313 0.337 0.206 0.433
x=2/3
hmse - - - - - - - - - -
ot 0.309 94.6 952 82.1 882 943 0.359 0.394 0.295 0.515
ﬁdpi 0.200 94.7 94.7 822 945 94.1 0.440 0.478 0.431 0.631
Panel B: Summary Statistics for the Estimated Bandwidths
Pop. Par.  Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
x=-2/3
ot - 0.203 0.254 0.28 0.309  0.341  0.572 0.077
ﬁdpi - 0.0544  0.186 0.2 0.2 0.215  0.354 0.026
x=-1/3
Prot 0.466 0.309  0.413 0.438 0.441 0.466  0.643 0.039
ﬁdpi - 0.122 0.373 0.418 0.432 0487 0.577 0.082
z=0
Prot 0.128 0.382  0.449 0.47 0.473 0493 0.623 0.033
ﬁdpi - 0.0301 0.21 0.236  0.233 0.259 0.373 0.042
x=1/3
ot 0.466 0.303 0414 0.438 0.441  0.465 0.62 0.039
ﬁdpi - 0.13 0.373 0.42 0.433 0491  0.577 0.082
x=2/3
ot - 0.204  0.254 0.281 0.309 0.342  0.566 0.076
depi - 0.0448  0.185 0.2 0.2 0.215 0.41 0.026
Notes:

(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width h,.
(iii) The population MSE-optimal choice hgse coincides with the population ROT optimal coverage error rate hipg.

(iv) For some evaluation points, hnse is not well defined so it was left missing.



Table S.II.5: Simulations Results for Model 5

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC
x=-2/3
hmse - - - - - - - - - -
ot 0.251 95.1 952 83.6 91.0 95.5 0.392 0.424 0.340 0.563
ﬁdpi 0.203 95.4 953 834 93.7 95.0 0.437 0.472 0.410 0.627
x=-1/3
hnse 0.307 43.5 69.2 82.6 264 945 0.355 0.380 0.271 0.504
ot 0.405 9.9 272 813 54 933 0.316 0.334 0.209 0.440
dei 0.307 44.1  66.3 82.1 312 94.1 0.357 0.381 0.275 0.507
z =0
hmse - B B B - - - - - -
ot 0.474 249 496 782 55 934 0.286 0.309 0.177 0.410
izdpi 0.320 73.5 831 81.0 588 93.6 0.348 0.376 0.267 0.498
x=1/3
hnse 0.821 3.3 383 80.7 0.1 927 0.227 0.241 0.102 0.319
ot 0.538 72.3 88.1 764 448 91.1 0.268 0.293 0.158 0.384
dei 0.343 93.3 93.7 820 831 945 0.332 0.361 0.245 0.477
x=2/3
hase 0.887 91.3 94.1 741 46.7 80.0 0.289 0.312 0.107 0.317
ot 0.401 93.5 93.8 828 784 94.6 0.319 0.342 0.218 0.455
ﬂdpi 0.262 94.2 945 82.0 89.2 943 0.386 0.418 0.329 0.554
Panel B: Summary Statistics for the Estimated Bandwidths
Pop. Par.  Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
x=-2/3
ot - 0.187 0.225 0.24 0.251  0.262 0.56 0.043
ﬁdpi - 0.048 0.186 0.201  0.203 0.217 0.576 0.033
x=-1/3
Prot 0.307 0.253 0.369 0.41 0.405 0.443 0.631 0.054
ﬁdpi - 0.0927  0.287 0.307  0.307  0.327  0.577 0.038
z=0
Prot - 0.362 0.443 0.47 0.474  0.501  0.682 0.044
ﬁdpi - 0.0843  0.289 0.312 0.32 0.339  0.577 0.055
x=1/3
ot 0.821 0.311 0.478 0.53 0.538  0.597  0.775 0.078
ﬁdpi - 0.0837  0.323 0.342 0.343 0.362 0.576 0.034
x=2/3
ot 0.887 0.251 0.344 0.375 0.401 0422  0.747 0.089
depi - 0.0589  0.231 0.251  0.262 0.277  0.576 0.056
Notes:

(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width h,.
(iii) The population MSE-optimal choice hgse coincides with the population ROT optimal coverage error rate hipg.

(iv) For some evaluation points, hnse is not well defined so it was left missing.



Table S.I1.6: Simulations Results for Model 6

Panel A: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

Bandwidth Empirical Coverage Interval Length
US Locfit BC HH RBC US Locfit HH RBC
x=-2/3
hase 0.783 88.8 88.3 91.0 452 94.6 0.289 0.299 0.113 0.333
ot 0.563 90.7 914 850 59.5 95.1 0.294 0.303 0.152 0.393
ﬁdpi 0.359 93.3 94.1 832 788 95.2 0.334 0.358 0.233 0.479
x=-1/3
hnse 0.975 80.3 838 772 334 91.2 0.210 0.218 0.084 0.296
ot 0.580 92.0 93.8 834 633 95.1 0.254 0.276 0.139 0.367
dei 0.475 924 934 825 715 948 0.283 0.307 0.171 0.408
z =0
Pnse - - - - - - - - - -
ot 0.562 87.3 91.2 821 593 954 0.258 0.280 0.143 0.372
izdpi 0.447 92.3 939 824 716 95.2 0.292 0.317 0.183 0.420
x=1/3
hnse 0.616 52.3 733 816 194 938 0.247 0.267 0.129 0.354
ot 0.548 66.6 78.9 81.2 36.3 93.1 0.262 0.284 0.146 0.377
dei 0.461 78.8 8.7 812 536 939 0.288 0.312 0.177 0.414
x=2/3
hmse - - - - - - - - - -
ot 0.461 94.3 944 832 746 94.7 0.304 0.318 0.181 0.429
ﬁdpi 0.347 94.5 942 824 824 944 0.340 0.364 0.242 0.487
Panel B: Summary Statistics for the Estimated Bandwidths
Pop. Par.  Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
x=-2/3
Brot 0.783 0.284  0.515 0.575  0.563  0.621  0.798 0.084
ﬁdpi - 0.113 0.302 0.339 0.359  0.398  0.577 0.082
x=-1/3
Prot 0.975 0.41 0.534 0.574 0.58 0.621  0.801 0.063
ﬁdpi - 0.164  0.418 0.47 0.475  0.546  0.577 0.073
z=0
Prot - 0.396 0.52 0.557  0.562 0.6 0.786 0.060
ﬁdpi - 0.124  0.387 0.436  0.447 0.506  0.577 0.078
x=1/3
ot 0.616 0.388  0.505 0.542 0.548 0.584  0.764 0.059
ﬁdpi - 0.163 0.402 0.449 0461 0.526  0.577 0.076
x=2/3
Prot - 0.261 0.41 0.452 0.461  0.505 0.786 0.070
depi - 0.0791  0.291 0.328 0.347 0.384  0.577 0.082
Notes:

(i) US = Undersmoothing, Locfit = R package locfit by Loader (2013), BC = Bias Corrected, HH = Hall and

Horowitz (2013), RBC = Robust Bias Corrected.
(ii) “Bandwidth” column report the population and average estimated bandwidths choices, as appropriate, for band-

width h,.
(iii) The population MSE-optimal choice hgse coincides with the population ROT optimal coverage error rate hipg.

(iv) For some evaluation points, hnse is not well defined so it was left missing.



Table S.I1.7: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

us RBC
h EC IL h EC IL

Model 1
x=-2/3 0.140 94.8 0.523 0.420 94.8 0.442
r=-1/3 0.100 94.7 0.625 0.420 94.8 0.434
r=0 0.100 71.3 0.640 0.100 93.7 0.893
x=1/3 0.300 94.6 0.355 0.440 94.3 0.425
x=2/3 0.100 95.0 0.624 0.260 94.9 0.546
Model 2
r=-2/3 0.180 94.9 0.459 0.540 94.9 0.399
r=-1/3 0.140 94.8 0.524 0.440 949 0.424
=0 0.100 71.3 0.640 0.100 93.7 0.893
xr=1/3 0.140 94.5 0.522 0.440 94.2 0.424
x=2/3 0.260 94.9 0.380 0.280 94.9 0.525
Model 3
r=-2/3 0.140 949 0.523 0.420 949 0.442
x=-1/3 0.200 94.9 0.435 0.400 94.9 0.440
r=0 0.100 94.7 0.628 0.680 94.7 0.337
x=1/3 0.100 93.9 0.623 0.100 94.0 0.887
x=2/3 0.100 94.6 0.624 0.180 94.9 0.658
Model 4
x=-2/3 0.180 94.9 0.459 0.520 94.8 0.406
r=-1/3 0.100 94.8 0.625 0.400 94.8 0.444
=0 0.100 79.3 0.636 0.100 93.9 0.893
r=1/3 0.100 94.4 0.623 0.400 94.2 0.443
x=2/3 0.320 94.9 0.342 0.280 94.9 0.525
Model 5
r=-2/3 0.180 94.9 0.459 0.200 94.8 0.624
xr=-1/3 0.100 94.7 0.625 0.180 94.6 0.658
=0 0.100 94.6 0.628 0.240 944 0.572
xr=1/3 0.140 94.6 0.522 0.260 94.3 0.545
x=2/3 0.200 94.8 0.434 0.280 94.9 0.525
Model 6
xr=-2/3 0.140 94.9 0.523 0.600 94.9 0.379
r=-1/3 0.140 948 0.524 0.420 949 0.429
r=0 0.100 94.8 0.628 0.600 94.9 0.359
x=1/3 0.140 94.5 0.522 0.480 94.4 0.401
x=2/3 0.260 94.8 0.380 0.420 949 0.442

Notes: Bandwidths are selected ex post as the largest bandwidths yielding good coverage, and as can not be made
feasible
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Table S.I1.8: Empirical Coverage and Average Interval Length of 95% Confidence Intervals

US (A\=05) US(A=07) RBC (b RBC (h2))

rbc rbc

EC IL EC IL EC 1L EC 1L

Model 1
r=-2/3 944 0.630 94.7  0.528 94.3 0.630 94.7  0.669
r=-1/3 56.5 0.410 21.1  0.362 63.3 0.417 91.9 0.504
=0 0.0 0.466 0.0 0.414 0.0 0.463 55.9  0.591
r=1/3 93.5 0.479 94.1  0.404 92.4 0.486 91.9 0.504
x=2/3 95.0 0.519 93.3 0.436 94.9 0.522 94.4  0.606
Model 2
r=-2/3 949 0.495 95.2  0.416 95.1 0.503 95.3  0.622
r=-1/3 92.7 0.408 57.9  0.350 94.4 0.417 84.2 0.432
=0 0.0 0.455 0.0 0.403 0.0 0.451 55.3  0.591
xr=1/3 92.4  0.407 58.0  0.350 93.9 0417 83.9 0.430
x=2/3 95.3  0.496 95.0 0.417 94.9  0.503 93.9 0.623
Model 3
r=-2/3 944 0.384 93.9 0.329 94.9 0.405 95.5 0.546
r=-1/3 939 0.328 914 0.277 94.1 0.336 94.8  0.400

=0 94.5 0.329 87.5  0.277 95.8 0.334 95.5 0.470

x=1/3 71.2  0.331 775  0.281 73.0 0.343 71.4  0.406

x=2/3 81.4 0.399 74.7  0.343 68.9 0.423 91.7  0.547
Model 4

x=-2/3 949 0.507 95.1 0.426 95.0 0.513 95.3 0.630
r=-1/3 90.2 0418 51.8  0.358 93.9 0.425 82.5 0.435
x=0 0.0 0.451 0.0 0.403 0.0 0.448 72.0 0.592
r=1/3 90.3 0.417 52.3  0.357 93.5 0.424 82.5 0.433
x=2/3 95.4  0.508 95.0 0.427 94.9 0.514 94.1 0.631
Model 5
r=-2/3 94.6 0.560 95.0 0.470 94.4  0.562 95.0 0.627
r=-1/3 851 0437 55.0  0.370 93.1 0.440 94.1  0.507
x=0 90.8  0.402 73.5  0.340 92.0 0.410 93.6  0.498
x=1/3 94.4  0.378 94.1 0.319 92.2  0.385 94.5 0477
r=2/3 95.2  0.442 94.7 0.373 95.0 0.454 94.3 0.554
Model 6
xr=-2/3 943 0.368 93.2 0.317 94.9 0.392 95.2  0.479
r=-1/3 949 0.362 94.4  0.305 94.5 0.366 94.8 0.408
x=0 94.1  0.367 93.0 0.309 94.9 0.372 95.2  0.420
x=1/3 92.6 0.372 86.8 0.313 93.6 0.377 93.9 0414
xr=2/3 94.8  0.407 94.5 0.344 94.7 0.427 94.4  0.487

Notes: Undersmoothing is implemented using bandwidths h = /\iLmse for A = {0.5;0.7}, in the columns labeled as
such.
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Table S.I1.9: Empirical Coverage and Average Interval Length of RBC 95% Confidence Intervals
for Model 5, for Different Variance Estimators

h EC IL

x=-2/3
HCy 0.248 94.2 0.555
HC, 0.249 94.4 0.562
HCy 0.249 944 0.559
HCs 0.250 944 0.562
NN 0.249 93.9 0.560
x=-1/3
HC(Cy 0.402 929 0.437
H(C 0.403 93.1 0.440
HC, 0.403 92.9 0.439
HCs 0.404 93.1 0.440
NN 0.399 92.7 0.441
xz=0
HC(Cy 0.473 91.9 0.408
HCy 0.474 92.0 0.410
HCs 0.474 91.9 0.409
HCy 0.474 92.0 0.410
NN 0.474 91.7 0.404
x=1/3
HCy 0.534 92.0 0.383
HCy 0.535 92.2 0.385
HCy 0.535 92.1 0.384
HCs 0.536 92.2 0.385
NN 0.541 91.9 0.380
xr=2/3
HC(Cy 0.396 94.8 0.450
HCy 0.398 95.0 0.454
HC, 0.397 94.9 0.452
HCs 0.398 95.0 0.454
NN 0.400 94.7 0.452

Notes: A
(i) The h column reports the average estimated bandwidths Aret.
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