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Abstract

Empirical studies using Regression Discontinuity (RD) designs often explore heterogeneous

treatment effects based on pretreatment covariates. However, the lack of formal statistical meth-

ods has led to the widespread use of ad hoc approaches in applications. Motivated by common

empirical practice, we develop a unified, theoretically grounded framework for RD heterogeneity

analysis. We show that a fully interacted local linear (in functional parameters) model effectively

captures heterogeneity while still being tractable and interpretable in applications. The model

structure holds without loss of generality for discrete covariates, while for continuous covariates

our proposed (local functional linear-in-parameters) model can be potentially restrictive, but

it nonetheless naturally matches standard empirical practice and offers a causal interpretation

for RD applications. We establish principled bandwidth selection and robust bias-corrected

inference methods to analyze heterogeneous treatment effects and test group differences. We

provide companion software to facilitate implementation of our results. An empirical application

illustrates the practical relevance of our methods.
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1 Introduction

Analyzing heterogeneous treatment effects based on pretreatment covariates is crucial in modern

causal inference. While the average causal effect provides a broad measure of a treatment’s effective-

ness and informs general policy decisions, uncovering covariate heterogeneity patterns is essential

for evaluating substantive hypotheses and specific policy interventions. Covariate-based heteroge-

neous treatment effects can help understand fairness and differential impacts across subpopulations,

develop targeted interventions, and optimize social policies.

Over the past decade, the regression discontinuity (RD) design has become a prominent tool for

causal inference, leading to extensive methodological advancements for identification, estimation,

and inference for average treatment effects in various contexts. However, despite its widespread

adoption, there is a notable lack of rigorous methods for studying heterogeneity based on pretreat-

ment covariates, resulting in many ad-hoc empirical approaches. We address this gap by developing

practical, theoretically-grounded tools for heterogeneity analysis in RD designs, putting forward a

unified methodology for empirical researchers studying heterogeneous treatment effects based on

pretreatment covariates.

Extending RD estimation and inference to encompass heterogeneous treatment effects presents

a high-dimensional, nonparametric challenge: while theoretically feasible, it is often impractical

without model restrictions. Consequently, empirical researchers typically use semiparametric mod-

els, and thus explore heterogeneity in limited dimensions. Following empirical practice, we study

the most common approach for RD treatment effect heterogeneity analysis: local least squares re-

gression with linear-in-parameters interactions with pretreatment covariates. This model balances

practical applicability with the flexible (nonparametric) nature of the RD design.

Our first contribution is to clarify the conditions under which a local regression with linear inter-

actions accurately recovers meaningful causal heterogeneous RD treatment effects. We show that

heterogeneous effects are identifiable when potential outcomes follow a local linear-in-parameters

functional coefficient model in the pretreatment variables. This structure is both flexible and in-

terpretable, and is without loss of generality for binary (and orthogonal) covariates. Without this

structure, the linear interactions model leads to a less interpretable and useful probability limit,

as the nonparametric nature of the estimation method hampers its usual causal interpretation
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emerging from the best linear prediction viewpoint. The supplemental appendix computes the pa-

rameters emerging as the probability limit of a local linear regression with linear interactions under

general misspecification, and demonstrates by example that a large smoothing bias emerges with-

out our proposed identifying assumption. Therefore, from a practical perspective, we show that

(i) heterogeneity analysis based on local polynomial regression methods with interactions is fully

warranted without additional assumptions when the pretreatment covariates are binary orthogonal

variables (e.g., indicator variables for each mutually exclusive level of a categorical variable), but

(ii) heterogeneity analysis requires a semiparametric identifying assumption in the general case of

discrete or continuous covariates for causal inference.

We then present formal methods for estimation and inference of heterogeneous RD treatment

effects, developing optimal bandwidth selection, point estimation, and robust bias-corrected infer-

ence. Our key large-sample econometric results include consistency, a mean squared error expan-

sion, a central limit theorem, and robust standard error estimators to both heteroskedasticity and

clustering. We show that the optimal bandwidth depends on the specific inference target, implying

different optimal bandwidths for average effects, subgroups, and group difference tests. Our goal is

to standardize empirical practice, where bandwidth selection is often ad-hoc, particularly for het-

erogeneity analysis. From that perspective, we identify conditions under which a single bandwidth

can be validly used for the entire analysis, thereby enhancing the practical appeal of our proposed

methods.

Despite its major role in empirical work, covariate adjustment for heterogeneity analysis in RD

designs has been surprisingly less explored in the literature than needed. The only antecedents

we are aware of are Hsu and Shen (2019), who use moment condition methods to test for the

presence of covariate-based heterogeneity, and Reguly (2021) and Alcantara et al. (2025), who

leverage machine learning methods to recover nonparametric covariate-based heterogeneity. None

of these contributions study the properties of the most common approach in empirical work: semi-

linear local polynomial regression with pretreatment covariate interactions. Our paper addresses

this gap in the literature by setting up a standard, most tractable local least squares framework

with covariate-interactions, and then providing novel identification, estimation, and robust bias-

corrected inference methods to support past, current, and future heterogeneity analysis in RD

applications.
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By introducing a comprehensive framework for identification, estimation, and inference in RD

designs, we aim to unify the study of heterogeneous treatment effects in empirical research. The

absence of such a framework has led to a variety of empirical approaches—some valid, others not—

creating inconsistencies and confusion in the literature. To illustrate this issue, Section SA3 in

the supplemental appendix compiles a sample of papers from AEA journals over the past decade

that analyze covariate heterogeneity in RD settings, provided they offer sufficient methodological

details. While not exhaustive or necessarily representative, this review reveals three common pat-

terns. First, most studies examine heterogeneity for binary covariates, but often by discretizing

categorical or continuous variables. Second, a single bandwidth, and often selected in an ad hoc

manner, is typically used for both average and heterogeneous treatment effects analysis. Third,

and most importantly, inference is rarely conducted properly, regardless of bandwidth choice or co-

variate granularity. Our proposed methods maintain the simplicity and interpretability of standard

empirical practice while introducing objective procedures that bring validity and rigor.

We illustrate our methodological results by revisiting the analysis in Akhtari et al. (2022), who

study how political turnover in mayoral elections in Brazil affects public service provision by local

governments. The analysis exploits close elections, a canonical RD setting, using a rich data set

of Brazilian mayoral elections. Klašnja and Titiunik (2017) originally analyzed this data and RD

setting, documenting a negative incumbency advantage; see further references therein. We begin by

replicating the results in Akhtari et al. (2022), who considered both standard RD treatment effect

and a limited measure of covariate-heterogeneity based on municipality-level monthly household

income. We recover their point estimates of heterogeneity for income dichotomized as above or

below median, and also report valid uncertainty quantification; our results are qualitatively in line

with theirs. Then, we further leverage our framework and methods to study income discretized by

quartile and by decile, revealing further nuance in the heterogeneity of treatment effects by income

level. To conclude, we also show that using income directly (as a continuous variable) provides an

accurate summary of the heterogeneity in this application, which is (i) highly compatible with the

discretized estimates, (ii) directly interpretable, and (iii) more efficient for estimation and infer-

ence. Specifically, we consider two local linear-in-parameters semiparametric heterogeneity models:

one taking income linearly, while the other taking income quadratically. This empirical exercise

demonstrates how our methods can be used to enhance RD heterogeneity analysis, while also high-
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lighting the importance of having a clear understanding of how best to capture heterogeneity in

the econometric model.

Our paper contributes to the methodological literature on RD designs (see Cattaneo and Titiu-

nik, 2022, for a review). In particular, it sheds new light on the role of pretreatment covariates

for identification, estimation, and inference of heterogeneous RD treatment effects. Cattaneo et al.

(2023) overviews covariate adjustment in RD designs and discusses its three most useful roles:

(i) increasing estimation efficiency, (ii) changing the parameter of interest, and (iii) heterogeneity

analysis. For efficiency gains, Calonico et al. (2019), Arai et al. (2025), Ma and Yu (2024), and

references therein, give results leveraging pretreatment covariates to improve precision in the es-

timation of the average RD treatment effect. There is also a rich literature on the inclusion of

covariates for identification of other RD treatment effects: for example, see Angrist and Rokkanen

(2015) and Cattaneo et al. (2021) for extrapolation, Peng and Ning (2021) and Caetano et al. (2024)

for weighted average treatment effects, Grembi et al. (2016) for difference-in-discontinuities, and

Frölich and Huber (2019) for nonparametric methods, among many others. As mentioned above,

the role of covariates for heterogeneity analysis has received the least attention in the literature,

and our paper is the first to study it in the context of local semi-linear regression with interactions,

the most common approach used in practice. Finally, it is worth mentioning that covariates are

sometimes used in an attempt to “fix” a “broken” RD design. This is not valid without strong

assumptions: it is analogous to employ covariate adjustment to “fix” a “broken” randomized as-

signment in experimental settings. Our paper does not speak to this practice, and we recommend

against it. See Cattaneo et al. (2023) for further discussion.

The rest of the paper proceeds as follows. Section 2 gives details on the RD setup and estimation.

Our main technical results are summarized in Section 3. We then present an empirical illustration of

our proposed methods in Section 4. Section 5 concludes. The supplemental appendix contains more

general, technical results, all proofs, implementation details, and additional numerical results. The

companion software package rdhte offers general-purpose implementation of our methodological

results, and is available at https://rdpackages.github.io/rdhte/. See Calonico et al. (2025)

for details.

5

https://rdpackages.github.io/rdhte/


2 Setup

We consider the standard sharp regression discontinuity design setting with a continuous running

variable (see Cattaneo et al., 2020, 2024, for a practical introduction). The defining characteristic

is that a binary treatment Ti ∈ {0, 1} is assigned to each unit based on whether the continuous

running variable Xi is above or below a known cutoff, denoted by c. Thus, Ti = 1{Xi ≥ c}.

The observed outcome is Yi = TiYi(1) + (1 − Ti)Yi(0), where Yi(t) is the potential outcome for

unit i under treatment Ti = t. In addition to Yi, Ti, and Xi, we observe a vector Wi ∈ Rd of

pretreatment covariates to be used for heterogeneity analysis. Distinct from Wi, we may have an

additional set of covariates Zi used for efficiency purposes only; see below. We assume a random

sample (Yi, Ti, Xi,Wi,Zi), for i = 1, . . . , n, is observed.

The usual parameter of interest in sharp RD is the average effect of Ti on Yi at the cutoff. To

simplify notation, we set the cutoff to be c = 0. Then, the average RD treatment effect is

τ = E[Yi(1)− Yi(0)|Xi = 0]. (2.1)

Identification of τ follows from standard continuity assumptions (Hahn et al., 2001), while estima-

tion and inference is typically done with local linear regression and robust bias correction (Calonico

et al., 2014). More precisely, the point estimate τ̇ of the causal parameter τ is the coefficient on

Ti in a least squares regression of Yi on a constant, Ti, Xi, and Ti ·Xi, using only the observations

such hat |Xi − 0| ≤ h, for a bandwidth h, and weighted by K((Xi − 0)/h), for a kernel function

K(·). This fit, and those below, are defined formally in the Supplemental Appendix (Section SA1).

We denote the resulting estimated equation by

Ẏi = µ̇+ τ̇Ti + ω̇1Xi + ω̇2TiXi. (2.2)

The coefficient τ̇ is identical to the difference in intercepts from fitting separate (local, weighted)

least squares regressions on either side of the cutoff. Conceptually, it is important to remember

that (2.2) is formally a nonparametric local polynomial regression with the polynomial degree set

to one. Finally, although point estimation is done with (local, weighted) linear models, we stress

that inference is then conducted using robust bias correction, which we adapt for heterogeneity
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below.

Calonico et al. (2019) studied the addition of the pretreatment covariates to this model, but

aiming exclusively for more efficient estimation of the RD average treatment effect τ , not for het-

erogeneity analysis. They showed that efficiency gains could be achieved by including covariates

linearly, but not interacting them with the treatment or running variable. Specifically, for pre-

treatment covariates Zi (used for efficiency only and hence necessarily distinct from Wi), Calonico

et al. (2019) studied τ̃ from the (local, weighted) least squares fit given by

Ỹi = µ̃+ τ̃Ti + ω̃1Xi + ω̃2TiXi + γ̃ ′Zi. (2.3)

Unlike τ̇ , the estimated coefficient τ̃ cannot be obtained from two separate fits because of the

common coefficient on Zi. Despite being linear in both the running variable and covariates, it is

important to note that (2.3) is nonparametric in Xi (local polynomial of degree one, localized using

the bandwidth h) but it is a linear projection in Zi, and thus the interpretation of the estimated

coefficient γ̃ is only as a best linear projection (unless the population mean function happens to

be linear). That is, the nonparametric smoothing is only on the running variable. This respects

the local nature of the RD design while being simple and tractable in applications. Calonico

et al. (2019) proved that, nonetheless, τ̃ recovers the average effect τ , characterized conditions for

efficiency gains, and provided optimal bandwidth selection and valid inference using bias robust

bias correction. Ma and Yu (2024) strengthened the efficiency argument for this regression fit. The

exclusion of interactions with the covariates in (2.3) is crucial for correct estimation of the average

effect τ of (2.1), but by construction does not allow for learning heterogeneity. Because our present

goal is explicitly to learn about heterogeneous treatment effects, we need to allow some form of

interaction between the pretreatment covariates and treatment indicator.

Ideally, one might try to recover the (local to Xi = 0) conditional average treatment effect

(CATE) function fully flexibly in Wi, which is defined by

κ(w) = E[Yi(1)− Yi(0)|Xi = 0,Wi = w]. (2.4)

Absent further assumptions, κ(w) is the difference between two (1+d) dimensional nonparametric
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regressions evaluated at the point (0,w) ∈ R1+d. While such a setting is possible to handle

theoretically, it is a challenging problem in real-world settings due to the curse of dimensionality

and the need to choose many tuning parameters. Following empirical practice, we aim for something

more tractable.

Indeed, one possible explanation for the popularity of RD in empirical work is that it combines a

credible causal identification design with perhaps the simplest nonparametric problem, namely one-

dimensional nonparametric regression at a single point, Xi = 0. This is reflected in the simplicity

of (2.2) and (2.3). Thus, rather than designing a fully general procedure for obtaining κ(w), we

focus on specifications that share the same practical appeal.

We consider the local weighted least squares regression with full interactions between the treat-

ment indicator and the pretreatment covariates, which may be discrete or continuous. That is, our

main task is analyzing the interpretation and properties of the regression fit:

Ŷi = α̂+ θ̂Ti + λ̂′Wi + ξ̂′TiWi + ω̂1Xi + ω̂2TiXi + ω̂′
3XiWi + ω̂′

4TiXiWi, (2.5)

and of the corresponding estimate of the CATE function κ(w) at the cutoff given by

κ̂(w) = θ̂ + ξ̂′w. (2.6)

This regression is the natural next step in the progression of (2.2) and (2.3). However, the inter-

pretation of the coefficients changes: the coefficient on Ti no longer recovers the average effect τ

but rather κ(0), the CATE for the baseline group w = 0 (where 0 is a vector of zeroes), under

appropriate identifying assumptions (Assumption 2 below). Moreover, while the coefficients on Zi

in (2.3) are largely uninterpretable since they are for efficiency purposes only, here the coefficients

ξ̂ give the difference from the baseline group, either as the discrete change for binary covariates or,

under our functional coefficient assumption below, as the slope of κ(w) with respect to continuous

w. Although we omit it from our main discussion, the supplemental appendix provides results

for estimation and inference on derivatives of κ(w), covering kink RD designs and related settings

(Card et al., 2015).

As with Equations (2.2) and (2.3), the fit (2.5) is a local polynomial (of degree 1) approximation
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in Xi, with bandwidth h and kernel weights K(Xi/h) around the cutoff c = 0. In this case, this

is true for the main effects as well as the interaction terms: while γ̃ in (2.3) is a linear projection

coefficient with no intended approximation power (or causal interpretation), the semiparametric fit

(2.5) delivers local polynomial approximations to unknown functions of Xi only, on either side of

the cutoff, that form linear interactions with Wi. This is formalized in Assumption 2 below and

in the supplemental appendix in full generality (Section SA1.3). Importantly, such an approxima-

tion cannot consistently estimate an arbitrary κ(w); its causal interpretation crucially relies on

Assumption 2 below. To reiterate, this is true because the regression (2.5) is nonparametric in Xi

but not Wi; there is no approximation to unknown functions of Wi.

In applications, the vector Wi must therefore be specified by the researcher to capture the

relevant heterogeneity. Changing the covariates, or their specification, included in the regression

changes the target estimand and its interpretation. With discrete variables, the vector Wi should

contain indicators for every relevant category, unless the researcher decides ex-ante that certain

categories are not to be studied. For example, if two binary variables (Bi,1, Bi,2) are present,

then Wi =
(
(1 − Bi,1)Bi,2, Bi,1(1 − Bi,2), Bi,1Bi,2

)′
, with Bi,1 = Bi,2 = 0 being the baseline

category. A multi-level discrete variable would require that Wi contain an indicator for each

level beyond the baseline, which forms a collection of orthogonal binary variables. For example,

if W is the finite set of values the covariate of interest Wi takes (e.g., years of education), then

Wi = (1(Wi = w), w ∈ W)′. In all of these cases, the structure of Assumption 2 holds without

loss of generality. Continuous variables can be included directly into Wi, in which case ξ̂ have

the standard interpretation of a slope coefficient in a linear model. Further, transformations of

continuous variables (such as polynomials) can be added for additional flexibility. Alternatively,

the researcher might estimate the heterogeneous treatment effects one variable at a time, which

may not capture the full heterogeneity pattern but may provide a simple and intuitive summary of

different dimensions of heterogeneity. Section 4 illustrates different approaches and interpretations

empirically. (See Calonico et al. (2025) for further examples and discussion.)

As with (2.2), and in contrast with (2.3), the coefficients in (2.5) can be obtained by first fitting

separate regressions on either side of the cutoff, and then taking appropriate differences. It is also

possible to run separate models for different subgroups of discrete variables via (2.2) to recover

the estimates in (2.5), but the joint estimation procedure is simple and intuitive and, thus, ap-
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pealing for practice. Joint estimation and inference also simplify concerns of bandwidth selection,

which otherwise may change depending on the group of interest or the hypothesis being tested.

Furthermore, joint estimation is also natural if additional controls are added: following Calonico

et al. (2019), it is possible to include some covariates for efficiency gains, while other covariates for

heterogeneity analysis, thereby obtaining more efficient estimation and inference for κ(w). This

mixed covariate adjustment approach augments (2.5) with additional covariates Zi that are not

interacted with Ti nor Xi, but interacted with Wi. That is, one would fit

Y̌i = α̌+ θ̌Ti+λ̌′Wi+ ξ̌′TiWi+ω̌1Xi+ω̌2TiXi+ω̌′
3XiWi+ω̌′

4TiXiWi+ γ̌ ′
1Zi+ γ̌ ′

2(Zi⊗Wi). (2.7)

WhenWi are binary, this approach is theoretically justified by the results presented in the upcoming

sections coupled with the theory of Calonico et al. (2019). For the general case, the results in the

supplemental appendix can be extended to accommodate the fit in (2.7), though the restriction on

the coefficients of Zi would be slightly different than for category-wise estimation, and additional

regularity conditions would be needed.

Unlike Equation (2.3), our proposed fit (2.5) does not yield an estimator of the average treatment

effect (2.1). This is implicit in Theorem 1 below, and was already shown by Calonico et al. (2019).

There are two potential remedies to this, neither of which can be recommended in practice. First,

the covariates can be demeaned on each side of the cutoff. This would follow the logic for linear

regression adjustments in randomized experiments, but in this case the demeaning would amount

to Nadaraya–Watson estimation at a boundary point with Wi as the outcome, thereby hampering

the entire RD estimation due to the presence of smoothing bias. Second, one could average the

fitted CATEs, but this again essentially amounts to Nadaraya–Watson estimation at a boundary

point, now using κ̂(w) as the outcome. In both cases, the convergence rate will be slow because the

misspecification bias is of order h, and is thus impractical for inference (e.g., severe undersmoothing

would be needed). Therefore, in applications, researchers should only use our proposed methods

for heterogeneity analysis and rely on the established methods underlying (2.2) or (2.3) to estimate

the average RD treatment effect.

Finally, a related motivation for the specification (2.7) is to control for panel or group structures.

It is common in some RD applications to include fixed effects for individuals, groups, or time
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periods. Identification, estimation, and inference then follow from the same arguments presented

in the upcoming sections. In this way, our proposed RD methodology, although developed for the

cross-sectional setting, can be easily applied to panel data, provided weighted linear least squares

methods with additive or interactive fixed effect are used.

3 Main Results

We turn to the theoretical properties of the regression fit in (2.5), and particularly the CATE

estimator (2.6). We provide a complete set of practical tools for identification, estimation, and

inference. The following standard regularity conditions are imposed; recall that c = 0 without loss

of generality, and let xL < 0 < xU. All omitted details are given in the supplemental appendix (see

Section SA1.3).

Assumption 1 (Sharp RD Design). The data (Yi, Xi,W
′
i), i = 1, . . . , n, where Ti = 1{Xi ≥ 0},

Yi = TiYi(1)+(1−Ti)Yi(0), and the Wi are pretreatment, is a random sample obeying the following

regularity conditions:

(a) Xi admits a continuous, bounded, and bounded away from zero Lebesgue density;

(b) For t ∈ {0, 1}, w ∈ Rd, and all x ∈ [xL, xU]: V[Yi(t)|Xi = x], E[|Yi(t)|4|Xi = x,Wi = w],

E[Wi|Xi = x], E[WiW
′
i|Xi = x], E[|Wi|4|Xi = x], E[WiV[Yi(t)|Xi,Wi]|Xi = x], and

E[WiW
′
iV[Yi(t)|Xi,Wi]|Xi = x] are continuous in x;

(c) E[K(Xi/h)AiA
′
i] is invertible, where Ai = (1, Xi, X

2
i )

′ ⊗ (1, Ti,W
′
i, TiW

′
i)
′; and

(d) K(·) is nonnegative and continuous on its support [−1, 1].

These assumptions are on par with prior RD literature, only adding minimal extra regularity to

accommodate the covariates Wi for heterogeneity analysis via interactions. The most important

substantive condition we require is that Wi are pretreatment, which is formalized in the supplemen-

tal appendix (Section SA1.3). Most commonly this holds when Wi is determined before treatment

is assigned. Parts (b) and (c) are regularity conditions needed for valid estimation and (robust bias-

corrected) inference. Part (c) is a familiar rank condition for least squares regression, adapted to

(2.5) and its bias-corrected counterpart. The regularity conditions are slightly stronger than those
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imposed by Calonico et al. (2019) because of the more flexible regression required for recovery of

heterogeneous treatment effects, κ(w), compared to the average treatment effect τ considered in

that paper (compare (2.3) to (2.5)).

To characterize exactly when the CATE function can be recovered based on a local least squares

fit with interactions, we introduce the following identifying assumption.

Assumption 2 (Local CATE Structure). For w ∈ Rd, and all x ∈ [xL, xU]:

E[Yi(1)− Yi(0)|Xi = x,Wi = w] = θ(x) + ξ(x)′w

and

E[Yi(0)|Xi = x,Wi = w] = α(x) + λ(x)′w,

where the functions θ(x), ξ(x), α(x), and λ(x) are thrice continuously differentiable.

This assumption requires the potential outcomes to obey a local semilinear-in-W-parameters

model, that is, a local partially linear functional coefficient model, which naturally aligns with the

estimation procedure in (2.5). It follows from this assumption that the CATE function (at the

cutoff x = c = 0) is linear in w:

κ(w) = E[Yi(1)− Yi(0)|Xi = 0,Wi = w] = θ(0) + ξ(0)′w.

From an econometric point of view, Assumption 2 means that estimation of the CATE function

remains a one-dimensional nonparametric problem and, further, that the bias can be removed up

to the same order as learning the average treatment effect in standard sharp RD settings. This is

important for maintaining the empirical tractability of RD analyses. When Wi contains continu-

ous variables, the linearity (in parameters) places a restriction on the “long” regression functions

E[Y (t)|Xi = x,Wi = w], and thus caution must be taken when interpreting the results. Note that

the assumption requires linearity in parameters, and so transformations, such as polynomials, can

be included in Wi to weaken the implied identifying restrictions. Alternatively, when the covari-

ates are binary, Wi ∈ {0, 1}d, Assumption 2 is automatically satisfied. Thus, our proposed joint
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estimation and inference methods are automatically valid for causal heterogeneous RD treatment

effects based on discrete covariates (via the construction of orthogonal binary variables for each

category), thereby offering a formal causal interpretation for the covariate-interacted local least

squares estimates in RD designs.

More generally, Assumption 2 gives a causal interpretation to the commonly used estimation

approach in (2.5), but Assumption 1 would be sufficient for all our estimation and inference results

if researchers were interested in studying a best mean square approximation of the mean functions

E[Y (t)|X = c,W = w]—that is, if the parameter of interest were simply the probability limit of

the estimated coefficients in (2.5). However, those are often neither useful nor interpretable as

heterogeneous causal effects. For more details, see the supplemental appendix.

We summarize our first identification and estimation result in the following theorem. Let →P

denote convergence in probability as n → ∞.

Theorem 1. Suppose Assumptions 1 and 2 hold, h → 0, and nh → ∞. Then, κ̂(w) →P κ(w).

This result establishes that the regression fit in (2.5) correctly captures the heterogeneous causal

effects in RD designs. Without Assumption 2, the probability limit of the coefficients in (2.5) do not

appear to have a causal interpretation or useful closed-form expressions, and κ̂(w) does not recover

a useful object (see the supplemental appendix). This is in contrast to recovering the average RD

effect, τ , using τ̃ from (2.3), where further restrictions on the underlying data generating process

are not needed despite the inclusion of pretreatment covariates (for efficiency purposes).

3.1 Mean Squared Error and Bandwidth Selection

Estimation and inference rely crucially on selecting a bandwidth h that appropriately localizes to

the cutoff c = 0. This problem is well studied in the methodological literature on RD designs

(Arai and Ichimura, 2018; Calonico et al., 2020). The choice of kernel weights is typically less

consequential, and typically a linear fit is used for point estimation (see Pei et al., 2021, for more

discussion). We develop a bandwidth selection that is optimal in a mean squared error (MSE)

sense for estimation of heterogeneous RD treatment effects. That bandwidth yields optimal point

estimates of heterogeneous RD treatment effects, making it an appropriate choice for reporting

point estimates in empirical applications. However, using such a bandwidth yields invalid inference
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in general, and thus, in the next section, we develop inference methods using the standard approach

of robust bias correction (Calonico et al., 2014).

To characterize the optimal bandwidth for treatment effect estimation, we establish an MSE

expansion of the coefficients ς̂ = (θ̂, ξ̂′)′ in the local regression (2.5) around their population coun-

terparts. The probability limit of this vector is, under Assumption 2, ς = (θ(0), ξ(0)′)′. Linear

combinations of these yield the CATE function for different groups or contrasts thereof. Let s be

the vector that selects or combines the appropriate elements. For example, in the case of a binary

Wi (so that d = 1), the base category subgroup can be studied as θ̂ = s′ς̂ with s = (1, 0)′, whereas

testing group differences would correspond to ξ̂ = s′ς̂ with s = (0, 1)′. In general, setting s = (1,w)′

for a given value w yields s′ς̂ = θ̂ + ξ̂′w = κ̂(w), recovering the CATE estimator of (2.6).

Here we give the bandwidth selection result. The general MSE expansion is given in the sup-

plemental appendix (Section SA2.6) and is more cumbersome notationally. As it is customary,

after some approximations, it depends on the leading variance and squared bias: Var[s′ς̂] = 1
nhVs

and Bias2[s′ς̂] = h4B2
s , respectively. The rates reflect the specific structure of the estimator in

(2.5), that is, a local linear approximation based only on the scalar Xi. The constants Vs and Bs

also capture the specific features of the estimator and target estimand (hence a function s). See

the supplemental appendix for omitted details. The following theorem summarizes our bandwidth

selection result.

Theorem 2 (MSE-optimal Bandwidth). Suppose Assumptions 1 and 2 hold, and h → 0 and

nh3 → ∞. Then, provided that Bs ̸= 0, the MSE-optimal bandwidth for estimating s′ς̂ is

h⋆s =
( Vs

4B2
s

1

n

)−1/5
, (3.1)

where Vs and Bs are given in the supplemental appendix (Section SA2.6).

While the optimal bandwidth depends on the specific target estimand through the constant terms,

its convergence rate is not affected because Equation (2.5) is still a one-dimensional nonparametric

(in Xi) estimation problem. Again, consider the leading case of a binary covariate. If one group

is substantially smaller than the other, then all else being equal, the variance will be higher for

that group. It could also be that the two groups have conditional expectations with different local

curvature, resulting in different bias. Thus, ideally, the bandwidth should be different for each
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estimand. However, this is not necessarily practical, and furthermore, the specific constant used in

bandwidth selection is often less important empirically than ensuring that h is roughly the right

magnitude. In the context of heterogeneous effects in RD designs, this perspective supports the

common practice of employing the same bandwidth for the estimation of all heterogeneous RD

treatment effects of interest. Section 4 provides further discussion in the context of our empirical

application.

Our result offers clear practical guidance and justification for several approaches. First, re-

searchers may want to judge if different groups have substantially different bandwidths. If not, it

may be fine to conduct all analyses using a common bandwidth. This is easily accommodated by

the joint fitting in (2.5). This common bandwidth could be selected as the same bandwidth used for

obtaining the average effect in (2.2). One could also use the median of all the relevant bandwidths

or, for obtaining robust inference, the smallest of the set. Using different bandwidths for different

tasks may yield more accurate inference in some applications.

3.2 Robust Bias-Corrected Inference

We now state our main results for inference on heterogeneous RD treatment effects. The supple-

mental appendix gives more general theoretical results (see Section SA2.6), but here we restrict to

the case of estimating the joint regression (2.5) using an MSE-optimal bandwidth for point estima-

tion and then conducting inference using robust bias correction. Our main inference procedures rely

on a Gaussian distributional approximation for the robust bias corrected versions of ς̂ = (θ̂, ξ̂′)′ of

the local regression (2.5), along with valid standard errors. This can then be specialized to different

use cases depending on which coefficients are combined or contrasted via the continuous mapping

theorem.

Using an MSE-optimal bandwidth means that the limiting distribution of ς̂ is not centered at

ς = (θ(0), ξ(0)′)′, under Assumption 2, a fact that renders inference invalid. More generally, it is

shown in the supplemental appendix that

√
nh

(
ς̂ − ς − h2B

)
⇝ Normal(0,V),

where ⇝ denotes convergence in distribution as h → 0 and nh → ∞, and B and V the leading
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asymptotic bias and asymptotic variance of the estimator ς̂. In particular, Vs = s′Vs and Bs = s′B.

It thus follows that a choice of bandwidth proportional to n−1/5 (e.g., h⋆s developed above) leads to

a MSE-optimal point estimator ς̂ but invalid inference due to a first-order bias in the distributional

approximation.

For inference in RD applications, robust bias correction is a popular way to deal with this prob-

lem. In brief, there are two key ingredients to robust bias correction: (i) an estimate of h2B is

subtracted from the point estimate ς̂, which amounts to bias correction, and (ii) the standard

errors are adjusted to account for the additional estimation error of the bias correction, which

amounts to variance correction. Robust bias-correction continues to rely on a Gaussian distribu-

tional approximation, but inference is based on the corrected statistics

ς̂rbc = ς̂ − h2B̂ and V̂rbc = v̂ar(ς̂rbc), (3.2)

where B̂ is an estimator of the bias of ς̂, and V̂rbc is an estimator of the variance of ς̂rbc.

The robust bias correction method for RD design has been discussed in detail: see Cattaneo

et al. (2020), and references therein. See also the supplemental appendix for omitted technical

details, including results on heteroskedasdic- and cluster-robust standard errors (Cameron and

Miller, 2015; MacKinnon et al., 2023). The method is known to have excellent theoretical and

numerical properties (Calonico et al., 2018, 2022), and has been shown to yield correct inference in

extensive validation empirical studies (Hyytinen et al., 2018; De Magalhães et al., 2025).

We obtain the following asymptotic normality result, based on the estimates and standard errors

in (3.2), for any specific estimand defined by s. The exact formulas for B̂ and V̂rbc are given in the

supplemental appendix (Section SA2.2).

Theorem 3 (Asymptotic Normality). Suppose Assumptions 1 and 2 hold, and h = h⋆s . Then,

s′ς̂rbc − s′ς√
s′V̂rbcs

⇝ Normal(0, 1).

The supplemental appendix gives a more general result, which includes a Gaussian distributional

approximation without Assumption 2 (and hence with a different centering). Theorem 3 can be used

to carry out valid inference for any of the estimands we have discussed, including the CATE function
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itself and comparisons between different values of w, for discrete or continuous Wi. For example,

an approximate robust bias-corrected 95% confidence interval for κ(w) based on s = (1,w)′ is

[
κ̂rbc(w)− 1.96

√
s′V̂rbcs , κ̂rbc(w) + 1.96

√
s′V̂rbcs

]
.

Robust hypothesis tests and p-values can also be constructed in the standard manner. For example,

assuming Wi ∈ {0, 1}, a hypothesis test of no heterogeneous RD treatment effect boils down to

testing H0 : ξ(0) = 0, which corresponds to employing s = (0, 1)′. Such inference procedures should

be reported along with the point estimates derived from ς̂ (as opposed to reporting ς̂rbc).

4 Application

To illustrate our methodological results we revisit the analysis by Akhtari et al. (2022), which

examines the impact of political turnover in Brazilian mayoral elections on local public service

provision using an RD design based on close elections. Klašnja and Titiunik (2017) first studied

this data and RD design, and documented large negative RD effects of party incumbency based

on Brazilian mayoral elections, comparing municipalities where the incumbent party barely loses

(resulting in political turnover) to those where the incumbent party barely wins (no turnover): a

bare victory results in a large reduction in the probability of victory in the following election, which

they attribute to deficient accountability resulting from weak parties and term limits.

Using a similar RD design based on close elections, Akhtari et al. (2022) find that political

turnover leads to a sudden expansion of municipal bureaucracy, with new personnel appointed across

multiple sectors at both managerial and non-managerial levels. They also investigate educational

outcomes, reporting increased replacement rates among school personnel in municipally controlled

schools, along with declines in student test scores. We focus on heterogeneous effects on headmaster

replacement (i.e., whether a headmaster is new to the school) by municipality income (we rescale

income into hundreds to improve the numerical presentation in Table 1 below). See their Table

A.21.

The analysis of Akhtari et al. (2022) highlights two key methodological difficulties researchers

have faced when studying heterogeneous treatment effects in RD without methodological and the-
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oretical guidance in the literature, as discussed above. First, Akhtari et al. (2022) use an optimal

data-driven bandwidth selection method (Calonico et al., 2019) to localize at the cutoff. However,

both estimation and inference rely solely on local linear fitting. Although estimation using linear

regression (specifically, their implementation of (2.3)) is correct, valid inference requires robust

bias correction, as standard errors from the linear fit are invalid when paired with the optimal

bandwidth. In our replication, we revisit their heterogeneity analysis using robust bias-corrected

inference. Our results, presented in Table 1, report confidence intervals instead of standard errors,

following best practices in RD analysis.

The second key aspect is that the heterogeneity variable of interest, income, is continuous.

Akhtari et al. (2022) binarize income and compare municipalities above and below the median

income level. We first replicate this exercise using our methods. The results are shown in the top

two rows of Panel (b), Table 1. Our point estimates are nearly identical to theirs (0.373 and 0.122

compared 0.389 and 0.126 in their Table A.21), where the differences are due to slight bandwidth

variations. Next, we incorporate valid uncertainty measures using robust bias correction, revealing

that the treatment effect is statistically significant only for low (below-median) income municipal-

ities. We also formally test the null hypothesis that the treatment effect is the same across income

groups, finding strong evidence against it: our robust inference yields a 95% confidence interval of

[-0.422, -0.078] for the difference, which excludes zero thus revealing statistically significant hetero-

geneity. We also extend this discretized analysis by studying treatment effects by income quartiles

and deciles, rather than a binary median split. This refinement adds nuance to the original study,

showing that variation in treatment effects is more pronounced across the median than within the

upper or lower groups. These results further strengthen the original findings.

Finally, we analyze income directly, as a continuous variable. The specification remains (2.5), but

its interpretation is now governed by Assumption 2: with an intercept and slope coefficient. In Table

1, Panel (c) reports estimated intercept and slope based on a linear-in-income model with Wi =

incomei, while Panel (d) considers a quadratic-in-income model with Wi = (incomei, income
2
i ).

Comparing the discretized heterogeneity with this linear and quadratic models, as shown graphically

in Figure 1, reveals that the two continuous models effectively capture the overall heterogeneity in

this application. Notably, the continuous specifications highlight differences in income distribution

within each group, particularly emphasizing that the top quartile has a much wider range than the
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others—an important finding for policy implications.

Ultimately, the decision of how to best capture heterogeneity is up to the researcher. The dis-

cretized and continuous versions have their strengths and limitations. The continuous approach,

particularly when compared to a fine discretization, may yield substantial precision improvements,

but requires the structure of Assumption 2. The choice ultimately depends on the specific appli-

cation and the researcher’s objectives, but in any case, it is important to have rigorous estimation

and inference methods for both.

5 Conclusion

We have shown how treatment effect heterogeneity can be effectively analyzed in RD settings using

a tractable and transparent linear-interactions model. Our approach avoids the complexities of

high-dimensional nonparametric regression while seamlessly integrating into standard RD practice.

By incorporating principled bandwidth selection and robust bias-corrected inference, we aim to

bring the same level of rigor and standardization to heterogeneous effects as currently exists for

average treatment effects. Our analysis has focused exclusively on sharp RD designs, including kink

RD designs in the supplemental appendix. Extending these methods to other settings—particularly

fuzzy designs—remains an important direction for future research.
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Table 1: Overall and Heterogeneous RD Treatment Effects by Income: Political Turnover and
Headmaster Replacement in Municipalities.

Point RBC RBC Sample
Estimate 95% CI p-value Size h

Panel (a): Overall Average Effect
τ 0.275 [0.176 ; 0.357] 0.000 14,622 0.151

Panel (b): Heterogeneity with Discretize Income
Binary

Below median 0.373 [0.284 ; 0.482] 0.000 9,454 0.188
Above median 0.122 [-0.043 ; 0.238] 0.174 6,167 0.154

By Quartile
1 0.416 [0.253 ; 0.527] 0.000 4,354 0.151
2 0.334 [0.201 ; 0.537] 0.000 4,132 0.166
3 0.164 [-0.164 ; 0.367] 0.453 2,330 0.151
4 0.095 [-0.070 ; 0.230] 0.297 4,495 0.204

By Decile
1 0.425 [0.121 ; 0.626] 0.004 1,757 0.150
2 0.392 [0.133 ; 0.662] 0.003 1,677 0.132
3 0.472 [0.358 ; 0.727] 0.000 1,928 0.221
4 0.257 [0.023 ; 0.521] 0.032 1,733 0.158
5 0.302 [0.080 ; 0.688] 0.013 1,458 0.161
6 0.087 [-0.661 ; 0.556] 0.866 956 0.190
7 0.288 [0.018 ; 0.535] 0.036 1,064 0.150
8 0.067 [-0.276 ; 0.149] 0.559 912 0.150
9 0.068 [-0.127 ; 0.526] 0.231 1,325 0.134
10 0.124 [-0.066 ; 0.335] 0.188 2,774 0.259

Panel (c): Heterogeneity with Linear Income
θ(0) 0.471 [0.306 ; 0.635] 0.000 14,410 0.152
ξ(0) -0.217 [-0.385 ; -0.068] 0.005 14,410 0.152

Panel (d): Heterogeneity with Quadratic Income
θ(0) 0.625 [0.231 ; 0.923] 0.001 14,410 0.152
ξ1(0) -0.586 [-1.328 ; 0.359] 0.260 14,410 0.152
ξ2(0) 0.161 [-0.287 ; 0.513] 0.580 14,410 0.152

Notes:

(i) Panel (a) shows the estimated RD treatment effect τ̇ from (2.2); Panel (b) shows κ̂(·) from (2.5)–(2.6), where
income is discretized and entered as a vector of indicator variables for each category, excluding the first category;
Panel (c) shows κ̂(income) from (2.5)–(2.6) with income used linearly as a continuous variable, Wi = incomei;
and Panel (d) shows κ̂(income) from (2.5)–(2.6) with income used quadratically as a continuous variable,
Wi = (incomei, income

2
i )

′.
(ii) Column “Point Estimate” reports local linear regression (p = 1) with a triangular kernel MSE-optimal treat-

ment effect point estimators, implemented using the data-driven bandwidth given in Column “h”. For more
details, see Theorems 1 and 2, and the supplemental appendix.

(iii) Columns “RBC 95% CI” and “RBC p-value” report robust bias-corrected 95% confidence intervals and p-
values, respectively, implemented using the data-driven bandwidth given in Column “h”. Variance Estimators
are cluster-robust at the municipality level (as in the original study, Akhtari et al., 2022, column 1 of Table
A.21). For more details, see Theorem 3, and the supplemental appendix.

(iv) Column “Sample Size” shows the effective sample size used for each estimation and robust bias-corrected
inference procedure, as determined by the data-driven bandwidth reported in column “h”. The total sample
size is n = 26, 099.

(v) For more details, see the supplemental appendix, and the replication files at https://rdpackages.github.io/
replication/.
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Figure 1: Graphical Presentation of Overall and Heterogeneous RD Treatment Effects by Income
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Notes:

(i) The horizontal dashed line is the estimated overall RD treatment effect: τ̇ of (2.2). See Table 1, Panel (a), for
the precise empirical result plotted.

(ii) The dots show the heterogeneous treatment effects for discretized income, with vertical bars representing
their associated robust bias-corrected 95% confidence intervals. Subfigure (a) reports discretized heterogeneity
below and above median, subfigure (b) reports discretized heterogeneity by quartiles, and subfigure (c) reports
discretized heterogeneity by deciles. See Table 1, Panel (b), for the precise empirical results plotted.

(iii) The solid line shows the estimated semi-linear heterogeneous treatment effect using income as a continuous

variable linearly: κ̂(incomei) = θ̂ + ξ̂ · incomei. See Table 1, Panel (c), for the precise intercept and slope
estimates.

(iv) The nonlinear dashed line shows the estimated semi-linear heterogeneous treatment effect using income as a

continuous variable quadratically: κ̂(incomei) = θ̂+ ξ̂1 · incomei + ξ̂2 · income2i . See Table 1, Panel (d), for the
precise estimates.

(v) For more details, see the footnote of Table 1, and the replication files at https://rdpackages.github.io/

replication/.

21

https://rdpackages.github.io/replication/
https://rdpackages.github.io/replication/


References

Akhtari, M., Moreira, D., and Trucco, L. (2022), “Political Turnover, Bureaucratic Turnover, and

the Quality of Public Services,” American Economic Review, 112, 442–93.

Alcantara, R., Hahn, P. R., Carvalho, C., and Lopes, H. (2025), “Learning Conditional Aver-

age Treatment Effects in Regression Discontinuity Designs Using Bayesian Additive Regression

Trees,” arXiv preprint arXiv:2503.00326.

Angrist, J. D., and Rokkanen, M. (2015), “Wanna get away? Regression discontinuity estimation

of exam school effects away from the cutoff,” Journal of the American Statistical Association,

110, 1331–1344.

Arai, Y., and Ichimura, H. (2018), “Simultaneous Selection of Optimal Bandwidths for the Sharp

Regression Discontinuity Estimator,” Quantitative Economics, 9, 441–482.

Arai, Y., Otsu, T., and Seo, M. H. (2025), “Regression Discontinuity Design with Potentially Many

Covariates,” Econometric Theory.

Caetano, C., Caetano, G., and Escanciano, J. C. (2024), “Robust Identification in Regression

Discontinuity Designs with Covariates,” working paper.

Calonico, S., Cattaneo, M. D., and Farrell, M. H. (2018), “On the Effect of Bias Estimation on

Coverage Accuracy in Nonparametric Inference,” Journal of the American Statistical Association,

113, 767–779.

(2020), “Optimal Bandwidth Choice for Robust Bias Corrected Inference in Regression

Discontinuity Designs,” Econometrics Journal, 23, 192–210.

(2022), “Coverage Error Optimal Confidence Intervals for Local Polynomial Regression,”

Bernoulli, 28, 2998–3022.

Calonico, S., Cattaneo, M. D., Farrell, M. H., Palomba, F., and Titiunik, R. (2025), “rdhte:

Learning Conditional Average Treatment Effects in RD Designs,” working paper.

Calonico, S., Cattaneo, M. D., Farrell, M. H., and Titiunik, R. (2019), “Regression Discontinuity

Designs using Covariates,” Review of Economics and Statistics, 101, 442–451.

22



Calonico, S., Cattaneo, M. D., and Titiunik, R. (2014), “Robust Nonparametric Confidence Inter-

vals for Regression-Discontinuity Designs,” Econometrica, 82, 2295–2326.

Cameron, A. C., and Miller, D. L. (2015), “A practitioner’s guide to cluster-robust inference,”

Journal of human resources, 50, 317–372.

Card, D., Lee, D. S., Pei, Z., and Weber, A. (2015), “Inference on Causal Effects in a Generalized

Regression Kink Design,” Econometrica, 83, 2453–2483.

Cattaneo, M. D., Idrobo, N., and Titiunik, R. (2020), A Practical Introduction to Regression

Discontinuity Designs: Foundations, Cambridge Elements: Quantitative and Computational

Methods for Social Science, Cambridge University Press.

(2024), A Practical Introduction to Regression Discontinuity Designs: Extensions, Cam-

bridge Elements: Quantitative and Computational Methods for Social Science, Cambridge Uni-

versity Press.

Cattaneo, M. D., Keele, L., and Titiunik, R. (2023), “Covariate Adjustment in Regression Dis-

continuity Designs,” in Handbook of Matching and Weighting in Causal Inference, eds. D. S. S.

J. R. Zubizarreta, E. A. Stuart and P. R. Rosenbaum, chapter 8, Boca Raton, FL: Chapman &

Hall, pp. 153–168.

Cattaneo, M. D., Keele, L., Titiunik, R., and Vazquez-Bare, G. (2021), “Extrapolating Treatment

Effects in Multi-Cutoff Regression Discontinuity Designs,” Journal of the American Statistical

Association, 116, 1941–1952.

Cattaneo, M. D., and Titiunik, R. (2022), “Regression Discontinuity Designs,” Annual Review of

Economics, 14, 821–851.
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